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PL4XGL: A Programming Language Approach to Explainable
Graph Learning

MINSEOIK JEON, Kurea Universily, Republic of Korea
'” IYEOK PARK, Korea TTnive rxily, Republic o Korea
HAKJOO OH, Korea University, Repnblic of Korea

Tn thix arlicle, we present a new, Bainguage-tased approach Lo explainable graph Jearning. Though praph necral
networles (GNNs) have shown impressive performance in various graph learning tesks, they have severe
limitations in explainability. hinderng their use in decizion-critical applications. Tn addreas these limitations,
several GNN explunulion lechnigues have been proposed using o post-hoc explunulion spproach proveling
subgraphs as explanations for classification results. Unfortunately. however. they have two fundamental
drawharks in terms of 1) additional explanation ensts and 2) the enrreetmess of the explanations. This paper
aims to address these problems by developing & new graph-leaming method based on programaming language
lr:'lln:uluc.c Our krey ez o lwo-lold: 1) dr.\ig.".:ut; # t:m[ah drxt:ripliml ]anglmsk [GDL) e capluin Lhe claxsali-
cation results and 2) developing a new GDL - besed interpretable clessification model instcad of GNN -besed
models. Our graph-leaming model. called PLAXGL, consists of a set of randidate GD1. programs with [ahels
and qualily scores, For a given graph componenl, il searches the best GDL program desenbing Lhe compunenl
and provides the corresponding label as the classification result and the program as the explanation. In our
approach, learning from data 12 formulated as a program-symthesis prablem, and we present tp-down and
boltoin-up algorilhuns [or synthesizing GDL programns [rom waining dule, Evalualion using widely-used
datasets demonstrates that PLAXGL produces hizh-quality explanations that outperfonn those produced by
Ihe slale-al=The-arl GNN explanzlion lechnigue, SCRGRAPHX. We also show Thal PTAXGL achieves compelilive
classificetion accurecy comparable to popular GNN models.

CCS Concepts: » Software and its cngincering — Domain specific languages.
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1 INTRODUCTION

Learning on praphs has a wide variely of applications. Many sipnificanl real-world problems in
diverse domains can be formulated as graph learning problems: healthcare [Zitnik et al. 2018], drug
discovery |Li et al. 2022; Tin et al. 2022; Sun b al. 2019; Xiong ot al. 2021, frawd detection [Rao
et al. 2021), and program repair [Dinella et al. 2020]. In such decision-critical applications, users
highly demand rcliable explanations that clucidate the reasons for the classifications beyond
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“GNNs have emerged as a cornerstone in graph learning,

demonstrating exceptional performance in various applications.”
-Yuan et al. [2023]

Semi- Superwsed Classmcatlon with Graph Convolutional
2( 153| Q1) — Access Paper: View a PDF of the paper title
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A Formal Language-Based Model for Graph Node Classification
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(2021.01)

Anonymous Authors'

Abstract

We investigale a new approach to graph node clas-
sification. Our innovation, which departs signifi-
cantly from dominant approaches such as Graph
Neural Networks (GNNs), 1s that 1ts machine-
learning model consists of a formal language and
therefore is interpretable by construction. To this
end, our node classification technique, JARGON,
1s based on two 1deas. First, we present a domain-
specific language that can express graph struc-
tures and node features. Second, we present a
learning algorithm for our model that includes
sentences of the language as learnable parameters.
Evaluation using widely-used datasets shows that
JARGON produces simple and insightful models
that are as accurate as state-of-the-art GNNSs.

ICML HIS
(2022.02)

planations. This limitation is particularly problematic in
decision-critical applications where model’s transparency
and interpretability are of the greatest importance (Doshi-
Velez & Kim, 2017). To relieve this shortcoming, GNNs
can be used with post-hoc explanation methods (Ying et al.,
2019; Luo et al., 2020; Vu & Thai, 2020; Yuan et al., 2021),
but explaining black-box GNN models by a separate process
is fundamentally challenging and several problems remain
unsolved until recently (Yuan et al., 2020b).

This Work. Tn this paper, we explore a radically different
approach to machine learning on graphs. The most distinc-
tive feature of our approach, which departs significantly
from the dominant GNN approaches, is the use of a formal
language (o describe graphs, which allows our model to be
inherently interpretable without ambiguity. Yet, our model
can make accurate predictions as the language is expressive
enough to capture complex structural properties of graphs.
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“The major concern is the experimental study. Only | e 0000 ho81
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Abstract

We investigale a new approach to graph node classification. Our innovation, which
departs significantly from dominant approaches such as Graph Neural Networks
(GNNSs), is that its machine-learning model consists of a formal language and there-
fore 1s interpretable by construction. To this end, our node classification technique,
called JARGON, works with two ideas. First, we present a domain-specific language
that can express graph structures and node features. Second, we offer a learning
algorithm for our model that includes sentences of the language as learnable param-
eters. Evaluation using widely-used datasets shows that JARGON produces simple
and insightful models that are as accurate as representative GNNGs.
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ey “How easy is it to design a different domain
specific language for other graph

Abstract

problems such as link-prediction’”

We investigale a new approach to graph node classification. Our innovation, which
departs significantly from dominant approaches such as Graph Neural Networks
(GNNSs), is that its machine-learning model consists of a formal language and there-
fore is interpretable by construction. To this end, our node classification technique,
called JARGON, works with two ideas. First, we present a domain-specific language
that can express graph structures and node features. Second, we offer a learning
algorithm for our model that includes sentences of the language as learnable param-
eters. Evaluation using widely-used datasets shows that JARGON produces simple
and insightful models that are as accurate as representative GNNGs.
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A Programming Language Approach to Graph Learning

ANONYMOUS AUTHOR(S)

In this article, we present a novel, language-based approach to graph learning. The main feature, which departs
significantly from the dominant approach based on Graph Neural Networks (GNNs), is that our machine-
learning model consists of a formal language and is therefore interpretable by construction. Our approach,
called JARGON, is built on two techniques widely known in the programming languages community. First, we
use abstract interpretation to design a language describing abstract graphs whose semantics is a set of concrete
graphs; “executing” an abstract graph performs classification based on the concrete graphs that it denotes.
Second, we cast learning as a program synthesis problem, and present top-down and bottom-up algorithms for
learning abstract graphs from training data. Evaluation using widelv-used datasets shows that JARGON produces
models that are simple and insightful, yet the learned models can compete with representative GNNs. For the
real-world MUTAG dataset for graph classification, for example, our learning algorithm produced a small
model with 22 easy-to-interpret abstract graphs while achieving a classification accuracy of 95% on unseen
data, outperforming well-known GNN models such as GIN (Graph Isomorphism Network).

' “We consider three types of classification tasks
on graphs: node, edge, graph classification.”

“In the graph classification dataset MUTAG,
Jargon shows the best accuracy”

CCS Concepts: « Software and its engineering — Domain specific languages; « Computing methodologies
— Supervised learning.

Additional Key Words and Phrases: Graph Learning, Formal Language, Program Synthesis
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MUTAG BBBP BACE Cora Citeseer Pubmed Texas Cornell Wisconsin
GNN 0.2 |.0 |.0 0.4 0.4 0.6 0.4 0.3 04

Ours 2.3 34.3 60.6 61.6 245.) 2702.9 5.0 5.0 8.0
61xP 34x4P 60xT 154x? 613x1 4504xP 12x9  16x% 20x 4

“The main concern | have is the scalability of the approach. Training is too expensive.”

“l fear that scalability will inherently be a problem with the current approach.”
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PL4XGL: A Programming Language Approach
to Explainable Graph Learning

“WVe design a graph description language, called GDL, as a
declarative programming language in which a program
describes a set of nodes, edges, or graphs.”

ANONYMOUS AUTHORC(S)

In this article, we present a new, language-based approach to explainable graph learning. Though graph
neural networks (GNNs) have shown impressive performance in various graph learning tasks, they have
severe limitations in explainability, hindering their use in decision-critical applications. Recently, several
GNN explanalion lechniques have been proposed using a post-hoc explanation approach with subgraphs as
explanations for classification results. Unfortunately, however, they have fundamental drawbacks in terms of
1) additional cost, 2) correctness, and 3) generality of cxplanations. This papcr aims to address these problems
by developing a new graph-learning method based on programming language techniques. Our key idea
is two-fold: 1) designing a graph description language (GDL) to explain the classification results instead of
subgraphs and 2) developing a new GDL-based interpretable classification model instead of GNN-based models.
Our graph-learning model, called PL4XGL, consists of a set of candidate GDL programs with labels and
quality scores. For a given graph component, it searches the best applicable GDL program and provides the
corresponding label as the classification result and the program as the explanation. In our approach, learning
from data is formulated as a program-synthesis problem, and we present top-down and bottom-up algorithms
tor synthesizing GDL programs from training data. Evaluation using widely-used datasets demonstrates that
PL4XGL produces high-quality explanations that outperform those produced by the state-of-the-art GNN
explanation technique, SUBGRAPHX. Furthermore, we show that PL4XGL has more accurate classification
results with an endurable learning cost than popular GNN models.

“PL4XGL outperforms SubgraphX in terms of Fidelity for
all datasets, achieving the optimal score of 0.0.”

CCS Concepts: « Software and its engineering —> Domain specific languages; - Computing methodologiecs
— Supervised learning.

“PL4XGL eventually outperforms the baseline in terms of the

Additional Key Words and Phrases: Graph Learning, Domain-Specific Language, Program Synthesis accumulated (training + classification + explanation) cost.”

ACM Reference Format:

Anonymous Author(s). 2018. PLAXGL: A Programming Language Approach to Explainable Graph Learning,
In Proceedings of Make sure to enter the correct conference title from your rights confirmation emai (Conference
XX). ACM, New York, NY, USA, 29 pages. https://doi.org/XXXX XXX XXXXXXX

AL A E ICML M| & NIPS X|Z= PLDI M= POPL M| PLDI M=
(2021.01) (2022.02) (2022.05) <«  (2022.11) (2023.07) (2023.11)



A
24

Review #958A Weak reject
Review #958B Strong accept

Review #958C  Weak reject

3L A|Z} ICML M| Z
(2021.01) (2022.02)

NIPS X[
(2022.05)

41

PLDI X|=
(2022.11)

POPL X|&
(2023.07)

PLDI XM=
(2023.11)



A
24

Review #958A Weak reject
Review #958B Strong accept

Review #958C  Weak reject

“It would have been very helpful to have included the
implementation in the initial submission.”
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PL4XGL: A Programming Language Approach to Explainable
Graph Learning

ANONYMOUS AUTHOR(S)

In this article, we present a new, language-based approach to explainable graph learning. Though graph neural
networks (GNNs) have shown impressive performance in various graph learning tasks, they have severe
limitations in explainability, hindering their use in decision-critical applications. To address these limitations,
several GNN explanation techniques have been proposed using a post-hoc explanation approach providing
subgraphs as explanations for classification results. Unfortunately, however, they have two fundamental
drawbacks in terms of 1) additional explanation costs and 2) the correctness of the explanations. This paper
aims to address these problems by developing a new graph-learning method based on programming language
techniques. Our key idea is two-fold: 1) designing a graph description language (GDL) to explain the classifi-
cation results and 2) developing a new GDL-based interpretable classification model instead of GNN-based
models. Our graph-learning model, called PL4XGL, consists of a set of candidate GDL programs with labels
and quality scores. For a given graph component, it searches the best GDL program describing the component
and provides the corresponding label as the classification result and the program as the explanation. In our
approach, learning from data is formulated as a program-synthesis problem, and we present top-down and
bottom-up algorithms for synthesizing GDL programs from training data. Evaluation using widely-used
datasets demonstrates that PL4XGL produces high-quality explanations that outperform those produced by
the state-of-the-art GNN explanation technique, SUBGRAPHX. We also show that PL4XGL achieves competitive
classification accuracy comparable to popular GNN models.
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“PL4XGL is a nice application of synthesis algorithm for
graph learning and explanation. Evaluation is also in favor.
The paper would be a nice addition to the community.
Thanks for the great work!”
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1 INTRODUCTION

Learning on praphs has a wide variely of applications. Many significant real-world problems in
diverse domains can be formulated as graph Jearning problems: healthcare [Zitnil et al. 2013], drug
discavery [Li cLal. 2022; Lin el al. 2022; Sun ctal. 2019; Xiong ot al. 2021, frawd detection [Ruo
et al. 2021], and program repair [Dinella et al. 2020]. In such decision-critical applications, users
highly demand reliable explanations that clucidate the reasons for the classifications beyond
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