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Importance of Pointer Analysis
• Pointer analysis is a key component of various software engineering tools

-Kapus and Cadar. [FSE 19]

“In this paper, we propose a novel approach that uses 
pointer alias analysis to group memory objects …”

-Sui et al. [TSE 14]

“To find memory leaks statically, …, its underlying 
pointer analysis must also be scalable and accurate”
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“Another limitation comes from the pointer analysis….
context-insensitive may information is not precise enough…”

-Lee et al. [FSE 18]

-Gao et al. [ICSE 15]

“we first perform pointer analysis on the whole program”
“Pointer analyses of different sensitivities can be used to increase 

the precision of the analysis or to improve the analysis speed.”

Automatic Program Repair Tools Symbolic Execution Tool

Bug Finder
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Analysis Heuristics in Pointer Analysis
• Cost-effective pointer analyzer contains various analysis heuristics

Pointer AnalyzerProgram Precise & scalable
analysis result

• Context sensitivity heuristics (which method calls should be analyzed precisely?)

• Heap abstraction heuristics (which objects should be analyzed precisely?)

• Context tunneling heuristics (which context elements should be maintained?)

• …
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Necessity of Context Sensitivity Heuristics
• Full 2-object-sensitivity (2obj) is precise but too expensive
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• Context sensitivity heuristics assign different context for each method call
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• Context sensitivity heuristics assign different context for each method call
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Current Trend on Designing Heuristics

Graph Graph with classified nodes

Program

Heuristic

• A recent trend in pointer analyses is use of graph-based heuristics

Bean [SAS’ 16], Mahjong [PLDI’17], Zipper [OOPSLA ’18], Scaler [FSE’ 18], Eagle [OOPSLA’ 19]
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Current Trend on Designing Heuristics

Graph Graph with classified nodes

Program

Heuristic

• A recent trend in pointer analyses is use of graph-based heuristics

Bean [SAS’ 16], Mahjong [PLDI’17], Zipper [OOPSLA ’18], Scaler [FSE’ 18], Eagle [OOPSLA’ 19]

Programs are represented as 
graphs via cheap pre-analysis
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Current Trend on Designing Heuristics

Graph Graph with classified nodes

Program
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• A recent trend in pointer analyses is use of graph-based heuristics
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Heuristics classify 
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Current Trend on Designing Heuristics

Graph Graph with classified nodes

Program

Heuristic

• A recent trend in pointer analyses is use of graph-based heuristics

Bean [SAS’ 16], Mahjong [PLDI’17], Zipper [OOPSLA ’18], Scaler [FSE’ 18], Eagle [OOPSLA’ 19]

: Apply 2-object sensitivity
: Apply 1-object sensitivity
: Apply context insensitivity
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Problem
• However, it is a difficult task to design graph-based heuristics

Graph

Program

Bean [SAS’ 16], Mahjong [PLDI’17], Zipper [OOPSLA ’18], Scaler [FSE’ 18], Eagle [OOPSLA’ 19]

Heuristic

• Need expertise
• Need human effort
• …
17

Graph with 
classified nodes



Our Goal

Graph Graph with 
classified nodes

Program

• Our goal is to automatically generate graph based heuristics without human effort

Automatically generated
graph-based heuristic
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Table 1. Atomic features used in evaluation

Class A (Signature features)

A1 “java” A2 “lang” A3 “sun” A4 “()” A5 “void”
A6 “security” A7 “int” A8 “util” A9 “String” A10 “init”

Class B (Additional features)

B1 Methods contained in nested class B7 Methods containing static method invocation
B2 Methods taking multiple arguments B8 Methods containing virtual method invocation
B3 Methods containing array load B9 Static method
B4 Methods containing local assignments B10 Methods containing a single heap allocation
B5 Methods containing local variables B11 Methods taking an argument of Object type
B6 Methods containing �eld store B12 Methods containing multiple heap allocations

B13 Methods contained in a large class

Atomic Features. Table 1 shows 23 atomic features we have used in learning. Each feature in
Table 1 describes a syntactic property of Java method de�nitions. The features are classi�ed into
two types: signature features (Class A) and additional features (Class B). Signature features (A1
– A10) came from the existing work [Jeong et al. 2017] and additional features (B1 – B13) have
been newly designed in this work. Signature features consist of strings that most frequently appear
in method signatures from the DaCapo suite [Blackburn et al. 2006]. For example, the feature A5
(“void”) denotes the set of methods whose signature strings include “void” as a substring. On the
other hand, features B1 – B13 describe slightly higher-level properties. For example, the feature
B1 denotes the set of methods that belong to inner classes. When choosing atomic features, we
focused on collecting as many simple features as possible and let the learning algorithm to discover
meaningful combinations of them automatically. In Section 5.2, we discuss impact of using di�erent
atomic features.

4.3 Optimization Problem
Formally, the learning problem is expressed as an optimization problem. Given program analysis F ,
parameterized heuristicH� de�ned in (1), and training programs P = {P1, . . . , Pm }, our goal is to
�nd the parameters f1 and f2 that maximize the precision of the analysis over the codebase:

Find � = hf1, f2i that maximizes
X

P 2P
|proved(FP (H� (P ))) |

such that � = hf1, f2i satis�es the following constraint on the analysis cost:
X

P 2P
cost(FP (H� (P ))) 

X

P 2P
cost(FP (;)).

The constraint says that the analysis with context tunneling (FP (H� (P ))) is at least as scalable as
the baseline analysis without tunneling (FP (;)).

4.4 Learning Algorithm
In this paper, we present an algorithm that e�ectively solves the optimization problem. The key chal-
lenge, which makes our algorithm substantially di�er from the existing learning algorithms [Jeong
et al. 2017; Liang et al. 2011], is that the analysis F is not monotone with respect to the tunneling
relations. In existing learning algorithms [Jeong et al. 2017; Liang et al. 2011], monotonicity plays a

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 140. Publication date: November 2018.

Previous Data-driven Program Analysis
• Prior data-driven program analyses require application specific featuresThe starting point of our extension is to define the data-

dependency with respect to L:

c0
l L cn = 9[c0, c1, . . . , cn] 2 Paths, l 2 L.

l 2 D(c0) \ U(cn) ^ 80 < i < n. l 62 D(ci)

The main modification lies in a new requirement that in order
for c0

l L cn to hold, the location l should be included in the
set L. With this notion of data dependency, we next define
an abstract transfer function:

FL(X) = �c. fc(s
0)

where s0(l) =

⇢
X(c)(l) (l 62 L)F

c0
l Lc

X(c0)(l) otherwise

This definition says that when we collect an abstract state
right before c, we use the flow-insensitive result sI(l) for a
location not in L, and follow the original treatment for those
in L. An analysis in our extension computes lfpX0

FL, where
the initial X0 2 D is built by associating the results of the
flow-insensitive analysis (i.e., values of sI ) with all locations
not selected by L (i.e., L \ L):

X0(c)(l) =

⇢
sI(l) l 62 L
? otherwise

Note that L determines the degree of flow-sensitivity. For
instance, when L = L, the analysis becomes an ordinary
flow-sensitive sparse analysis. On the other hand, when L =
;, the analysis is just a flow-insensitive analysis. The set L is
what we call abstraction in Section 3: abstraction locations
in L form JP in that section, and subsets of these locations,
such as L, are abstractions there, which are expressed in
terms of sets, rather than boolean functions. Our approach
provides a parameterised strategy for selecting the set L
that makes the analysis comparable to the flow-sensitive
version for precision and to the flow-insensitive one for
performance. In particular, it gives a method for learning
parameters in that strategy.

Features The features for our partially flow-sensitive anal-
yses describe syntactic or semantic properties of abstract lo-
cations, namely, program variables, structure fields and al-
location sites. Note that this is what our approach instructs,
because these locations form the set JP in Section 3 and are
parts of P where we control the precision of an analysis.

In our implementation, we used 45 features shown in Ta-
ble 2, which describe how program variables, structure fields
or allocation sites are used in typical C programs. When
picking these features, we decided to focus on expressive-
ness, and included a large number of features, instead of try-
ing to choose only important features. Our idea was to let
our learning algorithm automatically find out such important
ones among our features.

Our features are grouped into Type A and Type B in the
table. A feature of Type A describes a simple, atomic prop-
erty for a program variable, a structure field or an alloca-
tion site, e.g., whether it is a local variable or not. A feature

Type # Features
A 1 local variable

2 global variable
3 structure field
4 location created by dynamic memory allocation
5 defined at one program point
6 location potentially generated in library code
7 assigned a constant expression (e.g., x = c1 + c2)
8 compared with a constant expression (e.g., x < c)
9 compared with an other variable (e.g., x < y)
10 negated in a conditional expression (e.g., if (!x))
11 directly used in malloc (e.g., malloc(x))
12 indirectly used in malloc (e.g., y = x; malloc(y))
13 directly used in realloc (e.g., realloc(x))
14 indirectly used in realloc (e.g., y = x; realloc(y))
15 directly returned from malloc (e.g., x = malloc(e))
16 indirectly returned from malloc
17 directly returned from realloc (e.g., x = realloc(e))
18 indirectly returned from realloc
19 incremented by one (e.g., x = x + 1)
20 incremented by a constant expr. (e.g., x = x + (1+2))
21 incremented by a variable (e.g., x = x + y)
22 decremented by one (e.g., x = x - 1)
23 decremented by a constant expr (e.g., x = x - (1+2))
24 decremented by a variable (e.g., x = x - y)
25 multiplied by a constant (e.g., x = x * 2)
26 multiplied by a variable (e.g., x = x * y)
27 incremented pointer (e.g., p++)
28 used as an array index (e.g., a[x])
29 used in an array expr. (e.g., x[e])
30 returned from an unknown library function
31 modified inside a recursive function
32 modified inside a local loop
33 read inside a local loop

B 34 1 ^ 8 ^ (11 _ 12)
35 2 ^ 8 ^ (11 _ 12)
36 1 ^ (11 _ 12) ^ (19 _ 20)
37 2 ^ (11 _ 12) ^ (19 _ 20)
38 1 ^ (11 _ 12) ^ (15 _ 16)
39 2 ^ (11 _ 12) ^ (15 _ 16)
40 (11 _ 12) ^ 29
41 (15 _ 16) ^ 29
42 1 ^ (19 _ 20) ^ 33
43 2 ^ (19 _ 20) ^ 33
44 1 ^ (19 _ 20) ^ ¬33
45 2 ^ (19 _ 20) ^ ¬33

Table 2. Features for partially flow-sensitive analysis. Fea-
tures of Type A denote simple syntactic or semantic proper-
ties for abstract locations (that is, program variables, struc-
ture fields and allocation sites). Features of Type B are var-
ious combinations of simple features, and express patterns
that variables are used in programs.
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of Type B, on the other hand, describes a slightly complex
usage pattern, and is expressed as a combination of atomic
features. Type B features have been designed by manually
observing typical usage patterns of variables in the bench-
mark programs. For instance, feature 34 was developed after
we observed the following usage pattern of variables:

int x; // local variable
if (x < 10)

... = malloc (x);

It says that x is a local variable, and gets compared with a
constant and passed as an argument to a function that does
memory allocation. Note that we included these Type B fea-
tures not because they are important for flow-sensitivity. We
included them to increase expressiveness, because our lin-
ear learning model with Type A features only cannot express
such usage patterns. Deciding whether they are important for
flow-sensitivity or not is the job of the learning algorithm.

6.2 Partially Context-Sensitive Analysis

Another example of our approach is partially context-sensitive
analyses. Assume we are given a program P . Let Procs be
the set of procedures in P . The adaptation strategy of such an
analysis selects a subset Pr of procedures of P , and instructs
the analysis to treat only the ones in Pr context-sensitively:
calling contexts of each procedure in Pr are treated sep-
arately by the analysis. This style of implementing partial
context-sensitivity is intuitive and well-studied, so we omit
the details and just mention that our implementation used
one such analysis in [18] after minor modification. Note that
these partially context-sensitive analyses are instances of the
adaptive static analysis in Section 3; the set Procs corre-
sponds to JP , and Pr is what we call an abstraction in that
section.

For partial context-sensitivity, we used 38 features in Ta-
ble 3. Since our partially context-sensitive analysis adapts
by selecting a subset of procedures, our features are predi-
cates over procedures, i.e., ⇡k : Procs ! B. As in the flow-
sensitivity case, we used both atomic features (Type A) and
compound features (Type B), both describing properties of
procedures, e.g., whether a given procedure is a leaf in the
call graph.

6.3 Combination

The previous two analyses can be combined to an adap-
tive analysis that controls both flow-sensitivity and context-
sensitivity. The combined analysis adjusts the level of ab-
straction at abstract locations and procedures. This means
that its JJ set consists of abstract locations and procedures,
and its abstractions are just subsets of these locations and
procedures. The features of the combined analysis are ob-
tained similarly by putting together the features for our pre-
vious analyses. This combined abstractions and features en-
able our learning algorithm to find a more complex adapta-
tion strategy that considers both flow-sensitivity and context-

Type # Features
A 1 leaf function

2 function containing malloc
3 function containing realloc
4 function containing a loop
5 function containing an if statement
6 function containing a switch statement
7 function using a string-related library function
8 write to a global variable
9 read a global variable
10 write to a structure field
11 read from a structure field
12 directly return a constant expression
13 indirectly return a constant expression
14 directly return an allocated memory
15 indirectly return an allocated memory
16 directly return a reallocated memory
17 indirectly return a reallocated memory
18 return expression involves field access
19 return value depends on a structure field
20 return void
21 directly invoked with a constant
22 constant is passed to an argument
23 invoked with an unknown value
24 functions having no arguments
25 functions having one argument
26 functions having more than one argument
27 functions having an integer argument
28 functions having a pointer argument
29 functions having a structure as an argument

B 30 2 ^ (21 _ 22) ^ (14 _ 15)
31 2 ^ (21 _ 22) ^ ¬(14 _ 15)
32 2 ^ 23 ^ (14 _ 15)
33 2 ^ 23 ^ ¬(14 _ 15)
34 2 ^ (21 _ 22) ^ (16 _ 17)
35 2 ^ (21 _ 22) ^ ¬(16 _ 17)
36 2 ^ 23 ^ (16 _ 17)
37 2 ^ 23 ^ ¬(16 _ 17)
38 (21 _ 22) ^ ¬23

Table 3. Features for partially context-sensitive analysis.

sensitivity at the same time. This strategy helps the analy-
sis to use its increased flexibility efficiently. In Section 7.2,
we report our experience with experimenting the combined
analysis.

7. Experiments

Following our recipe in Section 6, we instantiated our
approach for partial flow-sensitivity and partial context-
sensitivity, and implemented these instantiations in Sparrow,
a buffer-overrun analysis for real-world C programs [19]. In
this section, we report the results of our experiments with
these implementations.

7.1 Partial Flow-Sensitivity

Setting We implemented a partial flow-sensitive analysis
in Section 6.1 by modifying a buffer-overrun analyser for C
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Table 1. Features for approximating Polyhedra join.

# Description Calculation

1 Number of variables in the block Xc
t |Xc

t |
2 Number of constraints in the factor Xc

t |It(Xc
t)|

3 Number of generators in the factor Xc
t |Gt(Xc

t)|
4 Number of loop head variables in c |Xc \ XH |
5 Boolean, true if Xc is a subset of XH Xc ✓ XH
6 Boolean, true if c is in IH c 2 IH
7 Number of variables in constraint c |Xc |.
8 Number of large coe�cients in c

Õ
i (|ai | >= 100)

9 Sum of scores for variables in c
Õ
i S����(xi ).

10 Boolean, true if c is in join inputs c 2 IP ^ c 2 IQ
11 Boolean, true if c coarsens partition C�����(Xc

t, �P, �Q)
12 Boolean, true if c is an equality � is =

Table 2. Features for approximating Octagon join.

# Description Calculation

1 Number of variables in the block Xc
t |Xc

t |
2 Number of constraints in the factor for Xc

t |It(Xc
t)|

3 Number of loop head variables in c |Xc \ XH |
4 Boolean, true if c is in IH c 2 IH
5 Score of variable xi S����(xi )
6 Score of variable x j S����(x j )
7 Number of �nite bounds for variable xi See text
8 Number of �nite bounds for variable x j See text
9 Absolute value of constraint upper bound b |b |
10 Boolean, true if upper bound b 0 is 1 See text
11 Number of constraints coarsening partition See text
12 Loop iteration number iter

Final iterative learning algorithm. Given the size of the
search space, a large classi�cation dataset is necessary for
learning a suitable � . Moreover, since the dataset and the
policy are mutually dependent, they should be improved
iteratively. Towards that we adopt a D�����-style learning
scheme [37] which alternates dataset generation with policy
learning, illustrated in Algorithm 3.

The algorithm �rst initializes the dataset D to ú and� to
a policy which does not remove constraints (Line 2). It then
performs N training iterations. Each iteration calls the proce-
dureG��C������D��� on a precise abstract sequence T 2 S
(Line 5) returning a newly constructed dataset, which is then
added to D. An improved policy� is trained on D through a
supervised learning classi�cation algorithm (Line 6), which
depends on the used classi�er (in our case, the classi�er is a
GCN followed by a fully connected network as instantiated
in Section 6.2). The procedure can repeat a number of times,
gradually improving the quality of the learned policy� .

6 Instantiation of L���
We now describe our instantiation of the L��� approximate
join transformer for the Polyhedra and Octagon domains.
Our instantiation is based on a precise analysis with online
decomposition [45]. We do not approximate other transform-
ers used in the analysis. Next, we �rst de�ne our features
(i.e., F��� in Section 5) and edges (i.e., E��� in Section 5)
for representing the set of constraints as a graph and then
discuss our instantiation of the constraint removal policy� .

6.1 Features and Edges for Constraints
As discussed in Section 5.2, we extract features for each con-
straint c 2 It by calling F���(IP ,IQ ,It) whereIt = IP tIQ .
The features distill domain-speci�c information critical for
identifying redundant constraints. These include features
that are (a) speci�c to the constraint, (b) dependent on both
the constraint and the abstract state, and (c) dependent on

both the constraint and the context information about the
loop. We denote the set of variables in the constraint c byXc

and the block containing the variables in c in the partition
of It by Xc

t. Note that Xc ✓ Xc
t. It(Xc

t) is the subset of
constraints over the variables in Xc

t. We de�ne this informa-
tion analogously for IP and IQ . Moreover, we record global
information about the loop by tracking the current loop head
element IH , the set of variables XH which appears in at least
one constraint in IH , and the iteration number iter .

Features for Polyhedra constraints. The extracted fea-
tures for constraints in the Polyhedra domain are shown in
Table 1. The implementation of the Polyhedra domain used
in our instantiation keeps both the generator and the con-
straint representation [44]. The cost of the join in the factor
containing the constraint c is characterized by the number
of variables in the block Xc

t and the number of generators
and constraints in the factor [44]. The �rst three features in
Table 1 record this information.

Features 4–6 record information for predicting whether
the constraint c a�ects the abstract element at the loop head
IH . Feature 4 records the number of variables that are both
in c and IH . Boolean features 5 and 6, respectively, record
whether all variables in c are in XH and whether IH has
constraint c . The constraints that link with IH are likely to
be non-redundant.
Features 7 and 8 record the number of variables and the

number of large coe�cients (with absolute value � 100) in
c . We use a function S����(x ) that computes the number of
constraints containing the variables x in It. Feature 9 then
records the sum of S����(x ) for all x 2 Xc . A constraint with
large values for these three features is likely to be redundant.
Boolean features 10–11 characterize the relationship of

c w.r.t. the two join inputs IP and IQ . Feature 10 checks
whether c appears in both inputs. If yes, then c should likely
be kept. Feature 11 checks whether c coarsens the partition,
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Table 2. Features for approximating Octagon join.

# Description Calculation

1 Number of variables in the block Xc
t |Xc

t |
2 Number of constraints in the factor for Xc

t |It(Xc
t)|

3 Number of loop head variables in c |Xc \ XH |
4 Boolean, true if c is in IH c 2 IH
5 Score of variable xi S����(xi )
6 Score of variable x j S����(x j )
7 Number of �nite bounds for variable xi See text
8 Number of �nite bounds for variable x j See text
9 Absolute value of constraint upper bound b |b |
10 Boolean, true if upper bound b 0 is 1 See text
11 Number of constraints coarsening partition See text
12 Loop iteration number iter

Final iterative learning algorithm. Given the size of the
search space, a large classi�cation dataset is necessary for
learning a suitable � . Moreover, since the dataset and the
policy are mutually dependent, they should be improved
iteratively. Towards that we adopt a D�����-style learning
scheme [37] which alternates dataset generation with policy
learning, illustrated in Algorithm 3.

The algorithm �rst initializes the dataset D to ú and� to
a policy which does not remove constraints (Line 2). It then
performs N training iterations. Each iteration calls the proce-
dureG��C������D��� on a precise abstract sequence T 2 S
(Line 5) returning a newly constructed dataset, which is then
added to D. An improved policy� is trained on D through a
supervised learning classi�cation algorithm (Line 6), which
depends on the used classi�er (in our case, the classi�er is a
GCN followed by a fully connected network as instantiated
in Section 6.2). The procedure can repeat a number of times,
gradually improving the quality of the learned policy� .

6 Instantiation of L���
We now describe our instantiation of the L��� approximate
join transformer for the Polyhedra and Octagon domains.
Our instantiation is based on a precise analysis with online
decomposition [45]. We do not approximate other transform-
ers used in the analysis. Next, we �rst de�ne our features
(i.e., F��� in Section 5) and edges (i.e., E��� in Section 5)
for representing the set of constraints as a graph and then
discuss our instantiation of the constraint removal policy� .

6.1 Features and Edges for Constraints
As discussed in Section 5.2, we extract features for each con-
straint c 2 It by calling F���(IP ,IQ ,It) whereIt = IP tIQ .
The features distill domain-speci�c information critical for
identifying redundant constraints. These include features
that are (a) speci�c to the constraint, (b) dependent on both
the constraint and the abstract state, and (c) dependent on

both the constraint and the context information about the
loop. We denote the set of variables in the constraint c byXc

and the block containing the variables in c in the partition
of It by Xc

t. Note that Xc ✓ Xc
t. It(Xc

t) is the subset of
constraints over the variables in Xc

t. We de�ne this informa-
tion analogously for IP and IQ . Moreover, we record global
information about the loop by tracking the current loop head
element IH , the set of variables XH which appears in at least
one constraint in IH , and the iteration number iter .

Features for Polyhedra constraints. The extracted fea-
tures for constraints in the Polyhedra domain are shown in
Table 1. The implementation of the Polyhedra domain used
in our instantiation keeps both the generator and the con-
straint representation [44]. The cost of the join in the factor
containing the constraint c is characterized by the number
of variables in the block Xc

t and the number of generators
and constraints in the factor [44]. The �rst three features in
Table 1 record this information.

Features 4–6 record information for predicting whether
the constraint c a�ects the abstract element at the loop head
IH . Feature 4 records the number of variables that are both
in c and IH . Boolean features 5 and 6, respectively, record
whether all variables in c are in XH and whether IH has
constraint c . The constraints that link with IH are likely to
be non-redundant.
Features 7 and 8 record the number of variables and the

number of large coe�cients (with absolute value � 100) in
c . We use a function S����(x ) that computes the number of
constraints containing the variables x in It. Feature 9 then
records the sum of S����(x ) for all x 2 Xc . A constraint with
large values for these three features is likely to be redundant.
Boolean features 10–11 characterize the relationship of

c w.r.t. the two join inputs IP and IQ . Feature 10 checks
whether c appears in both inputs. If yes, then c should likely
be kept. Feature 11 checks whether c coarsens the partition,
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Class A (Signature features)

A1 “java” A2 “lang” A3 “sun” A4 “()” A5 “void”
A6 “security” A7 “int” A8 “util” A9 “String” A10 “init”

Class B (Additional features)

B1 Methods contained in nested class B7 Methods containing static method invocation
B2 Methods taking multiple arguments B8 Methods containing virtual method invocation
B3 Methods containing array load B9 Static method
B4 Methods containing local assignments B10 Methods containing a single heap allocation
B5 Methods containing local variables B11 Methods taking an argument of Object type
B6 Methods containing �eld store B12 Methods containing multiple heap allocations

B13 Methods contained in a large class

Previous Data-driven Program Analysis
• Prior data-driven program analyses require application specific featuresThe starting point of our extension is to define the data-

dependency with respect to L:

c0
l L cn = 9[c0, c1, . . . , cn] 2 Paths, l 2 L.

l 2 D(c0) \ U(cn) ^ 80 < i < n. l 62 D(ci)

The main modification lies in a new requirement that in order
for c0

l L cn to hold, the location l should be included in the
set L. With this notion of data dependency, we next define
an abstract transfer function:

FL(X) = �c. fc(s
0)

where s0(l) =

⇢
X(c)(l) (l 62 L)F

c0
l Lc

X(c0)(l) otherwise

This definition says that when we collect an abstract state
right before c, we use the flow-insensitive result sI(l) for a
location not in L, and follow the original treatment for those
in L. An analysis in our extension computes lfpX0

FL, where
the initial X0 2 D is built by associating the results of the
flow-insensitive analysis (i.e., values of sI ) with all locations
not selected by L (i.e., L \ L):

X0(c)(l) =

⇢
sI(l) l 62 L
? otherwise

Note that L determines the degree of flow-sensitivity. For
instance, when L = L, the analysis becomes an ordinary
flow-sensitive sparse analysis. On the other hand, when L =
;, the analysis is just a flow-insensitive analysis. The set L is
what we call abstraction in Section 3: abstraction locations
in L form JP in that section, and subsets of these locations,
such as L, are abstractions there, which are expressed in
terms of sets, rather than boolean functions. Our approach
provides a parameterised strategy for selecting the set L
that makes the analysis comparable to the flow-sensitive
version for precision and to the flow-insensitive one for
performance. In particular, it gives a method for learning
parameters in that strategy.

Features The features for our partially flow-sensitive anal-
yses describe syntactic or semantic properties of abstract lo-
cations, namely, program variables, structure fields and al-
location sites. Note that this is what our approach instructs,
because these locations form the set JP in Section 3 and are
parts of P where we control the precision of an analysis.

In our implementation, we used 45 features shown in Ta-
ble 2, which describe how program variables, structure fields
or allocation sites are used in typical C programs. When
picking these features, we decided to focus on expressive-
ness, and included a large number of features, instead of try-
ing to choose only important features. Our idea was to let
our learning algorithm automatically find out such important
ones among our features.

Our features are grouped into Type A and Type B in the
table. A feature of Type A describes a simple, atomic prop-
erty for a program variable, a structure field or an alloca-
tion site, e.g., whether it is a local variable or not. A feature

Type # Features
A 1 local variable

2 global variable
3 structure field
4 location created by dynamic memory allocation
5 defined at one program point
6 location potentially generated in library code
7 assigned a constant expression (e.g., x = c1 + c2)
8 compared with a constant expression (e.g., x < c)
9 compared with an other variable (e.g., x < y)
10 negated in a conditional expression (e.g., if (!x))
11 directly used in malloc (e.g., malloc(x))
12 indirectly used in malloc (e.g., y = x; malloc(y))
13 directly used in realloc (e.g., realloc(x))
14 indirectly used in realloc (e.g., y = x; realloc(y))
15 directly returned from malloc (e.g., x = malloc(e))
16 indirectly returned from malloc
17 directly returned from realloc (e.g., x = realloc(e))
18 indirectly returned from realloc
19 incremented by one (e.g., x = x + 1)
20 incremented by a constant expr. (e.g., x = x + (1+2))
21 incremented by a variable (e.g., x = x + y)
22 decremented by one (e.g., x = x - 1)
23 decremented by a constant expr (e.g., x = x - (1+2))
24 decremented by a variable (e.g., x = x - y)
25 multiplied by a constant (e.g., x = x * 2)
26 multiplied by a variable (e.g., x = x * y)
27 incremented pointer (e.g., p++)
28 used as an array index (e.g., a[x])
29 used in an array expr. (e.g., x[e])
30 returned from an unknown library function
31 modified inside a recursive function
32 modified inside a local loop
33 read inside a local loop

B 34 1 ^ 8 ^ (11 _ 12)
35 2 ^ 8 ^ (11 _ 12)
36 1 ^ (11 _ 12) ^ (19 _ 20)
37 2 ^ (11 _ 12) ^ (19 _ 20)
38 1 ^ (11 _ 12) ^ (15 _ 16)
39 2 ^ (11 _ 12) ^ (15 _ 16)
40 (11 _ 12) ^ 29
41 (15 _ 16) ^ 29
42 1 ^ (19 _ 20) ^ 33
43 2 ^ (19 _ 20) ^ 33
44 1 ^ (19 _ 20) ^ ¬33
45 2 ^ (19 _ 20) ^ ¬33

Table 2. Features for partially flow-sensitive analysis. Fea-
tures of Type A denote simple syntactic or semantic proper-
ties for abstract locations (that is, program variables, struc-
ture fields and allocation sites). Features of Type B are var-
ious combinations of simple features, and express patterns
that variables are used in programs.
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Type # Features
A 1 leaf function

2 function containing malloc
3 function containing realloc
4 function containing a loop
5 function containing an if statement
6 function containing a switch statement
7 function using a string-related library function
8 write to a global variable
9 read a global variable
10 write to a structure field
11 read from a structure field
12 directly return a constant expression
13 indirectly return a constant expression
14 directly return an allocated memory
15 indirectly return an allocated memory
16 directly return a reallocated memory
17 indirectly return a reallocated memory
18 return expression involves field access
19 return value depends on a structure field
20 return void
21 directly invoked with a constant
22 constant is passed to an argument
23 invoked with an unknown value
24 functions having no arguments
25 functions having one argument
26 functions having more than one argument
27 functions having an integer argument
28 functions having a pointer argument
29 functions having a structure as an argument

B 30 2 ^ (21 _ 22) ^ (14 _ 15)
31 2 ^ (21 _ 22) ^ ¬(14 _ 15)
32 2 ^ 23 ^ (14 _ 15)
33 2 ^ 23 ^ ¬(14 _ 15)
34 2 ^ (21 _ 22) ^ (16 _ 17)
35 2 ^ (21 _ 22) ^ ¬(16 _ 17)
36 2 ^ 23 ^ (16 _ 17)
37 2 ^ 23 ^ ¬(16 _ 17)
38 (21 _ 22) ^ ¬23

Features for context 
sensitivity heuristics

# Description Calculation

1 Number of variables in the block Xc
t |Xc

t |
2 Number of constraints in the factor Xc

t |It(Xc
t)|

3 Number of generators in the factor Xc
t |Gt(Xc

t)|
4 Number of loop head variables in c |Xc \ XH |
5 Boolean, true if Xc is a subset of XH Xc ✓ XH
6 Boolean, true if c is in IH c 2 IH
7 Number of variables in constraint c |Xc |.
8 Number of large coe�cients in c

Õ
i (|ai | >= 100)

9 Sum of scores for variables in c
Õ
i S����(xi ).

10 Boolean, true if c is in join inputs c 2 IP ^ c 2 IQ
11 Boolean, true if c coarsens partition C�����(Xc

t, �P, �Q)
12 Boolean, true if c is an equality � is =

Features for approximating Polyhedra join
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# Description Calculation

1 Number of variables in the block Xc
t |Xc

t |
2 Number of constraints in the factor for Xc

t |It(Xc
t)|

3 Number of loop head variables in c |Xc \ XH |
4 Boolean, true if c is in IH c 2 IH
5 Score of variable xi S����(xi )
6 Score of variable x j S����(x j )
7 Number of �nite bounds for variable xi See text
8 Number of �nite bounds for variable x j See text
9 Absolute value of constraint upper bound b |b |
10 Boolean, true if upper bound b 0 is 1 See text
11 Number of constraints coarsening partition See text
12 Loop iteration number iter
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Class A (Signature features)

A1 “java” A2 “lang” A3 “sun” A4 “()” A5 “void”
A6 “security” A7 “int” A8 “util” A9 “String” A10 “init”

Class B (Additional features)

B1 Methods contained in nested class B7 Methods containing static method invocation
B2 Methods taking multiple arguments B8 Methods containing virtual method invocation
B3 Methods containing array load B9 Static method
B4 Methods containing local assignments B10 Methods containing a single heap allocation
B5 Methods containing local variables B11 Methods taking an argument of Object type
B6 Methods containing �eld store B12 Methods containing multiple heap allocations

B13 Methods contained in a large class

Previous Data-driven Program Analysis
• Prior data-driven program analyses require application specific features

Type # Features
A 1 local variable

2 global variable
3 structure field
4 location created by dynamic memory allocation
5 defined at one program point
6 location potentially generated in library code
7 assigned a constant expression (e.g., x = c1 + c2)
8 compared with a constant expression (e.g., x < c)
9 compared with an other variable (e.g., x < y)
10 negated in a conditional expression (e.g., if (!x))
11 directly used in malloc (e.g., malloc(x))
12 indirectly used in malloc (e.g., y = x; malloc(y))
13 directly used in realloc (e.g., realloc(x))
14 indirectly used in realloc (e.g., y = x; realloc(y))
15 directly returned from malloc (e.g., x = malloc(e))
16 indirectly returned from malloc
17 directly returned from realloc (e.g., x = realloc(e))
18 indirectly returned from realloc
19 incremented by one (e.g., x = x + 1)
20 incremented by a constant expr. (e.g., x = x + (1+2))
21 incremented by a variable (e.g., x = x + y)
22 decremented by one (e.g., x = x - 1)
23 decremented by a constant expr (e.g., x = x - (1+2))
24 decremented by a variable (e.g., x = x - y)
25 multiplied by a constant (e.g., x = x * 2)
26 multiplied by a variable (e.g., x = x * y)
27 incremented pointer (e.g., p++)
28 used as an array index (e.g., a[x])
29 used in an array expr. (e.g., x[e])
30 returned from an unknown library function
31 modified inside a recursive function
32 modified inside a local loop
33 read inside a local loop

B 34 1 ^ 8 ^ (11 _ 12)
35 2 ^ 8 ^ (11 _ 12)
36 1 ^ (11 _ 12) ^ (19 _ 20)
37 2 ^ (11 _ 12) ^ (19 _ 20)
38 1 ^ (11 _ 12) ^ (15 _ 16)
39 2 ^ (11 _ 12) ^ (15 _ 16)
40 (11 _ 12) ^ 29
41 (15 _ 16) ^ 29
42 1 ^ (19 _ 20) ^ 33
43 2 ^ (19 _ 20) ^ 33
44 1 ^ (19 _ 20) ^ ¬33
45 2 ^ (19 _ 20) ^ ¬33

Features for flow 
sensitivity heuristics

of Type B, on the other hand, describes a slightly complex
usage pattern, and is expressed as a combination of atomic
features. Type B features have been designed by manually
observing typical usage patterns of variables in the bench-
mark programs. For instance, feature 34 was developed after
we observed the following usage pattern of variables:

int x; // local variable
if (x < 10)

... = malloc (x);

It says that x is a local variable, and gets compared with a
constant and passed as an argument to a function that does
memory allocation. Note that we included these Type B fea-
tures not because they are important for flow-sensitivity. We
included them to increase expressiveness, because our lin-
ear learning model with Type A features only cannot express
such usage patterns. Deciding whether they are important for
flow-sensitivity or not is the job of the learning algorithm.

6.2 Partially Context-Sensitive Analysis

Another example of our approach is partially context-sensitive
analyses. Assume we are given a program P . Let Procs be
the set of procedures in P . The adaptation strategy of such an
analysis selects a subset Pr of procedures of P , and instructs
the analysis to treat only the ones in Pr context-sensitively:
calling contexts of each procedure in Pr are treated sep-
arately by the analysis. This style of implementing partial
context-sensitivity is intuitive and well-studied, so we omit
the details and just mention that our implementation used
one such analysis in [18] after minor modification. Note that
these partially context-sensitive analyses are instances of the
adaptive static analysis in Section 3; the set Procs corre-
sponds to JP , and Pr is what we call an abstraction in that
section.

For partial context-sensitivity, we used 38 features in Ta-
ble 3. Since our partially context-sensitive analysis adapts
by selecting a subset of procedures, our features are predi-
cates over procedures, i.e., ⇡k : Procs ! B. As in the flow-
sensitivity case, we used both atomic features (Type A) and
compound features (Type B), both describing properties of
procedures, e.g., whether a given procedure is a leaf in the
call graph.

6.3 Combination

The previous two analyses can be combined to an adap-
tive analysis that controls both flow-sensitivity and context-
sensitivity. The combined analysis adjusts the level of ab-
straction at abstract locations and procedures. This means
that its JJ set consists of abstract locations and procedures,
and its abstractions are just subsets of these locations and
procedures. The features of the combined analysis are ob-
tained similarly by putting together the features for our pre-
vious analyses. This combined abstractions and features en-
able our learning algorithm to find a more complex adapta-
tion strategy that considers both flow-sensitivity and context-

Type # Features
A 1 leaf function

2 function containing malloc
3 function containing realloc
4 function containing a loop
5 function containing an if statement
6 function containing a switch statement
7 function using a string-related library function
8 write to a global variable
9 read a global variable
10 write to a structure field
11 read from a structure field
12 directly return a constant expression
13 indirectly return a constant expression
14 directly return an allocated memory
15 indirectly return an allocated memory
16 directly return a reallocated memory
17 indirectly return a reallocated memory
18 return expression involves field access
19 return value depends on a structure field
20 return void
21 directly invoked with a constant
22 constant is passed to an argument
23 invoked with an unknown value
24 functions having no arguments
25 functions having one argument
26 functions having more than one argument
27 functions having an integer argument
28 functions having a pointer argument
29 functions having a structure as an argument

B 30 2 ^ (21 _ 22) ^ (14 _ 15)
31 2 ^ (21 _ 22) ^ ¬(14 _ 15)
32 2 ^ 23 ^ (14 _ 15)
33 2 ^ 23 ^ ¬(14 _ 15)
34 2 ^ (21 _ 22) ^ (16 _ 17)
35 2 ^ (21 _ 22) ^ ¬(16 _ 17)
36 2 ^ 23 ^ (16 _ 17)
37 2 ^ 23 ^ ¬(16 _ 17)
38 (21 _ 22) ^ ¬23

Table 3. Features for partially context-sensitive analysis.

sensitivity at the same time. This strategy helps the analy-
sis to use its increased flexibility efficiently. In Section 7.2,
we report our experience with experimenting the combined
analysis.

7. Experiments

Following our recipe in Section 6, we instantiated our
approach for partial flow-sensitivity and partial context-
sensitivity, and implemented these instantiations in Sparrow,
a buffer-overrun analysis for real-world C programs [19]. In
this section, we report the results of our experiments with
these implementations.

7.1 Partial Flow-Sensitivity

Setting We implemented a partial flow-sensitive analysis
in Section 6.1 by modifying a buffer-overrun analyser for C
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# Description Calculation

1 Number of variables in the block Xc
t |Xc

t |
2 Number of constraints in the factor Xc

t |It(Xc
t)|

3 Number of generators in the factor Xc
t |Gt(Xc

t)|
4 Number of loop head variables in c |Xc \ XH |
5 Boolean, true if Xc is a subset of XH Xc ✓ XH
6 Boolean, true if c is in IH c 2 IH
7 Number of variables in constraint c |Xc |.
8 Number of large coe�cients in c

Õ
i (|ai | >= 100)

9 Sum of scores for variables in c
Õ
i S����(xi ).

10 Boolean, true if c is in join inputs c 2 IP ^ c 2 IQ
11 Boolean, true if c coarsens partition C�����(Xc

t, �P, �Q)
12 Boolean, true if c is an equality � is =
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# Description Calculation

1 Number of variables in the block Xc
t |Xc

t |
2 Number of constraints in the factor for Xc

t |It(Xc
t)|

3 Number of loop head variables in c |Xc \ XH |
4 Boolean, true if c is in IH c 2 IH
5 Score of variable xi S����(xi )
6 Score of variable x j S����(x j )
7 Number of �nite bounds for variable xi See text
8 Number of �nite bounds for variable x j See text
9 Absolute value of constraint upper bound b |b |
10 Boolean, true if upper bound b 0 is 1 See text
11 Number of constraints coarsening partition See text
12 Loop iteration number iter
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Table 1. Atomic features used in evaluation

Class A (Signature features)

A1 “java” A2 “lang” A3 “sun” A4 “()” A5 “void”
A6 “security” A7 “int” A8 “util” A9 “String” A10 “init”

Class B (Additional features)

B1 Methods contained in nested class B7 Methods containing static method invocation
B2 Methods taking multiple arguments B8 Methods containing virtual method invocation
B3 Methods containing array load B9 Static method
B4 Methods containing local assignments B10 Methods containing a single heap allocation
B5 Methods containing local variables B11 Methods taking an argument of Object type
B6 Methods containing �eld store B12 Methods containing multiple heap allocations

B13 Methods contained in a large class

Atomic Features. Table 1 shows 23 atomic features we have used in learning. Each feature in
Table 1 describes a syntactic property of Java method de�nitions. The features are classi�ed into
two types: signature features (Class A) and additional features (Class B). Signature features (A1
– A10) came from the existing work [Jeong et al. 2017] and additional features (B1 – B13) have
been newly designed in this work. Signature features consist of strings that most frequently appear
in method signatures from the DaCapo suite [Blackburn et al. 2006]. For example, the feature A5
(“void”) denotes the set of methods whose signature strings include “void” as a substring. On the
other hand, features B1 – B13 describe slightly higher-level properties. For example, the feature
B1 denotes the set of methods that belong to inner classes. When choosing atomic features, we
focused on collecting as many simple features as possible and let the learning algorithm to discover
meaningful combinations of them automatically. In Section 5.2, we discuss impact of using di�erent
atomic features.

4.3 Optimization Problem
Formally, the learning problem is expressed as an optimization problem. Given program analysis F ,
parameterized heuristicH� de�ned in (1), and training programs P = {P1, . . . , Pm }, our goal is to
�nd the parameters f1 and f2 that maximize the precision of the analysis over the codebase:

Find � = hf1, f2i that maximizes
X

P 2P
|proved(FP (H� (P ))) |

such that � = hf1, f2i satis�es the following constraint on the analysis cost:
X

P 2P
cost(FP (H� (P ))) 

X

P 2P
cost(FP (;)).

The constraint says that the analysis with context tunneling (FP (H� (P ))) is at least as scalable as
the baseline analysis without tunneling (FP (;)).

4.4 Learning Algorithm
In this paper, we present an algorithm that e�ectively solves the optimization problem. The key chal-
lenge, which makes our algorithm substantially di�er from the existing learning algorithms [Jeong
et al. 2017; Liang et al. 2011], is that the analysis F is not monotone with respect to the tunneling
relations. In existing learning algorithms [Jeong et al. 2017; Liang et al. 2011], monotonicity plays a
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Previous Data-driven Program Analysis
• Prior data-driven program analyses require application specific features

Type # Features
A 1 local variable

2 global variable
3 structure field
4 location created by dynamic memory allocation
5 defined at one program point
6 location potentially generated in library code
7 assigned a constant expression (e.g., x = c1 + c2)
8 compared with a constant expression (e.g., x < c)
9 compared with an other variable (e.g., x < y)
10 negated in a conditional expression (e.g., if (!x))
11 directly used in malloc (e.g., malloc(x))
12 indirectly used in malloc (e.g., y = x; malloc(y))
13 directly used in realloc (e.g., realloc(x))
14 indirectly used in realloc (e.g., y = x; realloc(y))
15 directly returned from malloc (e.g., x = malloc(e))
16 indirectly returned from malloc
17 directly returned from realloc (e.g., x = realloc(e))
18 indirectly returned from realloc
19 incremented by one (e.g., x = x + 1)
20 incremented by a constant expr. (e.g., x = x + (1+2))
21 incremented by a variable (e.g., x = x + y)
22 decremented by one (e.g., x = x - 1)
23 decremented by a constant expr (e.g., x = x - (1+2))
24 decremented by a variable (e.g., x = x - y)
25 multiplied by a constant (e.g., x = x * 2)
26 multiplied by a variable (e.g., x = x * y)
27 incremented pointer (e.g., p++)
28 used as an array index (e.g., a[x])
29 used in an array expr. (e.g., x[e])
30 returned from an unknown library function
31 modified inside a recursive function
32 modified inside a local loop
33 read inside a local loop

B 34 1 ^ 8 ^ (11 _ 12)
35 2 ^ 8 ^ (11 _ 12)
36 1 ^ (11 _ 12) ^ (19 _ 20)
37 2 ^ (11 _ 12) ^ (19 _ 20)
38 1 ^ (11 _ 12) ^ (15 _ 16)
39 2 ^ (11 _ 12) ^ (15 _ 16)
40 (11 _ 12) ^ 29
41 (15 _ 16) ^ 29
42 1 ^ (19 _ 20) ^ 33
43 2 ^ (19 _ 20) ^ 33
44 1 ^ (19 _ 20) ^ ¬33
45 2 ^ (19 _ 20) ^ ¬33
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Type # Features
A 1 leaf function

2 function containing malloc
3 function containing realloc
4 function containing a loop
5 function containing an if statement
6 function containing a switch statement
7 function using a string-related library function
8 write to a global variable
9 read a global variable
10 write to a structure field
11 read from a structure field
12 directly return a constant expression
13 indirectly return a constant expression
14 directly return an allocated memory
15 indirectly return an allocated memory
16 directly return a reallocated memory
17 indirectly return a reallocated memory
18 return expression involves field access
19 return value depends on a structure field
20 return void
21 directly invoked with a constant
22 constant is passed to an argument
23 invoked with an unknown value
24 functions having no arguments
25 functions having one argument
26 functions having more than one argument
27 functions having an integer argument
28 functions having a pointer argument
29 functions having a structure as an argument

B 30 2 ^ (21 _ 22) ^ (14 _ 15)
31 2 ^ (21 _ 22) ^ ¬(14 _ 15)
32 2 ^ 23 ^ (14 _ 15)
33 2 ^ 23 ^ ¬(14 _ 15)
34 2 ^ (21 _ 22) ^ (16 _ 17)
35 2 ^ (21 _ 22) ^ ¬(16 _ 17)
36 2 ^ 23 ^ (16 _ 17)
37 2 ^ 23 ^ ¬(16 _ 17)
38 (21 _ 22) ^ ¬23
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Table 1. Features for approximating Polyhedra join.

# Description Calculation

1 Number of variables in the block Xc
t |Xc

t |
2 Number of constraints in the factor Xc

t |It(Xc
t)|

3 Number of generators in the factor Xc
t |Gt(Xc

t)|
4 Number of loop head variables in c |Xc \ XH |
5 Boolean, true if Xc is a subset of XH Xc ✓ XH
6 Boolean, true if c is in IH c 2 IH
7 Number of variables in constraint c |Xc |.
8 Number of large coe�cients in c

Õ
i (|ai | >= 100)

9 Sum of scores for variables in c
Õ
i S����(xi ).

10 Boolean, true if c is in join inputs c 2 IP ^ c 2 IQ
11 Boolean, true if c coarsens partition C�����(Xc

t, �P, �Q)
12 Boolean, true if c is an equality � is =

Table 2. Features for approximating Octagon join.

# Description Calculation

1 Number of variables in the block Xc
t |Xc

t |
2 Number of constraints in the factor for Xc

t |It(Xc
t)|

3 Number of loop head variables in c |Xc \ XH |
4 Boolean, true if c is in IH c 2 IH
5 Score of variable xi S����(xi )
6 Score of variable x j S����(x j )
7 Number of �nite bounds for variable xi See text
8 Number of �nite bounds for variable x j See text
9 Absolute value of constraint upper bound b |b |
10 Boolean, true if upper bound b 0 is 1 See text
11 Number of constraints coarsening partition See text
12 Loop iteration number iter

Final iterative learning algorithm. Given the size of the
search space, a large classi�cation dataset is necessary for
learning a suitable � . Moreover, since the dataset and the
policy are mutually dependent, they should be improved
iteratively. Towards that we adopt a D�����-style learning
scheme [37] which alternates dataset generation with policy
learning, illustrated in Algorithm 3.

The algorithm �rst initializes the dataset D to ú and� to
a policy which does not remove constraints (Line 2). It then
performs N training iterations. Each iteration calls the proce-
dureG��C������D��� on a precise abstract sequence T 2 S
(Line 5) returning a newly constructed dataset, which is then
added to D. An improved policy� is trained on D through a
supervised learning classi�cation algorithm (Line 6), which
depends on the used classi�er (in our case, the classi�er is a
GCN followed by a fully connected network as instantiated
in Section 6.2). The procedure can repeat a number of times,
gradually improving the quality of the learned policy� .

6 Instantiation of L���
We now describe our instantiation of the L��� approximate
join transformer for the Polyhedra and Octagon domains.
Our instantiation is based on a precise analysis with online
decomposition [45]. We do not approximate other transform-
ers used in the analysis. Next, we �rst de�ne our features
(i.e., F��� in Section 5) and edges (i.e., E��� in Section 5)
for representing the set of constraints as a graph and then
discuss our instantiation of the constraint removal policy� .

6.1 Features and Edges for Constraints
As discussed in Section 5.2, we extract features for each con-
straint c 2 It by calling F���(IP ,IQ ,It) whereIt = IP tIQ .
The features distill domain-speci�c information critical for
identifying redundant constraints. These include features
that are (a) speci�c to the constraint, (b) dependent on both
the constraint and the abstract state, and (c) dependent on

both the constraint and the context information about the
loop. We denote the set of variables in the constraint c byXc

and the block containing the variables in c in the partition
of It by Xc

t. Note that Xc ✓ Xc
t. It(Xc

t) is the subset of
constraints over the variables in Xc

t. We de�ne this informa-
tion analogously for IP and IQ . Moreover, we record global
information about the loop by tracking the current loop head
element IH , the set of variables XH which appears in at least
one constraint in IH , and the iteration number iter .

Features for Polyhedra constraints. The extracted fea-
tures for constraints in the Polyhedra domain are shown in
Table 1. The implementation of the Polyhedra domain used
in our instantiation keeps both the generator and the con-
straint representation [44]. The cost of the join in the factor
containing the constraint c is characterized by the number
of variables in the block Xc

t and the number of generators
and constraints in the factor [44]. The �rst three features in
Table 1 record this information.

Features 4–6 record information for predicting whether
the constraint c a�ects the abstract element at the loop head
IH . Feature 4 records the number of variables that are both
in c and IH . Boolean features 5 and 6, respectively, record
whether all variables in c are in XH and whether IH has
constraint c . The constraints that link with IH are likely to
be non-redundant.
Features 7 and 8 record the number of variables and the

number of large coe�cients (with absolute value � 100) in
c . We use a function S����(x ) that computes the number of
constraints containing the variables x in It. Feature 9 then
records the sum of S����(x ) for all x 2 Xc . A constraint with
large values for these three features is likely to be redundant.
Boolean features 10–11 characterize the relationship of

c w.r.t. the two join inputs IP and IQ . Feature 10 checks
whether c appears in both inputs. If yes, then c should likely
be kept. Feature 11 checks whether c coarsens the partition,

Features for approximating Polyhedra join
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Table 1. Features for approximating Polyhedra join.

# Description Calculation

1 Number of variables in the block Xc
t |Xc

t |
2 Number of constraints in the factor Xc

t |It(Xc
t)|

3 Number of generators in the factor Xc
t |Gt(Xc

t)|
4 Number of loop head variables in c |Xc \ XH |
5 Boolean, true if Xc is a subset of XH Xc ✓ XH
6 Boolean, true if c is in IH c 2 IH
7 Number of variables in constraint c |Xc |.
8 Number of large coe�cients in c

Õ
i (|ai | >= 100)

9 Sum of scores for variables in c
Õ
i S����(xi ).

10 Boolean, true if c is in join inputs c 2 IP ^ c 2 IQ
11 Boolean, true if c coarsens partition C�����(Xc

t, �P, �Q)
12 Boolean, true if c is an equality � is =

Table 2. Features for approximating Octagon join.

# Description Calculation

1 Number of variables in the block Xc
t |Xc

t |
2 Number of constraints in the factor for Xc

t |It(Xc
t)|

3 Number of loop head variables in c |Xc \ XH |
4 Boolean, true if c is in IH c 2 IH
5 Score of variable xi S����(xi )
6 Score of variable x j S����(x j )
7 Number of �nite bounds for variable xi See text
8 Number of �nite bounds for variable x j See text
9 Absolute value of constraint upper bound b |b |
10 Boolean, true if upper bound b 0 is 1 See text
11 Number of constraints coarsening partition See text
12 Loop iteration number iter

Final iterative learning algorithm. Given the size of the
search space, a large classi�cation dataset is necessary for
learning a suitable � . Moreover, since the dataset and the
policy are mutually dependent, they should be improved
iteratively. Towards that we adopt a D�����-style learning
scheme [37] which alternates dataset generation with policy
learning, illustrated in Algorithm 3.

The algorithm �rst initializes the dataset D to ú and� to
a policy which does not remove constraints (Line 2). It then
performs N training iterations. Each iteration calls the proce-
dureG��C������D��� on a precise abstract sequence T 2 S
(Line 5) returning a newly constructed dataset, which is then
added to D. An improved policy� is trained on D through a
supervised learning classi�cation algorithm (Line 6), which
depends on the used classi�er (in our case, the classi�er is a
GCN followed by a fully connected network as instantiated
in Section 6.2). The procedure can repeat a number of times,
gradually improving the quality of the learned policy� .

6 Instantiation of L���
We now describe our instantiation of the L��� approximate
join transformer for the Polyhedra and Octagon domains.
Our instantiation is based on a precise analysis with online
decomposition [45]. We do not approximate other transform-
ers used in the analysis. Next, we �rst de�ne our features
(i.e., F��� in Section 5) and edges (i.e., E��� in Section 5)
for representing the set of constraints as a graph and then
discuss our instantiation of the constraint removal policy� .

6.1 Features and Edges for Constraints
As discussed in Section 5.2, we extract features for each con-
straint c 2 It by calling F���(IP ,IQ ,It) whereIt = IP tIQ .
The features distill domain-speci�c information critical for
identifying redundant constraints. These include features
that are (a) speci�c to the constraint, (b) dependent on both
the constraint and the abstract state, and (c) dependent on

both the constraint and the context information about the
loop. We denote the set of variables in the constraint c byXc

and the block containing the variables in c in the partition
of It by Xc

t. Note that Xc ✓ Xc
t. It(Xc

t) is the subset of
constraints over the variables in Xc

t. We de�ne this informa-
tion analogously for IP and IQ . Moreover, we record global
information about the loop by tracking the current loop head
element IH , the set of variables XH which appears in at least
one constraint in IH , and the iteration number iter .

Features for Polyhedra constraints. The extracted fea-
tures for constraints in the Polyhedra domain are shown in
Table 1. The implementation of the Polyhedra domain used
in our instantiation keeps both the generator and the con-
straint representation [44]. The cost of the join in the factor
containing the constraint c is characterized by the number
of variables in the block Xc

t and the number of generators
and constraints in the factor [44]. The �rst three features in
Table 1 record this information.

Features 4–6 record information for predicting whether
the constraint c a�ects the abstract element at the loop head
IH . Feature 4 records the number of variables that are both
in c and IH . Boolean features 5 and 6, respectively, record
whether all variables in c are in XH and whether IH has
constraint c . The constraints that link with IH are likely to
be non-redundant.
Features 7 and 8 record the number of variables and the

number of large coe�cients (with absolute value � 100) in
c . We use a function S����(x ) that computes the number of
constraints containing the variables x in It. Feature 9 then
records the sum of S����(x ) for all x 2 Xc . A constraint with
large values for these three features is likely to be redundant.
Boolean features 10–11 characterize the relationship of

c w.r.t. the two join inputs IP and IQ . Feature 10 checks
whether c appears in both inputs. If yes, then c should likely
be kept. Feature 11 checks whether c coarsens the partition,
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Class A (Signature features)

A1 “java” A2 “lang” A3 “sun” A4 “()” A5 “void”
A6 “security” A7 “int” A8 “util” A9 “String” A10 “init”

Class B (Additional features)

B1 Methods contained in nested class B7 Methods containing static method invocation
B2 Methods taking multiple arguments B8 Methods containing virtual method invocation
B3 Methods containing array load B9 Static method
B4 Methods containing local assignments B10 Methods containing a single heap allocation
B5 Methods containing local variables B11 Methods taking an argument of Object type
B6 Methods containing �eld store B12 Methods containing multiple heap allocations

B13 Methods contained in a large class

Previous Data-driven Program Analysis
• Prior data-driven program analyses require application specific features

Type # Features
A 1 local variable

2 global variable
3 structure field
4 location created by dynamic memory allocation
5 defined at one program point
6 location potentially generated in library code
7 assigned a constant expression (e.g., x = c1 + c2)
8 compared with a constant expression (e.g., x < c)
9 compared with an other variable (e.g., x < y)
10 negated in a conditional expression (e.g., if (!x))
11 directly used in malloc (e.g., malloc(x))
12 indirectly used in malloc (e.g., y = x; malloc(y))
13 directly used in realloc (e.g., realloc(x))
14 indirectly used in realloc (e.g., y = x; realloc(y))
15 directly returned from malloc (e.g., x = malloc(e))
16 indirectly returned from malloc
17 directly returned from realloc (e.g., x = realloc(e))
18 indirectly returned from realloc
19 incremented by one (e.g., x = x + 1)
20 incremented by a constant expr. (e.g., x = x + (1+2))
21 incremented by a variable (e.g., x = x + y)
22 decremented by one (e.g., x = x - 1)
23 decremented by a constant expr (e.g., x = x - (1+2))
24 decremented by a variable (e.g., x = x - y)
25 multiplied by a constant (e.g., x = x * 2)
26 multiplied by a variable (e.g., x = x * y)
27 incremented pointer (e.g., p++)
28 used as an array index (e.g., a[x])
29 used in an array expr. (e.g., x[e])
30 returned from an unknown library function
31 modified inside a recursive function
32 modified inside a local loop
33 read inside a local loop

B 34 1 ^ 8 ^ (11 _ 12)
35 2 ^ 8 ^ (11 _ 12)
36 1 ^ (11 _ 12) ^ (19 _ 20)
37 2 ^ (11 _ 12) ^ (19 _ 20)
38 1 ^ (11 _ 12) ^ (15 _ 16)
39 2 ^ (11 _ 12) ^ (15 _ 16)
40 (11 _ 12) ^ 29
41 (15 _ 16) ^ 29
42 1 ^ (19 _ 20) ^ 33
43 2 ^ (19 _ 20) ^ 33
44 1 ^ (19 _ 20) ^ ¬33
45 2 ^ (19 _ 20) ^ ¬33

Features for flow 
sensitivity heuristics

Type # Features
A 1 leaf function

2 function containing malloc
3 function containing realloc
4 function containing a loop
5 function containing an if statement
6 function containing a switch statement
7 function using a string-related library function
8 write to a global variable
9 read a global variable
10 write to a structure field
11 read from a structure field
12 directly return a constant expression
13 indirectly return a constant expression
14 directly return an allocated memory
15 indirectly return an allocated memory
16 directly return a reallocated memory
17 indirectly return a reallocated memory
18 return expression involves field access
19 return value depends on a structure field
20 return void
21 directly invoked with a constant
22 constant is passed to an argument
23 invoked with an unknown value
24 functions having no arguments
25 functions having one argument
26 functions having more than one argument
27 functions having an integer argument
28 functions having a pointer argument
29 functions having a structure as an argument

B 30 2 ^ (21 _ 22) ^ (14 _ 15)
31 2 ^ (21 _ 22) ^ ¬(14 _ 15)
32 2 ^ 23 ^ (14 _ 15)
33 2 ^ 23 ^ ¬(14 _ 15)
34 2 ^ (21 _ 22) ^ (16 _ 17)
35 2 ^ (21 _ 22) ^ ¬(16 _ 17)
36 2 ^ 23 ^ (16 _ 17)
37 2 ^ 23 ^ ¬(16 _ 17)
38 (21 _ 22) ^ ¬23

Features for context 
sensitivity heuristics

# Description Calculation

1 Number of variables in the block Xc
t |Xc

t |
2 Number of constraints in the factor Xc

t |It(Xc
t)|

3 Number of generators in the factor Xc
t |Gt(Xc

t)|
4 Number of loop head variables in c |Xc \ XH |
5 Boolean, true if Xc is a subset of XH Xc ✓ XH
6 Boolean, true if c is in IH c 2 IH
7 Number of variables in constraint c |Xc |.
8 Number of large coe�cients in c

Õ
i (|ai | >= 100)

9 Sum of scores for variables in c
Õ
i S����(xi ).

10 Boolean, true if c is in join inputs c 2 IP ^ c 2 IQ
11 Boolean, true if c coarsens partition C�����(Xc

t, �P, �Q)
12 Boolean, true if c is an equality � is =

Features for approximating Polyhedra join
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# Description Calculation

1 Number of variables in the block Xc
t |Xc

t |
2 Number of constraints in the factor for Xc

t |It(Xc
t)|

3 Number of loop head variables in c |Xc \ XH |
4 Boolean, true if c is in IH c 2 IH
5 Score of variable xi S����(xi )
6 Score of variable x j S����(x j )
7 Number of �nite bounds for variable xi See text
8 Number of �nite bounds for variable x j See text
9 Absolute value of constraint upper bound b |b |
10 Boolean, true if upper bound b 0 is 1 See text
11 Number of constraints coarsening partition See text
12 Loop iteration number iter
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Features for context tunneling heuristics

…
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Class A (Signature features)

A1 “java” A2 “lang” A3 “sun” A4 “()” A5 “void”
A6 “security” A7 “int” A8 “util” A9 “String” A10 “init”

Class B (Additional features)

B1 Methods contained in nested class B7 Methods containing static method invocation
B2 Methods taking multiple arguments B8 Methods containing virtual method invocation
B3 Methods containing array load B9 Static method
B4 Methods containing local assignments B10 Methods containing a single heap allocation
B5 Methods containing local variables B11 Methods taking an argument of Object type
B6 Methods containing �eld store B12 Methods containing multiple heap allocations

B13 Methods contained in a large class

Previous Data-driven Program Analysis
• Our technique does not require such application specific features

Type # Features
A 1 local variable

2 global variable
3 structure field
4 location created by dynamic memory allocation
5 defined at one program point
6 location potentially generated in library code
7 assigned a constant expression (e.g., x = c1 + c2)
8 compared with a constant expression (e.g., x < c)
9 compared with an other variable (e.g., x < y)
10 negated in a conditional expression (e.g., if (!x))
11 directly used in malloc (e.g., malloc(x))
12 indirectly used in malloc (e.g., y = x; malloc(y))
13 directly used in realloc (e.g., realloc(x))
14 indirectly used in realloc (e.g., y = x; realloc(y))
15 directly returned from malloc (e.g., x = malloc(e))
16 indirectly returned from malloc
17 directly returned from realloc (e.g., x = realloc(e))
18 indirectly returned from realloc
19 incremented by one (e.g., x = x + 1)
20 incremented by a constant expr. (e.g., x = x + (1+2))
21 incremented by a variable (e.g., x = x + y)
22 decremented by one (e.g., x = x - 1)
23 decremented by a constant expr (e.g., x = x - (1+2))
24 decremented by a variable (e.g., x = x - y)
25 multiplied by a constant (e.g., x = x * 2)
26 multiplied by a variable (e.g., x = x * y)
27 incremented pointer (e.g., p++)
28 used as an array index (e.g., a[x])
29 used in an array expr. (e.g., x[e])
30 returned from an unknown library function
31 modified inside a recursive function
32 modified inside a local loop
33 read inside a local loop

B 34 1 ^ 8 ^ (11 _ 12)
35 2 ^ 8 ^ (11 _ 12)
36 1 ^ (11 _ 12) ^ (19 _ 20)
37 2 ^ (11 _ 12) ^ (19 _ 20)
38 1 ^ (11 _ 12) ^ (15 _ 16)
39 2 ^ (11 _ 12) ^ (15 _ 16)
40 (11 _ 12) ^ 29
41 (15 _ 16) ^ 29
42 1 ^ (19 _ 20) ^ 33
43 2 ^ (19 _ 20) ^ 33
44 1 ^ (19 _ 20) ^ ¬33
45 2 ^ (19 _ 20) ^ ¬33

Features for flow 
sensitivity heuristic

Type # Features
A 1 leaf function

2 function containing malloc
3 function containing realloc
4 function containing a loop
5 function containing an if statement
6 function containing a switch statement
7 function using a string-related library function
8 write to a global variable
9 read a global variable
10 write to a structure field
11 read from a structure field
12 directly return a constant expression
13 indirectly return a constant expression
14 directly return an allocated memory
15 indirectly return an allocated memory
16 directly return a reallocated memory
17 indirectly return a reallocated memory
18 return expression involves field access
19 return value depends on a structure field
20 return void
21 directly invoked with a constant
22 constant is passed to an argument
23 invoked with an unknown value
24 functions having no arguments
25 functions having one argument
26 functions having more than one argument
27 functions having an integer argument
28 functions having a pointer argument
29 functions having a structure as an argument

B 30 2 ^ (21 _ 22) ^ (14 _ 15)
31 2 ^ (21 _ 22) ^ ¬(14 _ 15)
32 2 ^ 23 ^ (14 _ 15)
33 2 ^ 23 ^ ¬(14 _ 15)
34 2 ^ (21 _ 22) ^ (16 _ 17)
35 2 ^ (21 _ 22) ^ ¬(16 _ 17)
36 2 ^ 23 ^ (16 _ 17)
37 2 ^ 23 ^ ¬(16 _ 17)
38 (21 _ 22) ^ ¬23

Features for context 
sensitivity heuristic

# Description Calculation

1 Number of variables in the block Xc
t |Xc

t |
2 Number of constraints in the factor Xc

t |It(Xc
t)|

3 Number of generators in the factor Xc
t |Gt(Xc

t)|
4 Number of loop head variables in c |Xc \ XH |
5 Boolean, true if Xc is a subset of XH Xc ✓ XH
6 Boolean, true if c is in IH c 2 IH
7 Number of variables in constraint c |Xc |.
8 Number of large coe�cients in c

Õ
i (|ai | >= 100)

9 Sum of scores for variables in c
Õ
i S����(xi ).

10 Boolean, true if c is in join inputs c 2 IP ^ c 2 IQ
11 Boolean, true if c coarsens partition C�����(Xc

t, �P, �Q)
12 Boolean, true if c is an equality � is =

Features for approximating Polyhedra join
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# Description Calculation

1 Number of variables in the block Xc
t |Xc

t |
2 Number of constraints in the factor for Xc

t |It(Xc
t)|

3 Number of loop head variables in c |Xc \ XH |
4 Boolean, true if c is in IH c 2 IH
5 Score of variable xi S����(xi )
6 Score of variable x j S����(x j )
7 Number of �nite bounds for variable xi See text
8 Number of �nite bounds for variable x j See text
9 Absolute value of constraint upper bound b |b |
10 Boolean, true if upper bound b 0 is 1 See text
11 Number of constraints coarsening partition See text
12 Loop iteration number iter
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…
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without Handcrafting Application-Specific Features
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Our Technique: Graphick
Graphs of training programs Static Analyzer

Graphick

Automatically generated graph-based context sensitivity heuristic

Apply 2-obj: {
Apply 2-type:

Apply 1-type:

[0, ], [0,7]∞ [9,11], [0, ]∞ [76, ], [0, ]∞ ∞ {[0, ], [0,14]∞[0, ], [43, ]∞ ∞, ,
…

{ {[105,155], [0, ]∞ , [0, ], [0,61]∞ [60,76], [0,61] [0,22], [0, ]∞ , …

{ [0, ], [61, ]∞ ∞ [46, ], [0, ]∞ ∞ , [0, ], [100, ]∞ ∞ [0, ], [29, ]∞ ∞ , … {

68 features

29 features

100 features

Automatically generated feature
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How a Learned Heuristic Works

[0. ],[2, ]∞ ∞

[0. ],[0, ]∞ ∞

[2. ],[0, ]∞ ∞

{

{

Heuristic example

Analyze precisely:

n1 n2

n3 n4 n5 n6

n7

n1 n2

n3 n4 n5 n6

n7

Given graph
analyze precisely: n5, n6

Classified nodes

analyze coarsely: others

• A learned heuristics classifies nodes with features it contains
describe topological properties
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How a Learned Heuristic Works
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n1 n2

n3 n4 n5 n6

n7

Given graph
analyze precisely: n5, n6

Classified nodes

analyze coarsely: others

• A learned heuristics classifies nodes with features it contains
describe topological properties
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How a Learned Heuristic Works
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Classified nodes

analyze coarsely: others

• A learned heuristics classifies nodes with features it contains
describe topological properties
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How a Learned Heuristic Works
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• A learned heuristics classifies nodes with features it contains
describe topological properties
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[0, ],[2, ]∞ ∞

[0, ],[0, ]∞ ∞

{

{

Heuristic example

Analyze precisely:

n1 n2

n3 n4 n5 n6

n7

n1 n2

n3 n4 n5 n6

n7

Given graph
analyze precisely: n3, n4, n5, n6

Classified nodes

analyze coarsely: others

• Features in heuristic determine analysis performance
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Performance Highlight
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• Graphick successfully produces context-sensitivity and heap abstraction heuristics
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Context-sensitivity heuristics
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Context-sensitivity heuristics

Performance Highlight
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Feature Description Language

Feature = ̂Node
*

× ̂Node × ̂Node
*

̂Node = Itv × Itv
Itv = {[a, b] ∣ a ∈ ℕ, b ∈ ℕ ∪ ∞,}

• A feature is a list of abstract nodes

[0, ], [0,7]∞ [32, ], [0, ]∞ ∞[0,4], [0, ]∞[76, ], [0, ]∞ ∞[0, ], [0,3]∞… …

• An abstract node is a pair of intervals

36

# of incoming edges

# of outgoing edges



How a Feature Work

[2, 2], [0, ]∞[0, ], [2, 2]∞[0, ], [2, ]∞ ∞

Nodes which have 2 incoming edges, and has a predecessor with 2 outgoing edges
where the predecessor has a predecessor with at least 2 outgoing edges

n5n3

n4

n1

n2

{n5}
=

• A feature describes a topological property of nodes in graphs
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G2 :

G1 :

G0 : { [0, ], [0,7]∞ [9,11], [0, ]∞ [76, ], [0, ]∞ ∞ {[0, ], [0,14]∞[0, ], [43, ]∞ ∞, ,
…

{ {[105,155], [0, ]∞ [0, ], [0,61]∞ [60,76], [0,61] [0,22], [0, ]∞ , …

{ [0, ], [61, ]∞ ∞ [46, ], [0, ]∞ ∞ , [0, ], [100, ]∞ ∞ [0, ], [29, ]∞ ∞ , … {
Analyze very precisely

Analyze precisely

Analyze coarsely

How to learn heuristics from graphs of training programs?
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Graphs of training programs Static Analyzer
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Our Technique: Graphick



Learning Algorithm
• First, we find suitable labels for nodes in the graphs of training programs

graphs with labeled nodes

Graphs of 
training programs

Cost effective for the 
training programs
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Abstract

Static analyses are generally parametrized by an abstraction
which is chosen from a family of abstractions. We are inter-
ested in flexible families of abstractions with many param-
eters, as these families can allow one to increase precision
in ways tailored to the client without sacrificing scalability.
For example, we consider k-limited points-to analyses where
each call site and allocation site in a program can have a dif-
ferent k value. We then ask a natural question in this paper:
What is the minimal (coarsest) abstraction in a given family
which is able to prove a set of client queries? In addressing
this question, we make the following two contributions: (i)
we introduce two machine learning algorithms for efficiently
finding a minimal abstraction; and (ii) for a static race detec-
tor backed by a k-limited points-to analysis, we show empir-
ically that minimal abstractions are actually quite coarse: it
suffices to provide context/object sensitivity to a very small
fraction (0.4–2.3%) of the sites to yield equally precise re-
sults as providing context/object sensitivity uniformly to all
sites.

Categories and Subject Descriptors D.2.4 [Software En-

gineering]: Software/Program Verification

General Terms Measurement, Experimentation, Verifica-
tion

Keywords heap abstractions, static analysis, concurrency,
machine learning, randomization

1. Introduction

Static analyses typically have parameters that control the
tradeoff between precision and scalability. For example, in a
k-CFA-based or k-object-sensitivity-based points-to analy-
sis [10–13, 20, 26], the parameter is the k value, which deter-
mines the amount of context sensitivity and object sensitiv-
ity. Increasing k yields more precise points-to information,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’11, January 26–28, 2011, Austin, Texas, USA.
Copyright c� 2011 ACM 978-1-4503-0490-0/11/01. . . $10.00

but the complexity of the analysis also grows exponentially
with k. Shape analysis [19] and model checkers based on
predicate abstraction [3, 5] are parametrized by some num-
ber of predicates; these analyses also exhibit this tradeoff.

In many analyses, these tradeoffs are controlled by a
small number of parameters, for instance, a single k value.
Past studies (e.g., client-driven [7] and demand-driven [9]
approaches) have shown that it is often not necessary to pro-
vide context sensitivity to each call site or object sensitivity
to each allocation site. This motivates working with a larger
family of abstractions parametrized by a separate k value
for each site, akin to the parametric framework of Milanova
et al. [12, 13]. More generally, we represent an abstraction
as a binary vector (e.g., component j of the vector speci-
fies whether site j should be treated context-sensitively). But
how much context/object sensitivity is absolutely needed,
and where is it needed?

In this paper, we formulate and tackle the following prob-
lem: Given a family of abstractions, find a minimal (coars-
est) abstraction sufficient to prove all the queries provable by
the finest abstraction in the family. Studying this problem is
important for two reasons: (i) a minimal abstraction provides
insight into which aspects of a program need to be modeled
precisely for a given client; and (ii) reducing the complex-
ity of the abstraction along some components could enable
us to increase the complexity of the abstraction along other
components more than before. For example, keeping the k

values of most sites at zero enables us to use higher k values
for a select subset of sites.

To find these minimal abstractions, we introduce two ma-
chine learning algorithms. Both treat the static analysis as
a black box which takes an abstraction (and a set of client
queries) as input and produces the set of proven queries
as output. The first algorithm, STATREFINE, starts with the
coarsest abstraction, runs the static analysis on randomly
chosen abstractions, and from these training examples de-
tects statistical correlations between components of the ab-
straction and whether a query is proven; components highly
correlated with proven queries are added (Section 4.1). The
second algorithm, ACTIVECOARSEN, starts with the finest
abstraction and samples coarser abstractions at random, in-
crementally reducing the abstraction to a minimal one (Sec-
tion 4.2).
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Learning Algorithm
• Nodes with each label are transformed into a set of features

graphs with 
labeled nodes

G2 : { [0, ], [0,7]∞ [9,11], [0, ]∞ [76, ], [0, ]∞ ∞

{[0, ], [0,14]∞[0, ], [43, ]∞ ∞

,

,
…

G1 : { [0, ], [61, ]∞ ∞ [46, ], [0, ]∞ ∞ ,
[0, ], [100, ]∞ ∞ [0, ], [29, ]∞ ∞ , … {

learn

learn

label2

label1
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Learning a Set of Features

G2 : { [0, ], [0,7]∞ [9,11], [0, ]∞ [76, ], [0, ]∞ ∞

{[0, ], [0,14]∞[0, ], [43, ]∞ ∞, ,
…

learn

• To produce qualified features, we use the following score function:

Score of a feature f =
The number of nodes chosen by f

The number of labeled nodes chosen by f

• Our algorithm transforms all the labeled node into a set of features
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Learning a Set of Features

G2 : { [0, ], [0,7]∞ [9,11], [0, ]∞ [76, ], [0, ]∞ ∞

{[0, ], [0,14]∞[0, ], [43, ]∞ ∞, ,
…

learn

• To produce qualified features, we use the following score function:

Score of a feature f =
The number of nodes chosen by f

The number of labeled nodes chosen by f

• Our algorithm transforms all the labeled node into a set of features
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Learning a Set of Features

G2 : { [0, ], [0,7]∞ [9,11], [0, ]∞ [76, ], [0, ]∞ ∞

{[0, ], [0,14]∞[0, ], [43, ]∞ ∞, ,
…

learn

• To produce qualified features, we use the following score function:

Score of a feature f =
The number of nodes chosen by f

The number of labeled nodes chosen by f

• Our algorithm transforms all the labeled node into a set of features
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Learning a Feature

(1) Starts from the most general feature f:

[0, ], [0, ]∞ ∞

44



Learning a Feature

(1) Starts from the most general feature f:

[0, ], [0, ]∞ ∞

(2) Enumerate possible specified features from f and choose the best scored one:
[0, ], [0, ]∞ ∞

[0,97], [0, ]∞ [97, ], [0, ]∞ ∞ [0, ], [140, ]∞ ∞ [0, ], [0,140]∞
[0, ], [0, ]∞ ∞[0,97], [0, ]∞

[0, ], [0, ]∞ ∞[97, ], [0, ]∞ ∞

[0, ], [0, ]∞ ∞[0, ],[0,140]∞

[0, ], [0, ]∞ ∞[0, ],[140, ]∞ ∞

[0, ], [0, ]∞ ∞ [0,97], [0, ]∞

[0, ], [0, ]∞ ∞ [97, ], [0, ]∞ ∞

[0, ], [0, ]∞ ∞ [0, ],[0,140]∞

[0, ], [0, ]∞ ∞ [0, ],[140, ]∞ ∞

best scored!

12 cases
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Learning a Feature

(1) Starts from the most general feature f:

[0, ], [0, ]∞ ∞

(2) Enumerate possible specified features from f and choose the best scored one:
[0, ], [0, ]∞ ∞

[0,97], [0, ]∞ [97, ], [0, ]∞ ∞ [0, ], [140, ]∞ ∞ [0, ], [0,140]∞
[0, ], [0, ]∞ ∞[0,97], [0, ]∞

[0, ], [0, ]∞ ∞[97, ], [0, ]∞ ∞

[0, ], [0, ]∞ ∞[0, ],[0,140]∞

[0, ], [0, ]∞ ∞[0, ],[140, ]∞ ∞

[0, ], [0, ]∞ ∞ [0,97], [0, ]∞

[0, ], [0, ]∞ ∞ [97, ], [0, ]∞ ∞

[0, ], [0, ]∞ ∞ [0, ],[0,140]∞

[0, ], [0, ]∞ ∞ [0, ],[140, ]∞ ∞

best scored!

12 cases
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Learning a Feature

(1) Starts from the most general feature f:

[0, ], [0, ]∞ ∞

(2) Enumerate possible specified features from f and choose the best scored one:
[0, ], [0, ]∞ ∞

[0,97], [0, ]∞ [97, ], [0, ]∞ ∞ [0, ], [140, ]∞ ∞ [0, ], [0,140]∞
[0, ], [0, ]∞ ∞[0,97], [0, ]∞

[0, ], [0, ]∞ ∞[97, ], [0, ]∞ ∞

[0, ], [0, ]∞ ∞[0, ],[0,140]∞

[0, ], [0, ]∞ ∞[0, ],[140, ]∞ ∞

[0, ], [0, ]∞ ∞ [0,97], [0, ]∞

[0, ], [0, ]∞ ∞ [97, ], [0, ]∞ ∞

[0, ], [0, ]∞ ∞ [0, ],[0,140]∞

[0, ], [0, ]∞ ∞ [0, ],[140, ]∞ ∞

best scored!

12 cases
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Learning a Feature

(1) Starts from the most general feature f:

[0, ], [0, ]∞ ∞

(2) Enumerate possible specified features from f and choose the best scored one:
[0, ], [0, ]∞ ∞

[0,97], [0, ]∞ [97, ], [0, ]∞ ∞ [0, ], [140, ]∞ ∞ [0, ], [0,140]∞
[0, ], [0, ]∞ ∞[0,97], [0, ]∞

[0, ], [0, ]∞ ∞[97, ], [0, ]∞ ∞

[0, ], [0, ]∞ ∞[0, ],[0,140]∞

[0, ], [0, ]∞ ∞[0, ],[140, ]∞ ∞

[0, ], [0, ]∞ ∞ [0,97], [0, ]∞

[0, ], [0, ]∞ ∞ [97, ], [0, ]∞ ∞

[0, ], [0, ]∞ ∞ [0, ],[0,140]∞

[0, ], [0, ]∞ ∞ [0, ],[140, ]∞ ∞

best scored!

12 cases
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Learning a Feature

(1) Starts from the most general feature f:

[0, ], [0, ]∞ ∞

(2) Enumerate possible specified features from f and choose the best scored one:
[0, ], [0, ]∞ ∞

[0,97], [0, ]∞ [97, ], [0, ]∞ ∞ [0, ], [140, ]∞ ∞ [0, ], [0,140]∞
[0, ], [0, ]∞ ∞[0,97], [0, ]∞

[0, ], [0, ]∞ ∞[97, ], [0, ]∞ ∞

[0, ], [0, ]∞ ∞[0, ],[0,140]∞

[0, ], [0, ]∞ ∞[0, ],[140, ]∞ ∞

[0, ], [0, ]∞ ∞ [0,97], [0, ]∞

[0, ], [0, ]∞ ∞ [97, ], [0, ]∞ ∞

[0, ], [0, ]∞ ∞ [0, ],[0,140]∞

[0, ], [0, ]∞ ∞ [0, ],[140, ]∞ ∞

best scored!

12 cases
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Learning a Feature

(1) Starts from the most general feature f:

[0, ], [0, ]∞ ∞

(2) Enumerate possible specified features from f and choose the best scored one:
[0,97], [0, ]∞

(3) Repeat (2) until the specified feature has a better score than a hyper-parameter :γ
[0,48], [0, ]∞ [97, ], [140, ]∞ ∞

score : 0.55

>  (= 0.5)γ

score : 0.06

50



Learning a Feature

(1) Starts from the most general feature f:

[0, ], [0, ]∞ ∞

(2) Enumerate possible specified features from f and chose the best scored one:
[0,97], [0, ]∞

(3) Repeat (2) until the specified feature has a better score than a hyperparameter :γ
[0,48], [0, ]∞ [97, ], [140, ]∞ ∞

score : 0.55

>  (0.5)γ

score : 0.06
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• Too high value of  results overfittingγ
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Learning a Feature

(1) Starts from the most general feature f:

[0, ], [0, ]∞ ∞

(2) Enumerate possible specified features from f and chose the best scored one:

(3) Repeat (2) until the specified feature has a better score than a hyper-parameter :γ
[0,48], [0, ]∞ [97, ], [140, ]∞ ∞ >  (0.5)γ

[0,97], [0, ]∞

(4) Relabel the nodes chosen from the feature (e.g.,                    ).
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Learning a Feature

(1) Starts from the most general feature f:

[0, ], [0, ]∞ ∞

(2) Enumerate possible specified features from f and chose the best scored one:

(3) Repeat (2) until the specified feature has a better score than a hyper-parameter :γ
[0,48], [0, ]∞ [97, ], [140, ]∞ ∞ >  (0.5)γ

(5) Repeat (1)~(4) until all the labeled nodes are covered.

[0,97], [0, ]∞
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Our Framework: Graphick

Graphs over training programs Static Analyzer

Graphick

Automatically generated graph-based heuristic

Apply 2-obj: {
Apply 2-type:

Apply 1-type:

[0, ], [0,7]∞ [9,11], [0, ]∞ [76, ], [0, ]∞ ∞ {[0, ], [0,14]∞[0, ], [43, ]∞ ∞, ,
…

{ {[105,155], [0, ]∞ , [0, ], [0,61]∞ [60,76], [0,61] [0,22], [0, ]∞ , …

{ [0, ], [61, ]∞ ∞ [46, ], [0, ]∞ ∞ , [0, ], [100, ]∞ ∞ [0, ], [29, ]∞ ∞ , … {
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Experiments

55



Settings
• Doop:

• State-of-the-art Java pointer analyzer

• Heuristic instances:

• Context sensitivity heuristic (we trained heuristic with 3 small programs)

• Heap abstraction heuristic (we trained heuristic with 4 small programs)
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Comparison to Graph-based Context Sensitivity Heuristics
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ci

2obj: timeout
Zipper: timeout

• We use OAG, used in Scaler, to produce a context sensitivity heuristic
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• We use OAG, used in Scaler, to produce a context sensitivity heuristic
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Comparison to a Previous Data-driven Context Sensitivity Heuristic

Graphick

Scaler[FSE’18]

ci

2obj: timeout
Zipper: timeout

• Comparison with a data-driven context-sensitivity heuristic learned with handcrafted features
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Graphick

Data[OOPSLA’17] Data[OOPSLA’17]

learned without
handcrafted features

learned with 
handcrafted features

• Without handcrafted features, Graphick produces a competitive context-sensitivity heuristic

Zipper[OOPSLA’18]
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Comparison to Heap Abstraction Heuristics

• From FPG, Graphick produces cost-effective heap-abstraction heuristic

Use FPGUse FPG

Objects are represented as allocation sites

Objects are represented as types



Summary
• We made Graphick to automatically generate graph-based analysis heuristics

• Two key ideas are our feature description language and learning algorithm 

Feature = ̂Node
*

× ̂Node × ̂Node
*

̂Node = Itv × Itv

Itv = {[a, b] ∣ a ∈ ℕ, b ∈ ℕ ∪ ∞,}

Graphick

Graphs Analyzer

:G2 {[0, ], [0,3]∞ [48, ], [0, ]∞ ∞ [0, ], [140, ]∞ ∞

{[60,76], [0,61] [0,22], [0, ]∞ , …
…
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