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We present a new data-driven approach to achieve highly cost-effective context-sensitive points-to analysis

for Java. While context-sensitivity has greater impact on the analysis precision and performance than any

other precision-improving techniques, it is difficult to accurately identify the methods that would benefit the

most from context-sensitivity and decide how much context-sensitivity should be used for them. Manually

designing such rules is a nontrivial and laborious task that often delivers suboptimal results in practice. To

overcome these challenges, we propose an automated and data-driven approach that learns to effectively apply

context-sensitivity from codebases. In our approach, points-to analysis is equipped with a parameterized and

heuristic rules, in disjunctive form of properties on program elements, that decide when and howmuch to apply

context-sensitivity. We present a greedy algorithm that efficiently learns the parameter of the heuristic rules.

We implemented our approach in the Doop framework and evaluated using three types of context-sensitive

analyses: conventional object-sensitivity, selective hybrid object-sensitivity, and type-sensitivity. In all cases,

experimental results show that our approach significantly outperforms existing techniques.
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1 INTRODUCTION

Points-to analysis is one of the most important static program analyses. It approximates various
memory locations that a pointer variable may point to at runtime. While useful as a stand-alone tool
for many program verification tasks (e.g., detecting null-pointer dereferences), it is a key ingredient
of subsequent higher-level program analyses such as static bug-finders, security auditing tools, and
program understanding tools.

For object-oriented languages, context-sensitive points-to analysis is important as it must distin-
guish method’s local variables and objects in different calling-contexts. For languages like Java,
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context-sensitivity has greater impact on the analysis precision than any other precision-improving
techniques such as flow-sensitivity, and diverse forms of context-sensitivity have been proposed.
Examples include call-site-sensitivity [Sharir and Pnueli 1981], object-sensitivity [Milanova et al.
2005], type-sensitivity [Smaragdakis et al. 2011], and selective hybrid object-sensitivity [Kastrinis
and Smaragdakis 2013b].

However, application of context-sensitivity posts significant challenge. It is well-known that deep
object-sensitive analyses, such as 2-object-sensitivity with a context-sensitive heap (2objH) [Mi-
lanova et al. 2005], usually achieve high precision in practice, but they generally do not scale
well to large programs. A recent hybrid approach (S2objH) [Kastrinis and Smaragdakis 2013b],
which combines object-sensitivity and call-site-sensitivity, shows improved performance than
the 2objH analysis, but scalability remains an issue. To address the scalability problem of deep
context-sensitivity, Smaragdakis et al. [2014] proposed two analyses, namely 2objH+IntroA and
2objH+IntroB1, which selectively apply context-sensitivity to a subset of method invocations using
manually-tuned heuristic rules. However, these analyses are also far from optimal. The former
achieves much improvements in scalability than 2objH at the cost of precision. Likewise, the latter
improves precision at the cost of scalability.
In this paper, we present an automated and data-driven approach to context-sensitive analysis.

Our approach is similar to that of Smaragdakis et al. [2014] in that we selectively apply deep contexts
only to a subset of methods. Difference, though, is that heuristic rules on context-selection are
automatically generated from codebases through a learning algorithm. The model is a parameterized
heuristic that is expressive enough to capture sophisticated properties of methods. We use a set
of k boolean formulas: { f1, f2, . . . , fk } (k is the maximum context depth to maintain) where fi is
a boolean combination of the atomic features that captures complex and high-level properties of
a method. Each atomic feature describes a low-level property such as whether a method has an
allocation statement or not. Context-sensitive analysis of depth i is applied only to the methods
whose properties are described by fi . Key technical challenge is to efficiently determine a good set of
boolean formulas as brute-force search would simply be impractical. In this paper, we demonstrate
that it is possible to reduce the problem of simultaneously learning k boolean formulas into a set
of k sub-problems of finding each formula, drastically reducing the search space. In addition, we
developed a greedy algorithm to solve each sub-problem, which produces accurate yet general
formulas by iteratively refining the formulas while keeping them in disjunctive normal form.
The experimental results show that our data-driven approach produces highly cost-effective

context-sensitive points-to analysis. We implemented our approach in the Doop framework [Braven-
boer and Smaragdakis 2009] and applied it to three context-sensitive analyses: selective object-
sensitivity [Kastrinis and Smaragdakis 2013b], object-sensitivity [Milanova et al. 2005], and type-
sensitivity [Smaragdakis et al. 2011]. In all analyses, the results show that our approach strikes an
unprecedented balance between precision and scalability trade-offs. For instance, when we applied
our technique to selective 2-object-sensitivity (S2objH), the resulting analysis has virtually the same
scalability of the context-insensitive analysis while enjoying most of the precision benefits. In par-
ticular, our data-driven points-to analysis far excels the performance of the existing state-of-the-art
heuristics, introspective analyses [Smaragdakis et al. 2014], in terms of precision and speed.
In summary, our key contributions are as follows:

• We present a new approach to data-driven program analysis. Although the idea of data-driven
program analysis itself is not new [Cha et al. 2016; Heo et al. 2016, 2017; Oh et al. 2015],
we make two novel contributions: use of nonlinear model for context-selection heuristics
(Section 3.3) and efficient learning algorithm (Section 3.5).

1In fact, the idea of the introspective analysis by [Smaragdakis et al. 2014] is applicable to any context-sensitive analysis.
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Input Relations

Alloc (var: V , heap: H , inMeth:M) FormalArg(meth : M, i : N, arg : V )
Move(to : V , from : V ) ActualArg(invo : I , i : N, arg : V )
Load(to : V , base : V ,fld : F ) FormalReturn(meth : M, ret : V )
Store(base : V ,fld : F , from : V ) ActualReturn(invo : I , var : V )
VCall(base : V , sig : S, invo : I , inMeth : M) ThisVar(meth : M, this : V )
SCall(meth : M, invo : I , inMeth : M) HeapType(heap : H , type : T )

LookUp(type : T , sig : S,meth : M)

Output Relations

VarPointsTo(var : V , ctx : C, heap : H , hctx : HC)
CallGraph(invo : I , callerCtx : C,meth : M, calleeCtx : C)
FldPointsTo(baseH : H , baseHCtx : HC,fld : F , heap : H , hctx : HC)
InterProcAssign(to : V , toCtx : C, from : V , fromCtx : C)
Reachable(meth : M, ctx : C)

Fig. 1. Input and output relations of points-to analysis from [Kastrinis and Smaragdakis 2013c]

• We demonstrate the effectiveness of our approach with applications to three flavors of context-
sensitive points-to analysis (Section 4.1): selective hybrid object-sensitivity, object-sensitivity,
and type-sensitivity. We also demonstrate that use of nonlinear model is a key to success;
without it, the analysis becomes significantly less precise and costly (Section 4.2).

2 PARAMETRIC POINTS-TO ANALYSIS IN DATALOG

In this section, we define a parametric context-sensitive points-to analysis for Java. We build on the
previous work [Kastrinis and Smaragdakis 2013c] that defines a generic context-sensitive points-to
analysis in Datalog. We incrementally extend the analysis to allow different context depths for each
method. This section will use the same notations introduced by Kastrinis and Smaragdakis [2013c].

2.1 Points-to Analysis by Kastrinis and Smaragdakis [2013c]

We summarize the parametric points-to analysis designed by Kastrinis and Smaragdakis [2013c].
For more details, we refer the readers to prior work [Kastrinis and Smaragdakis 2013c; Smaragdakis
and Balatsouras 2015].

In [Kastrinis and Smaragdakis 2013c], a Java program is represented as Datalog relations shown
in Fig. 1. Input relations are grouped into instructions and auxiliary information. The meaning
of the instructions is straightforward. For instance, Alloc relation models a heap allocation,
where V , H , andM denote the sets of program variables, heap abstractions (i.e., allocation-sites),
and method identifiers, respectively. F , S , and I denote the sets of fields,method signatures, and
instructions, respectively. The auxiliary relations encode the name and type information. For
instance, FormalArg encodes that arg is the i-th formal argument of meth (resp., the method at
invo).

Given the input relations, the analysis derives the output relations listed in the bottom of Fig. 1.
The VarPointsTo and CallGraph relations represent results of the context-sensitive points-to
analysis. The former describes that the variable var in the call context ctx may points to the heap
location heap whose heap context is hctx. Likewise, CallGraph(invo, callerCtx, meth, calleeCtx)
encodes the context-sensitive call graph: the method meth can be invoked at the instruction invo

with respect to the caller and callee contexts: callerCtx and calleeCtx.
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InterProcAssign(to, calleeCtx, from, callerCtx)←

CallGraph(invo, callerCtx, meth, calleeCtx), FormalArg(meth, i, to), ActualArg(invo, i, from).

InterProcAssign(to, callerCtx, from, calleeCtx)←

CallGraph(invo, callerCtx, meth, calleeCtx), FormalReturn(meth, from), ActualReturn(invo, to).

Record(heap, ctx)=hctx,

VarPointsTo(var, ctx, heap, hctx)← Reachable(meth, ctx), Alloc(var, heap, meth).

VarPointsTo(to, ctx, heap, hctx)←Move(to, from), VarPointsTo(from, ctx, heap, hctx).

VarPointsTo(to, toCtx, heap, hctx)←

InterProcAssign(to, toCtx, from, fromCtx), VarPointsTo(from, fromCtx, heap, hctx).

VarPointsTo(to, ctx, heap, hctx)←

Load(to, base, fld), VarPointsTo(base, ctx, baseH, baseHCtx),

FldPointsTo(baseH, baseHCtx, fld, heap, hctx).

FldPointsTo (baseH, baseHCtx, fld, heap, hctx)←

Store(base, fld, from), VarPointsTo(from, ctx, heap, hctx), VarPointsTo(base, ctx, baseH, baseHCtx).

Merge (heap, hctx, invo, callerCtx)=calleeCtx,

Reachable (toMeth, calleeCtx),

VarPointsTo (this, calleeCtx, heap, hctx),

CallGraph (invo, callerCtx, toMeth, calleeCtx)← VCall (base, sig, invo, inMeth),

Reachable (inMeth, callerCtx), VarPointsTo (base, callerCtx, heap, hctx),

HeapType (heap, heapT ), LookUp (heapT, sig, toMeth), ThisVar (toMeth, this).

MergeStatic (invo, callerCtx) = calleeCtx,

Reachable (toMeth, calleeCtx),

CallGraph (invo, callerCtx, toMeth, calleeCtx)←

SCall (toMeth, invo, inMeth), Reachable (inMeth, callerCtx).

(a) Points-to analysis rules taken from [Kastrinis and Smaragdakis 2013c]

Merge (depth, heap, hctx, invo, callerCtx)=calleeCtx,

Reachable (toMeth, calleeCtx),

VarPointsTo (this, calleeCtx, heap, hctx),

CallGraph (invo, callerCtx, toMeth, calleeCtx)← VCall (base, sig, invo, inMeth),

Reachable (inMeth, callerCtx), VarPointsTo (base, callerCtx, heap, hctx), HeapType (heap, heapT ),

LookUp (heapT, sig, toMeth), ThisVar (toMeth, this), ApplyDepth(toMeth, depth).

MergeStatic (depth, invo, callerCtx) = calleeCtx,

Reachable (toMeth, calleeCtx),

CallGraph (invo, callerCtx, toMeth, calleeCtx)←

SCall (toMeth, invo, inMeth), Reachable (inMeth, callerCtx), ApplyDepth(toMeth, depth).

(b) Modified rules for our parametric points-to analysis

Fig. 2. Datalog rules for context-sensitive points-to analysis
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Fig. 2(a) shows the points-to analysis rules used by Kastrinis and Smaragdakis [2013c], which
performs a flow-insensitive and context-sensitive points-to analysis with on-the-fly call-graph
construction. The rules specify, for each instruction type, how to derive the output relations from
the input relations. For instance, the fourth rule corresponds to the copy instruction.
The most important feature of the analysis is that context-sensitivity is encapsulated by the

following three constructor functions:

• Record(heap : H , ctx : C) produces new heap contexts. It is used when allocating heap
objects (i.e., Alloc) and creates new heap contexts for them. Given an allocation-site and a
calling-context, Record returns a new heap context for the heap object.
• Merge(heap : H , hctx : HC, invo : I , ctx : C) creates calling contexts for virtual calls. Given
heap object, heap context, call-site, and calling context, it creates a new context for called
functions.
• MergeStatic(invo : I , ctx : C) is similar to Merge but it is used for static method calls.
Given a method call with a calling context, it creates a new calling context.

Kastrinis and Smaragdakis [2013c] showed that a large class of context-sensitive analyses (in-
cluding k-call-site sensitivity, k-object-sensitivity, k-type-sensitivity, and their variants) can be
obtained by appropriately defining the constructor functions and the domains (HC and C). For
instance, we get the standard 2-object-sensitive analysis with 1-context-sensitive heap (2objH) by
using allocation-sites as heap contexts (i.e., HC = H ) and two allocation-sites as calling contexts
(i.e., C = H × H ). The definitions of the constructor functions are as follows:

Record(heap, ctx) = first(ctx)

Merge(heap, hctx, invo, ctx) = pair(heap, hctx)

MergeStatic(invo, ctx) = ctx

At virtual method calls (Merge), the context is created by appending the receiver object (heap)
and its heap context (hctx). Note that Record uses the first element of ctx; the new heap context
of an object is the receiver object of the allocating method. At static calls (MergeStatic), the
calling context of the caller method is used without changes.

2.2 Extension to Our Parametric Analysis

We extend the analysis rules to assign different context depths to different methods (in a similar
way to the parametric framework by Milanova et al. [2005]). For this purpose, we extend the prior
analysis in two ways. First, our analysis requires the extra input relation:

ApplyDepth(meth : M, depth : N).

The ApplyDepth relation maps methods to their context depths; the method (meth) is analyzed
with the given context-sensitivity depth (depth). In this section, we assume that the mapping (i.e.,
a set of ApplyDepth relations) is given for the target program. The heuristic that we define in
Section 3 will be used to generate the relations.
Second, we need to modify the context constructorsMerge andMergeStatic so that they

produce new contexts by considering the given context depths as well:

Merge(depth : N, heap : H , hctx : HC, invo : I , ctx : C) = newCtx : C

MergeStatic(depth : N, invo : I , ctx : C) = newCtx : C

With these new constructors, we replace the last two rules in Fig. 2(a) by the rules in Fig. 2(b). For
instance, a virtual method call VCall(base, sig, invo, inMeth) is handled as follows:

(1) VarPointsTo figures out a set of heaps that the base can point to.
(2) From each heap, a type identifier heapT is revealed.
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(3) Using the identifier and the invocation’s signature, the target method toMeth is found.
(4) ApplyDepth returns depth according to the toMeth, and it is provided to the Merge con-

structor.

MergeStatic is defined in a similar way but, in this case, SCall itself has the toMeth information.
The other seven rules in Fig. 2(a) are used without changes.

All existing context-sensitive analyses expressible by the previous framework [Kastrinis and
Smaragdakis 2013c] can be easily extended to our framework. For instance, consider the 2objH anal-
ysis. We use the same definition for HC while C is modified to allow shallower depths; C =
(H ∪ {⋆}) × (H ∪ {⋆}) is the new context type. With these domains, the constructor functions are
defined as follows:

Record(heap, ctx) = first(ctx),

Merge(depth, heap, hctx, invo, ctx) =





pair(heap, hctx) if depth = 2

pair(heap,⋆) if depth = 1

pair(⋆,⋆) if depth = 0

MergeStatic(depth, invo, ctx) =





pair(first(ctx), second(ctx)) if depth = 2

pair(first(ctx),⋆) if depth = 1

pair(⋆,⋆) if depth = 0

When depth = 2, note that the analysis is identical to 2objH. When depth = 1, the Merge and
MergeStatic truncate the contexts and maintain only the last context element (i.e., 1objH). When
depth is 0, the method is analyzed with context-insensitivity. We can use the same principle to
transform any analysis in [Kastrinis and Smaragdakis 2013c] to our parametric setting.

3 OUR DATA-DRIVEN APPROACH

In this section, we present the core contributions of this paper: a new data-driven program analysis
with a nonlinear model and an efficient learning algorithm. Specifically, our goal is to generate
the input relations ApplyDepth appropriately for the given program, which assigns the context
depths in [0,k] to each method in the program, where k is a pre-defined, maximum context
depth. Our approach is data-driven; from a given codebase, we learn a heuristic to populate the
ApplyDepth relations. The learned heuristic is then used for analyzing new programs. Though
we have points-to analysis in mind, our approach in this section is general and applicable to other
program analyses as well.

3.1 Modeling of Context-Sensitive Points-to Analysis

To formalize our approach, we abstractly model the parametric context-sensitive points-to analysis
in Section 2. Let P ∈ P be a program to analyze. LetMP be the set of methods in P . Let k be the
maximum depth for context-sensitivity (e.g., k = 2 in our experiments). Then, we define the set
AP of abstractions for P as follows:

a ∈ AP = {0, 1, . . . ,k}
MP .

Abstractions are vectors of natural numbers in {0, 1, . . . ,k} with indices inMP , and are ordered
pointwise:

a ⊑ a
′ ⇐⇒ ∀m ∈ MP . am ≤ a

′
m .

Intuitively, am = i means that the method m ∈ MP is analyzed with i-context-sensitivity (i.e.,
the analysis distinguishing the last i context elements of the method). Our method can be used
with any kind of context abstractions, e.g., call-site-sensitivity [Sharir and Pnueli 1981], object-
sensitivity [Milanova et al. 2005], type-sensitivity [Smaragdakis et al. 2011], etc, and this section
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does not concern about what kind of context-sensitivity is used. We can regard an abstraction
a ∈ AP as a function fromMP to {0, 1, . . . ,k}:

a ∈ AP = MP → {0, 1, . . . ,k}.

We write k and 0 for the most precise and least precise abstractions, respectively:

k = λm ∈ MP . k, 0 = λm ∈ MP . 0

For instance, when we use object-sensitivity for context abstraction, the analysis with k represents
the standard k-object-sensitive analysis while 0 means the context-insensitive analysis.

We assume that a set QP of assertions is given together with P . For instance, in our experiments,
QP is the set of all type casts in P and the analysis attempts to prove that they do not fail at runtime.
We model points-to analysis for P by the function:

FP : AP → ℘(QP ) × N.

Given a program P , the analysis takes an abstraction a ∈ AP of the program and returns a pair
(Q,n) of the set Q ⊆ QP of assertions proved by the analysis and the natural number n ∈ N that
represents the cost (e.g., time) of the analysis with the abstraction a. For instance,Q denotes the set
of type casts proved to be safe by the analysis. We define two projection functions: proved(FP (a))
and cost(FP (a)) denote the set of proved assertions (Q) and the cost (n) of the analysis FP (a),
respectively.
In this section, we assume that the analysis is monotone in the following sense:

Definition 3.1 (Monotonicity of Analysis). Let P ∈ P be a program and a, a′ ∈ AP be abstractions
of P . We say the analysis FP is monotone if the following condition holds:

a ⊑ a
′
=⇒ proved(FP (a)) ⊆ proved(FP (a

′)).

That is, we assume that more precise abstractions lead to proving more assertions. Note that our
notion of łproved assertionsž means those in the original program, not datalog facts derived by the
analysis. Therefore, the number of proved assertions goes up as the analysis precision increases,
while the number of derived datalog facts goes down. The parametric analysis in Section 2 satisfies
this property.

3.2 Goal

Suppose we have a codebase P = {P1, P2, . . . , Pm}, which is a collection of programs. Our goal is to
automatically learn from P a context-selection heuristicH :

H(P) : MP → {0, 1, . . . ,k}

which takes a program P and returns an abstraction (i.e., an assignment of context depths to each
method) of the program. Once H is learned from the codebase, it is used to analyze previously
unseen program P as follows:

FP (H(P)).

Our aim is to learn from P a good heuristic H such that the precision of the analysis FP (H(P))
is close to that of the most precise analysis FP (k) while its cost is comparable to that of the least
precise analysis FP (0).
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3.3 Modeling of Context-Selection Heuristics

To enable learning, we first need to define a hypothesis space of the selection heuristics, which is
called model or inductive bias in the machine learning community. That is, we need to choose and
represent a model which is a restricted subset of the entire selection heuristics. We use a nonlinear,
disjunctive model that combines atomic features with boolean formulas. Use of the nonlinear model
is a key to success in our approach; the linear model used in prior work [Oh et al. 2015] is not
expressive enough to capture useful context-selection heuristics required for points-to analysis for
Java (Section 4).
We assume that a set of atomic features is given: A = {a1,a2, . . . ,an}. An atomic feature ai

describes a property of methods; it is a function from programs to predicates on methods:

ai (P) : MP → {true, false}.

The atomic features we used in experiments are described in Section 3.6. We define the following
set of boolean formulas over the atomic features:

f → true | false | ai ∈ A | ¬f | f1 ∧ f2 | f1 ∨ f2

Given a program P , a boolean formula f means a set of methods:

[[true]]P =MP [[¬f ]]P =MP \ [[f ]]P
[[false]]P = ∅ [[f1 ∧ f2]]P = [[f1]]P ∩ [[f2]]P
[[ai ]]P = {m ∈ MP | ai (P)(m) = true} [[f1 ∨ f2]]P = [[f1]]P ∪ [[f2]]P

Suppose we are given a vector Π of k boolean formulas:

Π = ⟨f1, . . . , fk ⟩.

This vector will become the parameter of our model. Given a parameter Π = ⟨f1, . . . , fk ⟩, we define
the model (i.e., parameterized heuristic), denotedHΠ , as follows:

HΠ(P) = λm ∈ MP .





k ifm ∈ [[fk ]]P
k − 1 ifm ∈ [[fk−1]]P ∧m < [[fk ]]P

· · ·

k − i ifm ∈ [[fk−i ]]P ∧m <
⋃

k≥j>k−i [[fj ]]P
· · ·

1 ifm ∈ [[f1]]P ∧m <
⋃

k≥j>1[[fj ]]P
0 otherwise

Given P , the parameterized heuristic assigns a context depth j to each method, where the depth j is
determined according to the model parameter Π. A methodm is assigned the depth j if the j-th
boolean formula fj of Π includes the methodm, i.e.,m ∈ [[fj ]]P , andm is not implied by any other
formulas fj+1, fj+2, . . . , fk at higher levels. That is, whenm belongs to both fi and fj (i > j), we
favor assigning the greater context-depth i tom.

3.4 The Learning Problem

Once we define a modelHΠ , learning a good context-selection heuristic corresponds to finding
a good model parameter Π. Given a codebase P = {P1, . . . , Pm} and the modelHΠ , we define the
learning problem as the following optimization problem:

Find Π that minimizes
∑

P ∈P

cost(FP (HΠ(P))) while satisfying

∑
P ∈P |proved(FP (HΠ(P)))|∑

P ∈P |proved(FP (k))|
≥ γ . (1)

That is, we aim to find a parameter Π that minimizes the cost of the analysis over the codebase

while satisfying the precision constraint,
∑
P∈P |proved(FP (HΠ(P ))) |∑

P∈P |proved(FP (k)) |
≥ γ , which asserts that the ratio of
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the number of assertions proved by the analysis with Π to the number of assertions proved by the
most precise analysis must be higher than a predefined threshold γ ∈ [0, 1]. For instance, setting γ
to 0.9 means that we would like to ensure 90% of the full precision.
Although we assume a single client (e.g. safety of type casts) for presentation brevity, the

optimization problem can be defined for multiple clients. Suppose we have n clients, each of which
is accompanied with the corresponding projection function provedi (1 ≤ i ≤ n). Then, we can

redefine the precision constraint by, for example, 1
n

∑n
j=1

∑
P∈P |provedj (FP (HΠ(P ))) |∑

P∈P |provedj (FP (k)) |
≥ γ , where we

evaluate the overall performance by averaging the results.

3.5 The Learning Algorithm

Note that solving the optimization problem in Equation (1) is extremely challenging. This is mainly
because the space of parameters is intractably large. A model parameter Π consists of k boolean
formulas. Assuming that S is the space of possible boolean formulas over which we learn, searching
for k formulas simultaneously poses the huge search space of size |S|k . This space is typically too
large to enable effective learning even for small k .

Overall Algorithm. We present a learning algorithm that drastically reduces the size of the
search space from |S|k tok · |S|. To do so, we first decompose the optimization problem in Equation (1)
into k sub-problems: Ψk ,Ψk−1, . . . ,Ψ1. Note that the solution of the original problem is a vector
of k boolean formulas: Π = ⟨f1, . . . , fk ⟩. In our approach, solving the sub-problem Ψi (1 ≤ i ≤ k)
produces the i-th boolean formula fi of Π. Therefore, we solve the problems Ψi (1 ≤ i ≤ k)
separately and combine their solutions fi (1 ≤ i ≤ k) to form Π = ⟨f1, . . . , fk ⟩.
The solution fi for the problem Ψi is defined in terms of fi+1, fi+2, . . . , fk , i.e., the solutions

of the problems Ψi+1,Ψi+2, . . . ,Ψk at higher levels. Suppose we already solved the problems
Ψi+1,Ψi+2, . . . ,Ψk and have their solutions fi+1, fi+2, . . . , fk . Then, the problem Ψi is defined as
follows:

Ψi ≡ Find f that minimizes
∑

P ∈P

cost(FP (HΠi
(P)))while satisfying

∑
P ∈P |proved(FP (HΠi

(P)))|
∑

P ∈P |proved(FP (k))|
≥ γ .

(2)
where Πi = ⟨true, . . . , true, f , fi+1, fi+2, . . . , fk ⟩. That is, when we solve the problem Ψi , we fix the
currently available solutions fi+1, fi+2, . . . , fk and attempts to find a formula f that achieves the
best performance with respect to fi+1, fi+2, . . . , fk . Note that the first i − 1 formulas of Πi is true;
according to the definition ofHΠ , this means that we apply the context depth i − 1 to all remaining
methods that are not selected by f , fi+1, fi+2, . . . , fk .

Since solving the problem Ψi requires to solve the higher-level problems Ψj (j > i), we proceed
in decreasing order from k to 1: We first solve the problem Ψk and use the result when we solve the
problem Ψk−1, and so on. Let fi be the solution of the problem Ψi (1 ≤ i ≤ k). Then, the solution
Π of the original problem in Equation (1) is simply obtained by combining the sub-solutions fi ’s:
Π = ⟨f1, f2, . . . , fk ⟩.
Algorithm 1 presents the learning algorithm. It takes as input static analyzer F , codebase P,

context-depth k , and atomic featuresA. A vector ⟨f1, f2, . . . , fk ⟩ of boolean formulas is returned. At
line 2, the formulas are initialized with true. At lines 3ś5, it iterates the context depths k,k −1, . . . , 1
in decreasing order and updates the boolean formula fi of the current depth i . The update is done
by invoking the function LearnBooleanFormula, which we describe shortly.

Property of Our Algorithm. Before explaining how LearnBooleanFormula works, we point
out that while our learning approach reduces the search space significantly, it does not lose a
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chance of finding good solutions. Specifically, our algorithm guarantees to preserve a minimal

solution of the original problem (1). Let us first define the notion of minimal solutions.

Definition 3.2. Let P be a codebase and Π = ⟨f1, f2, . . . , fk ⟩ be a parameter. We say Π is a minimal
solution of the problem (1) if

(1) Π meets the precision constraint:
∑
P∈P |proved(FP (HΠ(P ))) |∑

P∈P |proved(FP (k)) |
≥ γ , and

(2) there exists no solution smaller thanΠ: ifΠ′ is a parameter that meets the precision constraint,

i.e.,
∑
P∈P |proved(FP (HΠ′ (P ))) |∑

P∈P |proved(FP (k)) |
≥ γ , and Π

′ is smaller than Π, i.e., ∀P ∈ P. HΠ′(P) ⊑ HΠ(P), then

Π
′ and Π are equivalent:

∀P ∈ P. HΠ′(P) = HΠ(P).

In a similar way, we can define the notion of minimal solutions for the sub-problems as follows:

Definition 3.3. Let P be a codebase and fi be the solution of the problem Ψi . Let Πi be the vector

⟨true, . . . , true, fi , fi+1, . . . , fk ⟩

where fi+1, . . . , fk are solutions of problems Ψi+1, . . . ,Ψk , respectively. We say fi is minimal if

(1) Πi meets the precision constraint:
∑
P∈P |proved(FP (HΠi

(P ))) |∑
P∈P |proved(FP (k)) |

≥ γ , and

(2) Πi is minimal: if Π′i = ⟨true, . . . , true, f
′
i , fi+1, . . . , fk ⟩ is a parameter that meets the precision

constraint, i.e.,

∑
P∈P |proved(FP (HΠ

′
i
(P ))) |

∑
P∈P |proved(FP (k)) |

≥ γ , and Π
′
i is smaller than Πi , i.e., ∀P ∈ P. HΠ

′
i
(P) ⊑

HΠi
(P), then Π

′
i and Πi are equivalent:

∀P ∈ P. HΠ
′
i
(P) = HΠi

(P).

Theorem 3.4 below states that our stepwise learning algorithm is able to produce a minimal
solution of the original problem if each formula fi is a minimal solution of the problem Ψi .

Theorem 3.4. Let f1, . . . , fk be minimal solutions of the problems Ψ1, . . . ,Ψk . Then, ⟨f1, . . . , fk ⟩

is a minimal solution of the original problem (1).

Proof. See Appendix A. □

Learning Boolean Formulas. Now we explain LearnBooleanFormula, which is used to solve
each sub-problem Ψi . Note that the search space of the sub-problem Ψi is still huge; there are
22

n

semantically different boolean functions over n boolean variables (i.e., the number of atomic
features A = {a1, . . . ,an}). Therefore, it is intractable to exhaustively search for a good solution.
To address this challenge, we developed a greedy search algorithm that produces good-enough
solutions in practice.

Algorithm 2 presents our algorithm for learning a boolean formula fi for each problem Ψi . The
algorithm takes as input the current context-depth i , current formulas ⟨f1, . . . , fk ⟩, static analyzer F ,
codebase P, and atomic features A = {a1, . . . ,an}. When the algorithm is used for solving the i-th
problem (i.e., Ψi ), we assume that the solutions fi+1, fi+2, . . . , fk of the problems Ψi+1,Ψi+2, . . . ,Ψk
are already computed (this is ensured by Algorithm 1).

Given these inputs, the algorithm produces as output a boolean formula f in disjunctive normal
form (DNF); f is a disjunction of conjunctions of literals:

f =
∨

x

∧

y

lx,y

where a literal lx,y includes boolean constants, atomic features aj ∈ A, and their negations ¬aj . In
the algorithm, we represent a conjunctive clause (i.e., a conjunction of literals) by a set of literals,
and a disjunction by a set of clauses.
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Algorithm 1 Our Learning Algorithm

Input: Static analyzer F , codebase P, context-depth k , atomic features A
Output: A vector ⟨f1, f2, . . . , fk ⟩ of k boolean formulas
1: procedure Learn(F , P,k)
2: ⟨f1, f2, . . . , fk ⟩ ← ⟨true, true, . . . , true⟩ ▷ initialize f1, f2, . . . , fk with true

3: for i = k to 1 do

4: fi ← LearnBooleanFormula(i, ⟨f1, f2, . . . , fk ⟩, F , P,A) ▷ update fi
5: end for

6: return ⟨f1, f2, . . . , fk ⟩

7: end procedure

Algorithm 2 Algorithm for Learning a Boolean Formula

Input: Context-depth i , current formulas ⟨f1, f2, . . . , fk ⟩, static analyzer F , codebase P, atomic
features A

Output: Boolean formula fi in disjunctive normal form
1: procedure LearnBooleanFormula(i, ⟨f1, f2, . . . , fk ⟩, F , P,A)
2: f ← {{aj } | aj ∈ A} ∪ {{¬aj } | aj ∈ A} ▷ initial formula
3: W ← f ▷ initial workset (the set of all clauses in f )
4: bestCost ←∞ ▷ initial best cost
5: whileW , ∅ do

6: c ← ChooseClause(W , F , P) ▷ choose the most expensive clause fromW

7: W ←W \ {c}

8: a ← ChooseAtom(A, c, F , P) ▷ choose an atom from A
9: c ′← c ∪ {a} ▷ refined clause
10: f ′← (f \ {c}) ∪ {c ′} ▷ refined formula
11: Π ← ⟨f1, . . . , fi−1, f

′, fi+1, fi+2, . . . , fk ⟩ ▷ current parameter setting
12: (proved, cost) ← Analyze(Π, F , P)

13: if cost ≤ bestCost ∧
|proved |∑

P∈P |proved(FP (k)) |
≥ γ then ▷ cheaper parameter found

14: bestCost ← cost ▷ update the best cost
15: if (f ′ ⇐⇒ f \ {c}) then ▷ check if f ′ is semantically refined
16: f ← f ′ \ {c ′} ▷ remove chosen clause from f

17: continue

18: else

19: W ←W ∪ {c ′} ▷ c ′ can be refined further
20: f ← f ′ ▷ update the formula
21: end if

22: end if

23: end while

24: return f

25: end procedure

At line 2, the algorithm initializes the formula f with a disjunction of all atomic features and
their negations:

f = a1 ∨ a2 ∨ · · · ∨ an ∨ ¬a1 ∨ ¬a2 ∨ · · · ∨ ¬an
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Note that this formula denotes the set of all methods in the program, and therefore the initial
formula leads to the most precise analysis that assigns the context depth i to every method (except
for the methods already selected by fi+1, . . . , fk ). Beginning with this formula f , the goal of our
algorithm is to refine each clause of f and obtain a boolean formula that minimizes the analysis
cost while preserving the precision constraint (e.g., achieving 90% of the full precision).
To do so, the algorithm maintains a worksetW which is a set of clauses to refine further. The

workset initially contains all atomic clauses (line 3). The algorithm iterates while the workset is
non-empty. At lines 6 and 7, a clause is selected and removed from the workset. Our algorithm is
greedy in a sense that the ChooseClause function chooses the most expensive clause c fromW :

ChooseClause(W , F , P) = argmax
c ∈W

∑

P ∈P

cost(FP (HΠc
(P)))

where Πc = ⟨f1, . . . , fi−1, c, fi+1, fi+2, . . . , fk ⟩. The heuristic, HΠc
, with Πc assigns the context

depth i to the methods for which c is true (except for methods for which some of fi+1, . . . , fk
are true). All the other methods are assigned the depth i − 1, because LearnBooleanFormula is
invoked with f1, . . . , fi−1 being true.
The next step is to refine the clause c by conjoining an atom a ∈ A to c (lines 8 and 9): i.e.,

c ′ = c ∧ a. The refined clause c ′ represents a smaller set of methods than c , which decreases the
precision of the analysis. When refining the clause, our algorithm is conservative and chooses
the atom a ∈ A with which refining c decreases the analysis precision as little as possible. More
precisely, the ChooseAtom function is defined as follows:

ChooseAtom(A, c, F , P) =

{
argmaxa∈(A∪¬A)\c

∑
P ∈P |proved(FP (HΠa∧c

(P)))| if (A ∪ ¬A) \ c , ∅

false otherwise

where Πa∧c = ⟨f1, . . . , fi−1,a ∧ c, fi+1, fi+2, . . . , fk ⟩ and ¬A = {¬a | a ∈ A}. When there exists an
atom to choose (i.e., A \ c , ∅), we conservatively choose the atom a with the greatest precision.
Otherwise, there is no atom to refine with and false is returned so that the clause c does not get
refined further. In the latter case, the algorithm eventually goes to line 17(because f ′ ⇐⇒ f \ {c}

is valid) and attempts to choose another clause to refine. When an atom a is successfully chosen,
we refine the clause (line 9) and the formula (line 10).

At lines 11ś12, the refined formula is evaluated. We first construct the parameter setting Π with
the current formula f ′ (line 11):

Π = ⟨f1, . . . , fi−1, f
′
, fi+1, fi+2, . . . , fk ⟩.

Next, we analyze the programs in the codebase with Π. The Analyze function returns the set of
queries proved and the cost spent with the parameter Π:

Analyze(Π, F , P) = (
∑

P ∈P

proved(FP (HΠ(P))),
∑

P ∈P

cost(FP (HΠ(P))).

At line 13, we check whether the cost is actually reduced while ensuring the precision constraint.
If so, bestCost is updated with the current cost. At line 15, we check if the rest clauses of the old
formula (f \ {c}) cover the refined clause c ′. If so, we remove the clause c ′ from the formula (line
16) and try to refine another clause. For instance, suppose f is a1 ∨ a2 ∨ a3 and it is refined to
f ′ = a1 ∨ (a1 ∧ a2) ∨ a3. We remove the refined clause a1 ∧ a2 because a1 ∧ a2 =⇒ a1. If the
condition at line 15 is false, we update the workset with the refined clause c ′ (i.e., c ′ can be refined
further) and f gets replaced by f ′. If the performance is not improved or the precision constraint
is violated, we do not add the refined clause c ′ to the workset and f does not get updated.
Note that the algorithm is guaranteed to terminate. First of all, the worksetW never grows in

each iteration of the loop. After a clause is removed from the workset at line 7, the algorithm either

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 100. Publication date: October 2017.



Data-Driven Context-Sensitivity for Points-to Analysis 100:13

goes into the next iteration (line 17) or refines the clause and pushes it back to the workset (line 19).
Furthermore, a clause never gets endlessly refined during the algorithm. Once a clause becomes
a conjunction of all atoms, the ChooseAtom function returns false which makes the condition at
line 15 true and that clause is permanently removed from the workset. Therefore, the workset
eventually becomes empty in finite steps.

3.6 Atomic Features

Table 1 shows the atomic features used in our model. In any application of machine learning, the
success depends heavily on the quality of the features. For instance, in the existing approach by Oh
et al. [2015], authors manually crafted 45 high-level features for program variables, which are then
used for learning to apply flow-sensitivity in interval analysis. However, coming up with such
high-quality features manually is a nontrivial task requiring a large amount of engineering effort
and domain expertise.
In this work, to reduce the feature-engineering burden, we focus on generating only low-level

and easy-to-obtain atomic features and utilize a learning algorithm to synthesize high-level features.
We used features found in signature and body as source for readily available information from any
Java frontend such as Soot [Vallée-Rai et al. 1999].
Using Soot, we generated two types of atomic features: features for method signatures and

features for statements. A signature feature describes whether the method’s signature contains a
particular string. For instance, the first feature in Table 1 indicates whether the method contains
string łjavaž in its signature. From a training program, we generated all words contained in method
signatures and collected the top 10 words that most frequently appear. Features #1ś10 show the
signature features generated this way. A statement feature indicates whether the method has a
particular type of statements. We used 15 statement types available in Soot (#11ś25 in Table 1). For
instance, the feature #11 indicates whether the method has at least one assignment statement in its
body. Combining the types of features, we generated 25 atomic features.

Regarding signature features, we chose top-10 features because they provide enough frequency
spectrum, both general and specific. For instance, the feature #1 (łjavaž) appeared 142,097 times over
the training programs, whereas the feature #10 (łinitž) appeared 31,984 times. First five features are
general method properties, and the others are specific ones. Both of general and specific features are
needed to generate accurate yet generalizable context-selection heuristics. For example, application
of features #1 through #5, without specific features #6 through #10, our algorithm fails to find a cost-
effective heuristic. Inclusion of specific features allow our analysis to become more efficient without
significant trade-off on precision on analysis result. Without features #6 through #10 included,
timeout would occur on large programs. In Section 4.1, we provide more detailed discussion with
experimental results.
Our learning approach works well without high-level features, mainly because the learning

model (i.e., parameterized heuristic) is powerful and able to automatically generate those features
by combining the atomic features via boolean formulas. On the other hand, the learning model
used by Oh et al. [2015] has limited expressiveness; the model combines the features by simple
linear combination, which cannot express, for instance, disjunctions of atomic features.

4 EXPERIMENTS

In this section, we experimentally evaluate our data-driven approach with application to context-
sensitive points-to analysis. The main objective of the evaluation is to answer the following research
questions:
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Table 1. Atomic features

Signature features

#1 łjavaž #3 łsunž #5 łvoidž #7 łintž #9 łStringž
#2 łlangž #4 ł()ž #6 łsecurityž #8 łutilž #10 łinitž

Statement features

#11 AssignStmt #16 BreakpointStmt #21 LookupStmt
#12 IdentityStmt #17 EnterMonitorStmt #22 NopStmt
#13 InvokeStmt #18 ExitMonitorStmt #23 RetStmt
#14 ReturnStmt #19 GotoStmt #24 ReturnVoidStmt
#15 ThrowStmt #20 IfStmt #25 TableSwitchStmt

• Effectiveness and Generalization: How well does our data-driven approach performs
compared to the existing approaches? Does our learning approach generalize well on unseen
data?
• Adequacy of Our Learning Algorithm: Is the disjunctive model essential for learning
cost-effective context-sensitivity? How much is it better than the simpler non-disjunctive
model?
• Learned Features: What are the interesting findings on learned boolean formulas?

We implemented our approach on top of the Doop framework used by Smaragdakis et al.
[2014]. We used the DaCapo benchmark suite [Blackburn et al. 2006] to evaluate our approach. All
experiments were done on a machine with Intel i5 CPU and 16 GB RAM running on Ubuntu 14.04
64bit operating system and JDK 1.6.0_24.

4.1 Effectiveness and Generalization

Setting. We applied our data-driven approach to three existing context-sensitive points-to anal-
yses: selective 2-object-sensitive (S2objH), 2-object-sensitive (2objH), and 2-type-sensitive (2typeH)
analyses, all with 1-context-sensitive heap. All of these analyses are readily available in Doop.
S2objH and 2objH are known to be the state-of-the-art points-to analyses for Java with good pre-
cision/cost trade-offs [Kastrinis and Smaragdakis 2013b; Milanova et al. 2005]. 2typeH is another
good alternative for precise yet scalable points-to analysis [Smaragdakis et al. 2011]. Following
our approach in Sections 2 and 3, we made data-driven versions of these analyses: S2objH+Data,
2objH+Data, and 2typeH+Data. In addition, we also made the introspective versions [Smarag-
dakis et al. 2014] of the three analyses: S2objH+IntroA, S2objH+IntroB, 2objH+IntroA, 2objH+IntroB,
2typeH+IntroA, and 2typeH+IntroB. The introspective versions are available in Doop, except for
S2objH+IntroA and S2objH+IntroB. We implemented these two analyses by reusing the code of
introspective analysis in Doop.
In summary, we compared the performance of the following context-sensitive analyses:

• Selective object-sensitivity:
ś S2objH: selective 2-object-sensitivity with 1 context-sensitive heap hybrid [Kastrinis and
Smaragdakis 2013b]

ś S2objH+Data: our data-driven version of S2objH.
ś S2objH+IntroA: introspective version of S2objH with the Heuristic A [Smaragdakis et al.
2014]
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ś S2objH+IntroB: introspective version of S2objH with the Heuristic B [Smaragdakis et al.
2014]

• Object-sensitivity:
ś 2objH: 2-object-sensitivity with 1 context-sensitive heap [Kastrinis and Smaragdakis 2013b;
Milanova et al. 2005]

ś 2objH+Data: our data-driven version of 2objH.
ś 2objH+IntroA: introspective version of 2objH with the Heuristic A [Smaragdakis et al. 2014]
ś 2objH+IntroB: introspective version of 2objH with the Heuristic B [Smaragdakis et al. 2014]
• Type-sensitivity:
ś 2typeH: 2-type-sensitivity with 1 context-sensitive heap [Smaragdakis et al. 2011]
ś 2typeH+Data: our data-driven version of 2typeH.
ś 2typeH+IntroA: introspective version of 2typeH with the Heuristic A [Smaragdakis et al.
2014]

ś 2typeH+IntroB: introspective version of 2typeH with the Heuristic B [Smaragdakis et al.
2014]

As it is done by Smaragdakis et al. [2014], we partitioned the ten programs from the DaCapo suite
into four small (antlr, lusearch, luindex, and pmd) and six large (eclipse, xalan, chart, bloat,
hsqldb, and jython) programs. We used the four small programs as a training set where we learned
context-selection heuristics. We used hsqldb for choosing the value ofγ , i.e., the precision threshold
of the optimization problem in (1). To choose γ , for each of γ between 0.85 and 0.95 with interval
0.01, we learned from the training set a context-selection heuristic, evaluated its performance

on hsqldb, and chose γ that shows best performance according to
#proved assertions
analysis time(s)

. The final

heuristic with the chosen γ was evaluated on the remaining five test programs (eclipse, xalan,
chart, bloat, and jython). The best γ were 0.93, 0.92, and 0.88 for selective object-sensitivity,
object-sensitivity, and type-sensitivity, respectively. We used hsqldb for choosing γ since it is
one of the two most challenging programs (jython and hsqldb) in the DaCapo benchmark suite.
Our learning algorithm took 30 hours for learning the depth-2 formula (f2), and 24 hours for the
depth-1 formula (f1) on the four training programs. Lastly, while introspective analysis selects heap
allocations as well, we analyzed all heap allocations context-sensitively.

Results. Fig. 3 compares the performance of our approach for selective object-sensitivity. We
discuss the case of selective object-sensitivity in detail, as it is arguably the best context abstraction
available to Java points-to analysis [Kastrinis and Smaragdakis 2013b]. In summary, the results
show that our data-driven version (S2objH+Data) performs remarkably well compared to the other
analyses. Detailed numbers are presented in Table 2.
Crucially, our analysis strikes an unprecedented balance between precision and cost. Notice

that the running time of our analysis is less than 2 minutes for all programs; indeed, it achieves
virtually the same speed of the context-insensitive analysis. In particular, the analysis is able to
analyze jython, the most demanding benchmark, in 105 sec, for which S2objH does not terminate
in a reasonable amount of time. Yet, the precision of our analysis is comparable to that of the
most precise analysis (S2objH); our analysis increases the number of may-fail casts only by 18% on
average while S2objH+IntroA, another analysis who completes all benchmarks within time budget,
increases the number by 85% on average.

Our data-driven points-to analysis far excels the performance of the state-of-the-art hand-tuned
points-to analyses. The introspective analyses [Smaragdakis et al. 2014], which also selectively
assign varying context-depths to different methods based on pre-determined heuristics, do not show
satisfactory performance. S2objH+IntroA scales well across all programs but it does so by sacrificing
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Fig. 3. Precision and cost comparisons of among selective object-sensitive class. We purposely made an

exception in the case of S2objH+IntroB on jython benchmark, which is marked as timeout in Table 2, to

provide readers broader performance spectrum.

the precision significantly. On the other hand, S2objH+IntroB improves the precision but it is at the
expense of the scalability. For chart, S2objH+IntroB even requires more time than S2objHwhile sacri-
ficing the precision. Indeed, our analysis (S2objH+Data) significantly outperforms S2objH+IntroA and
S2objH+IntroB in both precision and cost on the five test programs (eclipse, xalan, chart, bloat,
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Table 3. Statistics on the number of method invocations selected for context-sensitivity. Although our

approach selects method definitions, not method invocations, we present the numbers for the final, selected

invocations, in order to compare with the introspective analyses.

Benchmarks Total Invos.
S2objH+IntroA S2objH+IntroB S2objH+Data(Ours)

Depth-2 % Depth-2 % Depth-1 % Depth-2 %

eclipse 105,045 100,046 95.2 105,045 100.0 11,002 10.5 13,851 13.2
chart 232,794 226,101 97.1 231,129 99.3 32,831 14.1 26,319 11.3
bloat 112,450 100,730 89.6 112,146 99.7 11,030 9.8 16,092 14.3
xalan 211,997 205,430 96.9 211,993 100.0 27,937 13.2 22,695 10.7
jython 232,420 215,078 92.5 230,907 99.3 28,572 12.3 23,975 10.3

Avg. 178,941 169,477 94.3 178,244 99.7 22,274 12.0 20,586 12.0

and jython). Our approach shows similar performance improvements for object-sensitivity and
type-sensitivity as well (Table 2).

Table 3 shows that our approach is very accurate in identifying methods that would benefit from
context-sensitivity. Table 3 compares the number of method invocations selected by our approach
and introspective analyses. Our approach chooses 12% of total method invocations on average for
both context depths. On the other hand, introspective analyses A and B choose 94.3% and 99.7% of
invocations, respectively.2 Note that our analysis is more precise than introspective analyses, even
though we choose much smaller sets of method invocations for context-sensitivity.

Generalization. The learned heuristics were generalized well to unseen programs, even from
small programs to large programs. Table 4 and 5 show the performance of the learned heuristic for
selective object-sensitivity on the training and test programs. The tables compare three analyses,
context-insensitive, S2objH, and S2objH+Data, using two prime metrics, a number of may-fail casts
and analysis time. We define two quality metrics, qualityprecision and qualitycost , to illustrate how
our approach achieves desirable performance. For both definitions, higher values are better:

qualityprecision =
|unprovenInsens | − |unprovenS2objH+Data |

|unprovenInsens | − |unprovenS2objH |
× 100

qualitycost =
costS2objH − costS2objH+Data

costS2objH − costInsens
× 100.

The results show that our approach achieves similar precision gains on both cases. Our approach
shows much better scalability gains on the (large) test programs.

Sensitivity to Atomic Features. As described in Section 3.6, we performed experiments without
specific signature features #6 through #10. In total, we used 20 features (5 signature features and 15
statement features). The results are presented in Table 6.
Without specific features, our algorithm failed to find a cost-effective heuristic. Exclusion of

specific features increased the analysis precision slightly, because the resulting heuristic selects
more methods for context-sensitivity. For instance, 50.6% of methods were chosen for 2-object-
sensitivity by the heuristic learned without specific features, while 10.6% of methods were chosen
with those features. However, the analysis cost increased substantially and timeout occurred for

2 Table 3 shows statistics only for selected method invocations. Introspective analyses also choose the set of heap allocations

that will receive context-sensitivity.
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Table 4. Learning performance on training and validation sets

Benchmarks
Context-insensitive S2objH S2objH+Data(Ours)

may-fail casts time(s) may-fail casts time(s) may-fail casts quality time(s) quality

antlr 992 35 360 94 505 77% 48 78%

luindex 734 27 229 48 286 89% 31 81%

lusearch 844 21 231 73 294 90% 24 94%

pmd 1,263 44 585 73 655 90% 50 79%

hsqldb 1,662 42 timeout timeout 1,064 N/A 43 N/A

Total 5,495 169 1,405+ 288+ 2,804 86% 196 83%

Table 5. Learning performance on testing set

Benchmarks
Context-insensitive S2objH S2objH+Data(Ours)

may-fail casts time(s) may-fail casts time(s) may-fail casts quality time(s) quality

chart 1,810 34 757 196 922 84% 34 100%

bloat 1,924 22 1,125 2,184 1,232 87% 30 100%

eclipse 1,139 18 456 79 596 80% 23 92%

xalan 1,182 29 447 414 538 88% 35 98%

jython 2,234 73 timeout timeout 1,722 N/A 105 N/A

Total 8,289 176 2,785+ 2,873+ 5,010 85% 227 97%

Table 6. Performance of our approach (S2objH + Data) without signature features #6 through #10.

eclipse chart bloat xalan jython

poly v-calls 1,043 1,408 1,487 1,554 -
reachable mthds 7,948 11,365 8,502 9,124 -
may fail casts 543 856 1,195 491 -
call-graph-edges 38,555 52,582 53,983 45,412 -
analysis time(s) 59 105 66 273 -

jython. The results show that inclusion of specific features makes the analysis much more efficient
without significant trade-off on precision.

4.2 Adequacy of Our Learning Approach

In this subsection, we motivate our choice of the disjunctive model by comparing the performance
of the non-disjunctive model used in prior work [Oh et al. 2015]. The comparison is done for
selective object-sensitivity (S2objH ).

The idea of the previous method [Oh et al. 2015] is to compute the score of each program element
by a linear combination of the feature vector and a real-valued parameter vector, and to choose a
certain number of top scorers. Learning the vector of real numbers is formulated as an optimization
problem and is solved using Bayesian optimization. To use this learning algorithm in our setting,
we applied the algorithm [Oh et al. 2015] twice, one for selecting the set of methods that require the
depth-2 context-sensitivity and the other for the depth-1 context-sensitivity. All the other methods
are analyzed context-insensitively. We used 24-hour time budget for Bayesian optimization, giving
the same amount of time required by our learning algorithm.We chose the same number of methods
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Table 7. Performance comparison between disjunctive and non-disjunctive models.

Benchmarks
Non-disjunctive Disjunctive(Ours)

may-fail casts time(s) may-fail casts time(s)

eclipse 946 25 596 21
chart 1,569 48 937 33
bloat 1,771 46 1,232 27
xalan 996 42 539 33
jython 2069 346 1,738 104

Total 7,352 346 5,042 218

as our approach; we gave depth-2 to 10.6% of the methods and depth-1 to 10.9%. Also, we used the
same set of atomic features and benchmark programs.

Table 7 compares the performance. The performance of the analysis learned by the linear learning
algorithm is inferior to ours in both precision and cost. The non-disjunctive approach produces
1.5x more may-fail casts and takes 1.5x more time than ours.

Themain reason is the non-disjunctive model fails to capture complex context-selection heuristics
due to its limited expressiveness. A delicate selection of the methods to apply context-sensitivity is
a key to both precision and cost in points-to analysis for Java. For example, consider the following
boolean formula that our learning algorithm has inferred to describe the methods that require
selective 1-object-sensitivity:

(1 ∧ 2 ∧ ¬3 ∧ ¬6 ∧ ¬7 ∧ ¬8 ∧ · · · ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25)∨

(¬1 ∧ ¬2 ∧ 8 ∧ 5 ∧ ¬9 ∧ 11 ∧ 12 ∧ · · · ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25)∨

(¬3 ∧ ¬4 ∧ ¬7 ∧ ¬8 ∧ ¬9 ∧ 10 ∧ 11 ∧ · · · ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25)

The linear model cannot express such a feature. For example, the above formula shows that the
underlined atomic features 1, 2, and 8 are used as in both positive and negative forms in different
clauses. Non-disjunctive model cannot capture such mixed signals in different contexts due to its
inherent limitations.

4.3 Learned Features

The features learned for each analysis are presented in Appendix B. We discuss some interesting
findings from the learned features.

First, we observed that our approach produces similar features for similar context-abstractions.
For instance, the learned boolean formulas for depth-2 are the same for all object-based context-
sensitivities:

f2 for S2objH+Data : 1 ∧ ¬3 ∧ ¬6 ∧ 8 ∧ ¬9 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ · · · ∧ ¬25

f2 for 2objH+Data : 1 ∧ ¬3 ∧ ¬6 ∧ 8 ∧ ¬9 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ · · · ∧ ¬25

f2 for 2typeH+Data : 1 ∧ ¬3 ∧ ¬6 ∧ 8 ∧ ¬9 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ · · · ∧ ¬25

f2 for call-site-sensitivity : 1 ∧ ¬6 ∧ ¬7 ∧ 11 ∧ 12 ∧ 13 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ · · · ∧ ¬25

Note that the object-based context-sensitive analyses (selective object-sensitivity, object-sensitivity,
and type-sensitivity) share the same formula (f2) for the depth-2 context-sensitivity. We conjecture
that these analyses construct the calling-contexts using a heap context when their context-depth
goes beyond two. Since the three abstractions use similar definitions of the heap contexts, precision
gains from the heap context information are also similar. On the other hand, we obtained a
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completely different formula for call-site-sensitivity, which uses different heap abstraction from
other object-based sensitivities.3

Another unexpected observation was that the learned formulas have orders according to the
theoretical orders of the analysis precision. For example, our learning algorithm produced depth-1
formulas (f1) for object-sensitivity and type-sensitivity as follows:

(1 ∧ 2 ∧ ¬3 ∧ ¬6 ∧ ¬7 ∧ ¬8 ∧ ¬9 ∧ ¬16 ∧ · · · ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25)∨

f1 for 2objH+Data : (¬1 ∧ ¬2 ∧ 8 ∧ 5 ∧ ¬9 ∧ 11 ∧ 12 ∧ · · · ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25)∨

(¬3 ∧ ¬4 ∧ ¬7 ∧ ¬8 ∧ ¬9 ∧ 10 ∧ 11 ∧ · · · ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25)

f1 for 2typeH+Data : 1 ∧ 2 ∧ ¬3 ∧ ¬6 ∧ ¬7 ∧ ¬8 ∧ ¬9 ∧ ¬15 ∧ ¬16 ∧ · · · ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25

Note that the formula f1 for object-sensitivity is logically more general than that for type-sensitivity,
as boldfaced clause in f1 for 2typeH+Data is subsumed by the boldfaced clause in f1 for 2objH+Data.
Therefore, f1 for 2objH+Data describes a superset of the methods described by f1 for 2typeH+Data.
Theoretically, since object-sensitivity is more precise than type-sensitivity, the set of methods that
benefit from object-sensitivity must be a superset of the methods that benefit from type-sensitivity.
Interestingly, our learning algorithm automatically discovered this fact from data.

Lastly, we spotted that some atomic features are frequently used as negative forms. Breakpoint(16),
EnterMonitor(17), ExitMonitor(18), Lookup(21), Nop(22), and Ret(23) statements rarely appear in
the programs. Therefore, conjoining a formula with the negation of these features would make
little difference. Methods that return the void type deserve shallower context depths because they
are less likely to jeopardize points-to analysis than ones who return objects. We also found that
some control-flow features also frequently appear in negated forms.

4.4 Threats to Validity

• Benchmarks: Our experimental evaluation were conducted on the DaCapo benchmark, but
the DaCapo benchmark may not be a reputable material for machine learning purposes
although it does for points-to analysis community.
• Generality: The DaCapo benchmark may not represent general Java programs as it is a
collection of specific types of programs, comprising mostly compilers and interpreters. In
experiments, we also assumed that a heuristic learned from smaller programs is likely to
work well for larger programs, which may not be true in other circumstances.
• Features: We evaluated our approach with a fixed set of atomic features: signature and
statement features. Different set of atomic features are likely to produce different results.

5 RELATED WORK

Context-sensitive points-to analysis has a vast amount of past literature, e.g., [Agesen 1994; Chat-
terjee et al. 1999; Grove et al. 1997; Hind 2001; Lhoták and Hendren 2006, 2008; Liang and Harrold
1999; Liang et al. 2005; Milanova et al. 2005; Ruf 1995, 2000; Wilson and Lam 1995]. In this section,
we discuss prior works that are closely related to ours.

Tuning Context-Sensitivity in Points-to Analysis. Most of the existing techniques for tun-
ing context-sensitivity in points-to analysis are traditional rule-based techniques [Kastrinis and
Smaragdakis 2013a; Oh et al. 2014; Smaragdakis et al. 2014; Tripp et al. 2009]. They selectively
apply context-sensitivity based on some manually-designed syntactic or semantic features of the
program. For instance, in the approach by Smaragdakis et al. [2014], a cheap pre-analysis is used
to identify when and where context-sensitivity would fail, and then the main analysis applies

3Although we do not discuss the performance of our approach for call-site-sensitivity since call-site-sensitivity is less

important than others in points-to analysis for Java, we also evaluated the analysis and obtained similar performance

improvements as in others.
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context-sensitivity selectively based on the pre-analysis results and heuristic rules. Although this
work provides useful insights about context-sensitivity and provides good heuristics, the resulting
analyses are still not completely satisfactory. We believe the main reason is that those rules are
manually-designed by analysis designers, which is likely to be suboptimal and unstable. The goal
of this paper is to overcome the existing limitations by automating the process of generating such
heuristic rules.

The recent technique by Tan et al. [2016] is orthogonal to our approach. Recently, Tan et al. [2016]
proposed a technique to improve the precision of k-context-sensitive points-to analysis. The idea is
to use k context slots with more informative elements even if they are located beyond the most
recent k contexts. The authors identify such good elements by running a cheap pre-analysis using
dependency graph among object allocations. As a result, for a given context-depth k , the resulting
analysis is at least as precise as the conventional k-context-sensitive analysis. Our approach differs
from this work as we focus on balancing precision and cost of an existing points-to analysis, so
both approaches can be combined.

Data-Driven Program Analysis. Our data-driven points-to analysis improves the state-of-the-
art data-driven program analysis in several aspects. Recently, a number of techniques for data-driven
program analysis were proposed [Cha et al. 2016; Heo et al. 2016, 2017; Oh et al. 2015]. In this
approach, program analysis is designed with parameterized heuristic rules, and their parameter
values are found automatically from data through learning algorithms. Compared to prior works
on data-driven program analysis, our work provides two novel contributions. First, we propose
a new machine-learning model that is able to describe disjunctive properties of programs with
boolean formulas. On the other hand, existing works [Cha et al. 2016; Oh et al. 2015] rely on simple
linear models that cannot express disjunctive properties, or use off-the-shelf nonlinear models
(e.g., decision trees) that require labeled data [Heo et al. 2016, 2017]. Second, we present a new
algorithm that efficiently learns good parameters of our boolean-formula model. The use of more
powerful model and learning algorithm enables us not only to solve the problem of describing
complex context-selection heuristic rules precisely (Section 4.2) but also to make our approach less
susceptible to the qualities of atomic features (Section 3.6).

The data-driven approach by Chae et al. [2017] deals with different problems in different contexts.
While this paper aims to develop new learning model and algorithm suitable for context-sensitive
points-to analysis for Java, Chae et al. [2017] aim to automatically generate features that are used
for learning flow-sensitivity and variable clustering in relational analysis for C. The techniques of
both papers could be combined but doing so requires to solve nontrivial problems. For example, it
would be possible to replace the manually-designed features used in this paper with automatically
generated features by using the technique by Chae et al. [2017]. This combination, however, is
nontrivial to achieve because both approaches target substantially different languages (C vs. Java),
use different settings for parametric analysis (program-part-based vs. query-based), and Chae
et al. [2017] focus on program analyses whose parameters can be effectively found within a single
procedure (e.g. flow-sensitivity and variable clustering) and its application to interprocedural setting
(e.g. context-sensitivity) remains to be seen.

Parametric Program Analysis. The techniques in this paper differ from prior parametric
program analyses [Liang et al. 2011; Oh et al. 2014; Zhang et al. 2014]. For instance, Zhang et al.
[2014] proposed a CEGAR-based technique for context-sensitive points-to analysis for Java. They
use CEGAR to find abstractions that only contain relevant program elements for proving all points-
to queries in target programs. Although this approach guarantees that all queries provable by
applying context-sensitivity are eventually resolved, the technique requires to iteratively analyze
the programmultiple times, which might be impractical for large programs (e.g., jython) in practice.
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Liang et al. [2011] suggested an approach that finds minimal context-sensitivity of points-to analysis.
However, they do not provide how to find the minimal abstractions before running the analysis. Oh
et al. [2014] proposed a method that runs a pre-analysis to estimate the impact of context-sensitivity
on the main analysis. The idea has been presented mainly for numeric analysis (e.g., using the
interval and octagon domains), and the method requires the analysis designers to come up with
a right abstraction for pre-analysis. For instance, a sign analysis that distinguishes non-negative
integers is shown to be effective for interval analysis [Oh et al. 2014]. However, it is not trivial to
design an appropriate pre-analysis for points-to analysis.

Demand-driven Points-to Analysis. Demand-driven points-to analyses [Guyer and Lin 2003;
Heintze and Tardieu 2001; Sridharan and Bodík 2006; Sridharan et al. 2005] solve a scalability issue
of points-to analysis by concentrating on a fixed set of queries. For a given program and a query in
it, this technique selectively applies costly but precise analysis only to those who contribute to
proving the query. Our technique differs from this approach as we do not target a specific query but
try to capture general features of methods that contribute to maximizing the number of provable
queries in programs.

6 CONCLUSION

In this paper, we showed that data-driven approach is a promising way of developing cost-effective
context-sensitive points-to analysis. Our approach uses a heuristic rule parameterized by boolean
formulas that are able to express complex, in particular disjunctive, properties of methods. The
parameters (i.e., boolean formulas) of the heuristic are learned from codebases through a carefully
designed learning algorithm. We have implemented this approach in Doop, and applied it to
three representative context-sensitive analyses for Java: object-sensitivity, selective hybrid object-
sensitivity, and type-sensitivity. Experimental results confirm that points-to analysis with the
learned heuristic significantly outperforms the existing state-of-the-art analyses with manually
designed heuristic rules. We believe this work provides a starting point for a shift from traditional
rule-based points-to analysis to data-driven approaches.

A PROOF OF THEOREM 3.4

Let Π = ⟨f1, f2, . . . , fk ⟩ be the output of our learning algorithm. Obviously, Π meets the precision
constraint ∑

P ∈P |proved(FP (HΠ(P)))|∑
P ∈P |proved(FP (k))|

≥ γ

because f1 becomes a solution of Ψ1 only if the condition above is true.
Next, we show that there exists no solution smaller than Π. Suppose Π′ = ⟨f ′1 , f

′
2 , . . . , f

′
k
⟩ is a

parameter that meets the precision constraint and Π
′ is smaller than Π:

∀P ∈ P. HΠ′(P) ⊑ HΠ(P). (3)

Our goal is to show that the following claim holds:

∀P ∈ P. HΠ′(P) = HΠ(P). (4)

We show the claim by proving the more general statement:

∀i ∈ [1,k]. ∀P ∈ P. HΠ
′
i
(P) = HΠi

(P) (5)

where
Πi = ⟨true, . . . , true, fi , fi+1, . . . , fk ⟩

Π
′
i = ⟨true, . . . , true, f

′
i , f

′
i+1, . . . , f

′
k
⟩
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The claim (4) is a special case of (5) when i = 1. We prove (5) by induction on i in decreasing order.
The proof uses the following fact

∀i ∈ [1,k]. ∀P ∈ P. HΠ
′
i
(P) ⊑ HΠi

(P) (6)

which is derived from (3) and the definition ofH .

• (Base case) When i = k , we need to prove that

∀P ∈ P. HΠ
′
k
(P) = HΠk

(P).

From HΠ′(P) ⊑ HΠ
′
k
(P) for all P and the monotonicity of the analysis (Definition 3.1), we

have

∀P ∈ P.proved(FP (HΠ′(P))) ⊆ proved(FP (HΠ
′
k
(P))). (7)

From the assumption
∑
P∈P |proved(FP (HΠ′ (P ))) |∑

P∈P |proved(FP (k)) |
≥ γ and (7), we have

∑
P ∈P |proved(FP (HΠ

′
k
(P)))|

∑
P ∈P |proved(FP (k))|

≥ γ . (8)

From (6), (8), Definition 3.3, and the assumption that fk is a minimal solution of the problem
Ψk , we have

∀P ∈ P.HΠ
′
k
(P) = HΠk

(P).

• (Inductive case) When i = j. The induction hypothesis is as follows:

∀P ∈ P. HΠ
′
j
(P) = HΠj

(P).

Using the hypothesis, we would like to prove that

∀P ∈ P. HΠ
′
j−1
(P) = HΠj−1

(P).

Let Π′′j−1 = ⟨true, . . . , true, f
′
j−1, fj , . . . , fk ⟩. Since we assume ∀P ∈ P.HΠj

(P) = HΠ
′
j
(P) (I.H.),

we have

∀P ∈ P.HΠ
′′
j−1
(P) = HΠ

′
j−1
(P). (9)

FromHΠ′(P) ⊑ HΠ
′
j−1
(P) for all P and the monotonicity of the analysis(Definition 3.1), we

have

∀P ∈ P.proved(FP (HΠ′(P))) ⊆ proved(FP (HΠ
′
j−1
(P))). (10)

From (10) and the assumption
∑
P∈P |proved(FP (HΠ′ (P ))) |∑

P∈P |proved(FP (k)) |
≥ γ , we have

∑
P ∈P |proved(FP (HΠ

′
j−1
(P)))|

∑
P ∈P |proved(FP (k))|

≥ γ . (11)

From (9) and (11), we have
∑

P ∈P |proved(FP (HΠ
′′
j−1
(P)))|

∑
P ∈P |proved(FP (k))|

≥ γ . (12)

From (6) and (9), we have

∀P ∈ P.HΠ
′′
j−1
(P) ⊑ HΠj−1

(P). (13)

From (12), (13), Definition 3.3, and the assumption that fj−1 is a minimal solution of the
problem Ψk , we have

∀P ∈ P.HΠ
′′
j−1
(P) = HΠj−1

(P). (14)

From (14), (9), we conclude

∀P ∈ P.HΠj−1
(P) = HΠ

′
j−1
(P).
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B LEARNED BOOLEAN FORMULAS

We list the boolean formulas learned by our approach. The numbers in the formulas represent the
atomic feature in Tables 1. The formulas for each analysis and context depth are as follows. Table 8
presents them by and-or tables.

• Selective object-sensitivity:
ś Depth-2 formula (f2):

1 ∧ ¬3 ∧ ¬6 ∧ 8 ∧ ¬9 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25

ś Depth-1 formula (f1):

(1 ∧ ¬3 ∧ ¬4 ∧ ¬7 ∧ ¬8 ∧ 6 ∧ ¬9 ∧ ¬15 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25)∨

(¬3 ∧ ¬4 ∧ ¬7 ∧ ¬8 ∧ ¬9 ∧ 10 ∧ 11 ∧ 12 ∧ 13 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24∧

¬25) ∨ (¬3 ∧ ¬9 ∧ 13 ∧ 14 ∧ 15 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25)∨

(1 ∧ 2 ∧ ¬3 ∧ 4 ∧ ¬5 ∧ ¬6 ∧ ¬7 ∧ ¬8 ∧ ¬9 ∧ ¬10 ∧ ¬13 ∧ ¬15 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22

∧¬23 ∧ ¬24 ∧ ¬25)

• Object-sensitivity:
ś Depth-2 formula (f2):

1 ∧ ¬3 ∧ ¬6 ∧ 8 ∧ ¬9 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25

ś Depth-1 formula (f1):

(1 ∧ 2 ∧ ¬3 ∧ ¬6 ∧ ¬7 ∧ ¬8 ∧ ¬9 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25)∨

(¬1 ∧ ¬2 ∧ 5 ∧ 8 ∧ ¬9 ∧ 11 ∧ 12 ∧ ¬14 ∧ ¬15 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24∧

¬25) ∨ (¬3 ∧ ¬4 ∧ ¬7 ∧ ¬8 ∧ ¬9 ∧ 10 ∧ 11 ∧ 12 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23∧

¬24 ∧ ¬25)

• Type-sensitivity:
ś Depth-2 formula (f2):

1 ∧ ¬3 ∧ ¬6 ∧ 8 ∧ ¬9 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25

ś Depth-1 formula (f1):

1 ∧ 2 ∧ ¬3 ∧ ¬6 ∧ ¬7 ∧ ¬8 ∧ ¬9 ∧ ¬15 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25

• Call-site-sensitivity:
ś Depth-2 formula (f2):

1 ∧ ¬6 ∧ ¬7 ∧ 11 ∧ 12 ∧ 13 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25

ś Depth-1 formula (f1):

(1 ∧ 2 ∧ ¬7 ∧ ¬16 ∧ ¬17 ∧ ¬18 ∧ ¬19 ∧ ¬20 ∧ ¬21 ∧ ¬22 ∧ ¬23 ∧ ¬24 ∧ ¬25)
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Table 8. AND-OR table of learned boolean formulas

O R

1 łjava" T T T T F T T T T T
2 łlang" T T F T T
3 łsun" F F F F F F F F F F
4 ł()" F F T F
5 łvoid" F T
6 łsecurity" T F F F F F F F
7 łint" F F F F F F F F
8 łutil" F F F T F T F T F T
9 łString" F F F F F F F F F F F
10 łinit" T F T
11 AssignStmt T T T T

A 12 IdentityStmt T T T T
N 13 InvokeStmt T T F T
D 14 ReturnStmt T F

15 ThrowStmt F T F F F
16 BreakpointStmt F F F F F F F F F F F F F
17 EnterMonitorStmt F F F F F F F F F F F F F
18 ExitMonitorStmt F F F F F F F F F F F F F
19 GotoStmt F F F F F F F F F F F F F
20 IfStmt F F F F F F F F F F F F F
21 LookupStmt F F F F F F F F F F F F F
22 NopStmt F F F F F F F F F F F F F
23 RetStmt F F F F F F F F F F F F F
24 ReturnVoidStmt F F F F F F F F F F F F F
25 TableSwitchStmt F F F F F F F F F F F F F

f1 f2 f1 f2 f1 f2 f1 f2

S2objH+Data 2objH+Data
2typeH

+Data

2callH

+Data
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