

S|

'|O‘|:|- [H X OFQ1771?
’
XDIX}E‘R—FEI |'

24

jod

S|

10[Ct, HEME| REZN?

24

jod

“The End”

S|

10[Ct, HEME| REZN?

“The End”

O

O 0VONOUTRAWN—O

]

of
-

id(v, i){
if (i > 0)
return id(y, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);//A
v2 =id(2,i);//B

Oj| 5| = = 124

T 2= RAS ERY

id | 2| id | 2] id |2
B e
/l
main

g\
4 20 2] id |2
assert (vl = v2);//query —> 8,2] —> 8,2,2]|— -

374 QA 7|gt Bt SE QOF

(3-context sensitivity)

O 0VONOUTRAWN—O

id(v, i){
if (i > 0){
return id(v, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);//A
v2 =id(2,i);//B
assert (vl !=v2);//query

]

Oj| 5| = = 124

8: =1id(2,i);
assert (vl '=v2);//query

'5} E=h =n

Oj| 5| = = 124

K7h Q4 7|

id(v, i){
if (i > 0){
return id(v, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);//A
v2 =id(2,i);//B
assert (vl !=v2);//query

o hWPN—O

o O N

10: }
Of|A| == 124

O 0VONOUTRAWN—O

]

K7h Q4 7|

id(v, i){
if (i > 0){
return id(v, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);//A
v2 =id(2,i);//B
assert (vl !=v2);//query

Oj| 5| = = 124

Call-Site Sensitivity IU(Q,IE{RE’TA;
* The best-known flavor of context sensitivity, which uses call-

sites as contexts.

* A method is analyzed under the context that is a sequence
of the last k call-sites

Partial Context-sensitivity

» The most common way: keep only the top-most k continuations (so-called k-CFA)

KAIST

k= 0:Iignore all contexts, i.e., context-insensitive

* K = o0: keep all contexts, i.e., fully context-sensitive

® The most common way: keep only the top-most k call-
strings (called k-CFA)

* Approach: set an upper bound for length of
contexts, denoted by k

* For call-site sensitivity, each context consists of the last k

e In p“ac'tic,kilsa small number (usually <3)
* Method contexts and heap contexts may use different k
e e.g., k=2 for method contexts, k=1 for heap contexts

(B 7|9/ E : Context Sensitivity Static Analysis Lecture)

“A key part of the appeal of last k-based context abstraction is its
simplicity and universal applicability.”

- A reviewer [expert]

(3-context sensitivity)

13

O 0VONOUTRAWN—O

id(v, i){
if (i > 0){
return id(v, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);
v2 =id(2, i);
assert (vl !=v2);//query

]

Oj| 5| = = 124

= AotA| & A7

Exercise

class S {
Object id(0Object a) { return a; }
Object id2(0Object a) { return id(); }
Iy

class C extends S {
void fun1() {
Object al = new A1();
Object bl = id2(al);
+H}

class D extends S {
void fun2() {
Object a2 = new A2(Q);
Object b2 = id2(a2);
+H}

@ What is the result of 1-call-site-sensitive analysis? -?'-735_.*3.:.*

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 28 /31

t:l - .
—fale

Exercise

class S {
Object id(0Object a) { return a; }
Object id2(0Object a) { return id(); }

Al EL A

} r
class C extends S { p N =
void fun1() { = L.
Object al = new A1(Q);
Object bl = id2(al); 151
}} _ _ ° o o ° I §
I | -call-site sensitivity= 3=

void fun2() {)
Object a2 = new A2();
Object b2 = id2(a2);

iy

@ What is the result of 1-call-site-sensitive analysis?

Hakjoo Oh

October 18, 2022

28 /31

3 A 7|Htetr o= QOF

(3-context sensitivity)

17

id(v, i){
if (i > 0){
return id(v, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);
v2 =id(2, i);
assert (vl !=v2);//query

o hWPN—O

o O N

10: }

Oj| 5| = = 124

Challenge: |
= 7‘._01\ B ﬂ_+_§ ﬁé.* f7ﬂ mOH—HOIE I

19

OFXEr k 7|12 QCF vs T

ZQ 17K 7|Ht @oFo| OFX|St 271 7|Ht QOIHL} H &=

2500

bloat

—
<[1000

00| [

1300 1400 1500 1600 1700 1800 1900

)é})l)k = OI-EI-O‘ 7HA

|_E|:|-—

2000

e 2-ctx &= YHO[M FJ=E HotMo= rﬂgm %té.’

b Y

5 2-cox
..it covers more than two-thirds of the precision advantage of 2objH"

-Smaragdakis et al. [PLDI’ 14]

. 98.8% of the precision of 2obj can be preserved...” |
Li et al. [OOPSLA’ 18] |

“Scaler still attains most of the precision gains of 20bj ...”

f%oo 1460 1500 {
A Li et al. [FSE’ 18]
_I?_Jk-l
— 1"

. — N S S TN — R S 2 $ — N S - - o < TN " N S . - 2 - - N Sanm . > S — - 3 < S o — - & < :
- . S _ R - . S o S o - . S -) _ S8 o A = . el - ' P S _ e A =) _ B = = f
i Qi o — o e NS TS L o - s o e QLo o= o DRy \— o e s o e Qb oS o DRy o e G loars o e S e e <~ o o A o g g = o oy

Z15}7 |

ol &=

ln
4
KO

J

submitted

—>» | Combination | =>

IIIIIIIIII

IIIIIIIIII

Obj2CFA

—

Tunneling

ol=7]| |

| T
e

24

e 2H:FQ |7|H QO HIAS EEOZ OHEY)

lllllllllllllllllllllllll

llllllllllllllllllllllllll

718 K29

(Obiject Sensitivity)

<

X 78t Q9F |
(Call Site Sensitivity) |

= - Sl i S>> Ry -

VS

25

Call graph | Call graph |

1981 2002 2010 2022

Parameterized Object Sensitivity for Points-to
Analysis for Java

ANA MILANOVA

Rensselaer Polytechnic Institute
ATANAS ROUNTEV

Ohio State University

and

BARBARA G. RYDER

Rutgers University

The goal of points-to analysis for Java is to determine the set of objects pointed to by a reference
variable or a reference object field. We present object sensitivity, a new form of context sensitivity
for flow-insensitive points-to analysis for Java. The key idea of our approach is to analyze a method
separately for each of the object names that represent run-time objects on which this method may
be invoked. To ensure flexibility and practicality, we propose a parameterization framework that
allows analysis designers to control the tradeoffs between cost and precision in the object-sensitive
analysis.

Side-effect analysis determines the memory 1 ions that may be modified by the ion ofa
program statement. Def-use analysis identifies pairs of statements that set the value of a memory
location and subsequently use that value. The information computed by such analyses has a wide
variety of uses in compilers and software tools. This work proposes new versions of these analyses
that are based on object: itive poi lysis.

We have impl d two in iations of our d object-sensitive points-to analy-
sis. On a set of 23 Java programs, our experiments show that these analyses have comparable cost
to a context-insensitive points-to analysis for Java which is based on Andersen’s analysis for C. Our
results also show that object itivity signifi ly imp: the precision of side-effect analysis
and call graph construction, compared to (1) context-insensitive analysis, and (2) context-sensitive
points-to analysis that models context using the invoking call site. These experiments demonstrate

that object-sensitive analyses can achieve suk ial precision imp: , while at the same
time r ining efficient and i
A preliminary version of this article appeared in Pr dings of the International S ium on

Software Testing and Analysis (July), 2002, pp. 1-11.

This research was supported in part by National Science Foundation (NSF) grant CCR-9900988.
Author’s addresses: A. Milanova, Department of Computer Science, Rensselaer Polytechnic Insti-
tute, 110 8th Street, Troy, NY 12180; email: mil .rpi.edu; A. Department of Com-
puter Science and Engineering, Ohio State University, 2015 Neil Avenue, Columbus, OH 43210;
email: rountev@cse.ohio-state.edu; B. G. Ryder, Department of Computer Science, Rutgers Univer-
sity, 100 Frelinghuysen Road, Piscataway, NJ 08854; email: ryder@cs.rutgers.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

Gl @ o e o o

Context-sensitive points-to analysis: is it worth it?*

Ondfej Lhoték"? and Laurie Hendren?
olhotak@uwaterloo.ca hendren@sable.mcgill.ca

1 School of Computer Science, University of Waterloo, Waterloo, ON, Canada
2 School of Computer Science, McGill University, Montreal, QC, Canada

Abstract. We present the results of an empirical study evaluating the precision
of subset-based points-to analysis with several variations of context sensitivity on
Java benchmarks of significant size. We compare the use of call site strings as the
context abstraction, object sensitivity, and the BDD-based context-sensitive algo-
rithm proposed by Zhu and Calman, and by Whaley and Lam. Our study includes

lyses that context: itively specialize only pointer variables, as well as ones
that also specialize the heap abstraction. We measure both characteristics of the
points-to sets themselves, as well as effects on the precision of client analyses. To
guide development of efficient analysis implementations, we measure the number
of contexts, the number of distinct contexts, and the number of distinct points-to
sets that arise with each context sensitivity variation. To evaluate precision, we
measure the size of the call graph in terms of methods and edges, the number of
devirtualizable call sites, and the number of casts statically provable to be safe.
The results of our study indicate that object-sensitive analysis implementations are
likely to scale better and more predictably than the other approaches; that object-
sensitive analyses are more precise than comparable variations of the other ap-
proaches; that specializing the heap abstraction improves precision more than ex-
tending the length of context strings; and that the profusion of cycles in Java call
graphs severely reduces precision of analyses that forsake context sensitivity in
cyclic regions.

1 Introduction

Does context sensitivity significantly improve precision of interprocedural analysis of
object-oriented programs? It is often suggested that it could, but lack of scalable imple-
mentations has hindered thorough empirical verification of this intuition.

Of the many context sensitive points-to analyses that have been proposed (e.g. [1,4,
8,11,17-19,25,28-31]), which improve precision the most? Which are most effective for
specific client analyses, and for specific code patterns? For which variations are we likely
to find scalable implementations? Before devoting resources to finding efficient imple-
mentations of specific analyses, we should have empirical answers to these questions.

This study aims to provide these answers. Recent advances in the use of Binary De-
cision Diagrams (BDDs) in program analysis [3, 12,29, 31] have made context sensitive
analysis efficient enough to perform an empirical study on benchmarks of significant size.
Using the JEDD system [14], we have implemented three different families of context-

i — == 3 t T om o i/

Evaluating the Benefits of Context-Sensitive
Points-to Analysis Using a BDD-Based
Implementation

ONDREJ LHOTAK
University of Waterloo
and

LAURIE HENDREN
McGill University

‘We present PApDLE, a framework of BDD-based context-sensitive points-to and call graph analyses
for Java, as well as client analyses that use their results. PADDLE supports several variations of
context- itive 1 , including call site strings and object sensitivity, and context-sensitively
specializes both pointer variables and the heap abstraction. We empirically evaluate the preci-
sion of these context-sensitive analyses on significant Java programs. We find that that object-
sensitive analyses are more precise than comparable variations of the other approaches, and that
specializing the heap abstraction improves precision more than extending the length of context
strings.

Categories and Subject Descriptors: D.3.4 [Progr ing L]: Pro ; D.3.3 [Pro-
ing I]: 1 Constructs and Features

General Terms: Languages, Design, Experimentation, Measurement

Additional Key Words and Phrases: Interprocedural program analysis, context sensitivity, binary
decision diagrams, Java, points-to analysis, call graph construction, cast safety analysis

ACM Reference Format:

Lhotdk, O. and Hendren, L. 2008. Evaluating the benefits of context-sensitive points-to analysis

using a BDD-based implementation. ACM Trans. Softw. Engin. Method. 18, 1, Article 3 (September
2008), 53 pages. DOI = 10.1145/1391984.1391987 http:/doi.acm.org/10.1145/1391984.1391987

This is a revised and extended version of an article which appeared in Proceedings of the 15th
International Conference on Compiler Construction, Lecture Notes in Computer Science, vol. 3923.
Springer, 47-64.

Authors’ addresses: O. Lhoték, D. R. Cheriton School of Computer Science, University of Waterloo,
200 University Avenue West, Waterloo, ON, N2L 3G1, Canada; L. Hendren, School of Com-
puter Science, McGill University, 3480 University Street, Room 318, Montreal, QC, H3A 2A7,
Canada

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

g ato o of th or Drior coocifi

Strictly Declarative Specification of Sophisticated Points-to Analyses

Martin Bravenboer

Department of Computer Science
University of Massachusetts, Amherst
Amberst, MA 01003, USA
martin.bravenboer@acm.org

Abstract

We present the Doop framework for points-to analysis of
Java programs. Doo builds on the idea of specifying pointer
analysis algorithms declaratively, using Datalog: a logic-
based language for defining (recursive) relations. We carry
the declarative approach further than past work by describ-
ing the full end-to-end analysis in Datalog and optimizing
ggressi using a novel i lly targeting
highly recursive Datalog programs.
As aresult, Doop achieves several benefits, including full
der-of- itude imp: in runtime. We compare
Door with Lhoték and Hendren’s PappLE, which defines the
state of the art for context-sensitive analyses. For the exact
same logical points-to definitions (and, quently, identi-
cal precision) Doop is more than 15x faster than PapbLE for
a l-call-site sensitive analysis of the DaCapo benchmarks,
with lower but still substantial speedups for other important
analyses. Additionally, Doop scales to very precise analyses
that are impossible with PappLe and Whaley et al.’s bddbddb,

directly open in past li Finally,

Yannis Smaragdakis

yannis@cs.umass.edu

analyses. It is, thus, not surprising that a wealth of research
has been devoted to efficient and precise pointer analysis
techniques. Context-sensitive analyses are the most common
class of precise points-to analyses. Context sensitive analysis
approaches qualify the analysis facts with a context abstrac-
tion, which captures a static notion of the dynamic context
of a method. Typical contexts include abstractions of method
call-sites (for a call-site sensitive analysis—the traditional
meaning of “context-sensitive”) or receiver objects (for an
object-sensitive analysis).

In this work we present Doop: a general and versatile
points-to analysis framework that makes feasible the most
precise context-sensitive analyses reported in the literature.
Door implements a range of algorithms, including context
i itive, call-site itive, and object itive analyses,
all specified modularly as variations on a common code base.
Compared to the prior state of the art, Doop often achieves

o .

our implementation is modular and can be easily
to analyses with a wide range of characteristics, largely due
to its declarativeness.

Categories and Subject Descriptors F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming
Languages—Program Analysis; D.1.6 [Programming
Techniques]: Logic Programming

General Terms Algorithms, L Per

peed of an ord de for several important
analyses.
The main elements of our approach are the use of the Dat-
"] alog 1 for specifying the program analyses, and the
g

aggressive optimization of the Datalog program. The use of
Datalog for program analysis (both low-level [13,23,29] and
high-level [6,9]) is far from new. Our novel optimization ap-
proach, however, accounts for several orders of magnitude of
performance improvement: unoptimized analyses typically
run over 1000 times more slowly. Generally our optimiza-
tions fit well the approach of handling program facts as a

1. Introduction

Points-to (or pointer) analysis intends to answer the question
“what objects can a program variable point to?” This ques-
tion forms the basis for practically all higher-level program

Permission to ma
classroom useyd

datab: by ifically targeting the indexing scheme and
the i 1 evaluation of Datalog impls i Fur-
thermore, our approach is entirely Datalog based, encoding
declaratively the logic required both for call graph construc-
tion as well as for handling the full semantic complexity
of the Java language (e.g., static initialization, finalization,
reference objects, threads, exceptions, reflection, etc.). This
makes our pointer analysis specifications elegant, modular,
but also efficient and easy to tune. Generally, our work is a

LR

2022

= -
o N
o Ul
o o

2call
750 - .
5

500 -

Analysis time (s)

| obj | call
250 A . .
700 800 900 1000 1100 1200

H alarms

0l
A

1981 2002 2010 2022

1981

Object-Sensitivity

@ The dominant flavor of context-sensitivity for obje
languages.

o It uses object abstractions (i.e. allocation sites) as
qualifying a method's local variables with the alloc
receiver object of the method call.

class A { void m() { return; } }

b = new B();
b.m();

The context of m is the allocation site of b.

Hakjoo Oh AAAG616 2019 Fall, Lecture 8

Object-Sensitivity

(vs. call-site sensitivity)

[program

class S {
Object id(Object a) { return a; }
Object id2(Object a) { return id(a)
}
class C extends S {
void funl() {

Object al = new Al();
Object bl = id2(al); 1-ci
} (1o
fun
class D extends S { fun
void fun2() { id?2
Object a2 = new A2(); id2
Object b2 = id2(a2); id:
} id2
fun
fun
Yannis Smaragdakig

University of Athens

UNIVERSITY

National and Kapodistrian
%, University of Athens

Object-sensitive pointeJ

e Milanova, Rountev, and Ryder. Parameteri:
sensitivity for points-to analysis for Java. AC
Eng. Methodol., 2005.

» Context-sensitive interprocedural pointer analysis
* For context, use stack of receiver objects
* (More next week?)

e Lhotak and Hendren. Context-sensitive poi
worth it? CC 06

 Object-sensitive pointer analysis more precise thg
for Java

e Likely to scale better

Lecture Notes:
Pointer Analysis

15-8190: Program Analysis
Jonathan Aldrich

jonathan.aldrich@cs.cmu.edu

Lecture 9

1 Motivation for Pointer Analysis

In programs with pointers, program analysis can become more d
Consider constant-propagation analysis of the following progra

1: z:=1
2: p:=&z
3: #p:=2
4: printz
In order to analyze this program correctly we must be aw
instruction 3 p points to z. If this information is available we ca
flow function as follows:

fepl=p:=yl(o) =[z— o(y)]lc where must-point-to(j

When we know exactly what a variable z points to, we say tif
must-point-to information, and we can perform a strong update
variable z, because we know with confidence that assigning td
to z. A technicality in the rule is quantifying over all z such
point to z. How is this possible? It is not possible in C or Java;
a language with pass-by-reference, for example C++, it is possilf
names for the same location are in scope.

Of course, it is also possible that we are uncertain to whic}
distinct locations p points. For example:

Pointer Analysis

Yannis Smaragdakis
University of Athens
smaragd@di.uoa.gr

George Balatsouras
University of Athens
gbalats@di.uoa.gr

noew

the essence of knowledge
Boston — Delft

Carnegie
Mellon

University

e ol T £
@ > . — oo o g _ B

2010

the essence of knowledge

1981

Pick Your Contexts Well: Underst}
The Making of a Precise and Scald

Yannis Smaragdakis
Department of Computer Science,

University of

Martin Bravenboe]

LogicBlox Inc.
T Al Dl

Amberst, MA 01003,
and Department of Inforr}
University of Athens, 1578:

yannis@cs.umass.edu—smg

Abstract

Object-sensitivity has emerged
for points-to analysis in object-
tical success, however, object-
instance, for a context depth

mentations deviate significant]]
object-sensitive analysis. The

degrees of freedom, relating t

at every method call and objex
for the analysis design space, af
” ding of object P

Hybrid Conte;

¢

Abstract

Context-sensitive points-to analysis is valuablj
precision with good performance. The standar|
sensitivity are call-site-sensitivity (kCFA) ar)
Combining both flavors of cont

)
sensitive analyses. The resulty
find that past implementations
contexts, to the severe detrimer]
define a “full-object-sensitive”
higher precision, and often pe:
text depth. We also introduce
proximation of object-sensitivil
ity at substantially reduced cos!
makes an unconventional use
are not dynamic types of obje
stead upper bounds on the dyn:
Our results expose the influen
of points-to analysis and demo:
with major impact: It decisivell
a spectrum of analyses that si
times faster than an analogous
ity (comparable to analyses wif
precision (comparable to the b
same context depth).

Categories and Subject Descril
of Programs]: Semantics of H
Analysis

; D.3.1 [Programming L
Theory—Semantics

General Terms Algorithms,

Permission to make digital or hard cop}
classroom use is granted without fee pri
for profit or commercial advantage and
on the first page. To copy otherwise, to
to lists, requires prior specific permissi
POPL’11, January 26-28, 2011, Aust
Copyright © 2011 ACM 978-1-4503-04

but at an infeasibly high cost. We show tha
nation of call-site- and object-sensitivity for
ysis is highly profitable. Namely, by keeping
only when analyzing selected language featy
approximate the precision of an analysis that
at all times. In terms of speed, the selective

kinds of context not only vastly outperforms f
nations but is also faster than a mere object-sef
result holds for a large array of analyses (e.g|
2-object: itive with a context- itive heay

blishing a new set of per isil

Categories and Subject Descriptors F.3.2 [
of Programs): Semantics of Programming L]
Analysis; D.3.4 [Programming Languag
Compilers

General Terms Algorithms, Languages, Per

Keywords points-to analysis; context-s|

sensitivity; type-sensitivity

1. Introduction

Points-to analysis is a static program analysis

puting all objects (typically identified by alloc:
gram variable may point to. The area of poj
its close relative, alias analysis) has been the
search and is among the most standardized an
inter-procedural analyses. The emphasis of po
rithms is on combining fairly precise modeling
with scalability. The challenge is to pick judic|
that will allow satisfactory precision at a reast
more, although increasing precision often leal
totic complexity, this worst-case behavior is r;
actual practice. Instead, techniques that are effd
good precision often also exhibit better averag]
since smaller points-to sets lead to less work.

Making k-Object-Sensitive Pointer Arj

More Precise with Still k-Limitin

Tian Tan', Yue Li', and Jingling Xue®*?

1 School of Computer Sgs

2 Advanced Innovation C

Abstract. Object-sensitivj
abstraction for pointer anal;
k-object-sensitive pointer a
sites (as k context element
call, may end up using son]
ducing a finer partition of t

method call. In this paper,
improving the precision of a]
by still using a k-limiting ¢

allocation sites that are re
Object Allocation Graph (

(e.g., a context-insensitive 4
program and then avoid thd
ysis for the program. BEAN|
precision that is guaranteed}
have implemented BEAN as
two state-of-the-art whole-]
representative clients (may-
nine large Java programs frf
succeeded in making both aj
under each client at only sn

1 Introduction

Pointer analysis, as an enabling|
client applications, including bug
compiler optimisation [6,33], ai
mensions of pointer analysis pred
For C/C++ programs, flow-seng
For object-oriented programs, e|
is known to deliver trackable an|

There are two general appro
oriented programs, call-site-sen:
24, 29] (among others). A k-CFA
call by using a sequence of k cg
site). In contrast, a k-object-sen
k labels with each denoting a n4

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.
PLDI'13, June 16-19, 2013, Seattle, WA, USA.
Copyright © 2013 ACM 978-1-4503-2014-6/13/06. .. §15.00

fragment neither whether
nor to how many objects:
may be remote and unrel
it is not possible to comp
and a call-site-sensitive anf
not even clear whether the
all calls to foo as one cag

Efficient 4
Modeling the He
Tial
School of Cq
Abstract
Mai points-to analysis techni fol

languages rely predominantly on the allocat
tion to model heap objects. We present MA
heap abstraction that is specifically develfl
the needs of an important class of type-dd
such as call graph construction, devirtualif
fail casting. By merging equivalent autom)
type-consistent objects that are created b;
site abstraction, MAHJONG enables an allod
points-to analysis to run significantly faster]
nearly the same precision for type-dependef

MAHIJONG is simple conceptually, effi
easily on any allocation-site-based points
demonstrate its effectiveness by discussing
why it is a better alternative of the allocatioi]
for type-dependent clients and evaluating
12 large real-world Java programs with five
points-to analyses and three widely used
clients. MAHJONG is expected to provide si;
for many program analyses where call grapl

CCS Concepts o Theory of computatid
analysis

Keywords points-to analysis, heap abstrac}

1. Introduction

Pointer Analyses should be designed to
in cost and precision for specific groups
lems. We do not need a different pointe;
client problem, but rather we should lool
client problems with similar needs.

— Baj

* These authors contributed equally to this work

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
‘must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
1o post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm,org.
PLDI'17, June 18-23, 2017, Barcelona, Spain

© 2017 ACM. 978-1-4503-4988-8/17/06...$15.00
http://dx.doi.org/10.1145/3062341.3062360

Precision-Guided Context Sensitivity for Pointer Ana]

YUE LI, Aarhus University, Denmark
TIAN TAN, Aarhus University, Denmark
ANDERS MOLLER, Aarhus University,
YANNIS SMARAGDAKIS, University o

Context sensitivity is an essential technique
observed that applying context sensitivity p|
balance between analysis precision and sp
do not provide much insight into what cha
principled approach for identifying precisio}
explain where most of the imprecision ariseq
an efficient algorithm to recognize these fl
tradeoffs between analysis precision and sp:

Our experimental results on standard bend
applies context sensitivity partially, only on
(98.8%) of the precision of a highly-precise c
with a context-sensitive heap), with a substg

CCS Concepts: » Theory of computation
Additional Key Words and Phrases: static anj

ACM Reference Format:

Yue Li, Tian Tan, Anders Moller, and Yann}
Pointer Analysis. Proc. ACM Program. Lang.
org/10.1145/3276511

1 INTRODUCTION

Pointer analysis is a fundamental fami
pointer variables in a program. Such i
inter-procedural control flow in object-o
engineering tools, e.g., for bug detectig
analysis [Arzt et al. 2014; Grech and Sm)
tion [Fink et al. 2008; Pradel et al. 2012],
Sridharan et al. 2007].

For decades, numerous analysis techn)
precise and more efficient, especially fo|
Balatsouras 2015; Sridharan et al. 2013
precision is context sensitivity [Milanoy
Smaragdakis et al. 2011], which allows eal
to separate the static abstractions of diff§

Yue Li Tian Tan
Aarhus University Aarhus University
yueli@cs.au.dk tiantan@cs.au.dj
ABSTRACT

Context-sensitivity is important in pointer analysis to ensure

Scalability-Firs{
Self-Tuning

but existing techni; suffer from dictable s

bility. Many variants of context-sensitivity exist, and it is diff
to choose one that leads to reasonable analysis time and obt|
high precision, without running the analysis multiple times.
We present the ScALER framework that addresses this prob)
ScaLkR efficiently estimates the amount of points-to informal
that would be needed to analyze each method with different vari
of context-sensitivity. It then selects an appropriate varian
each method so that the total amount of points-to informatid
bounded, while utilizing the available space to maximize precil
Our experimental results demonstrate that ScALER achieves|
dictable scalability for all the evaluated programs (e.g., spee
can reach 10x for 2-obj itivity), while p
that matches or even exceeds that of the best alternative techni

CCS CONCEPTS

+ Theory of computation — Program analysis;

KEYWORDS

static analysis, points-to analysis, Java
ACM Reference Format:

Yue Li, Tian Tan, Anders Moller, and Yannis Smaragdakis. 2018. Scalab
First Pointer Analysis with Self-Tuning Context-Sensitivity. In Proceec
of the 26th ACM Joint European Software Engineering Conference and S;
sium on the Foundations of Software Engineering (ESEC/FSE '18), Nove,
4-9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA, 12 p|
https://doi.org/10.1145/3236024.3236041

1 INTRODUCTION

Pointer analysis is a family of static analysis techniques that pro|
a foundation for many other analyses and software enginee
tasks, such as program slicing [36, 39], reflection analysis [19,
bug detection [13, 26], security analysis [1, 23], program veril
tion [8, 27], and program debugging and comprehension [5
The goal of pointer analysis is to statically compute a set of ob;

Data-Driven Context-Sensitivity for Points-to Analysis

SEHUN JEONG, Korea University, Republid
MINSEOK JEON’, Korea University, Repub)
SUNGDEOK CHA, Korea University, Repu
HAKJOO OHT, Korea University, Republic

We present a new data-driven approach to achie
for Java. While context-sensitivity has greater i
other precision-improving techniques, it is diffict
most from context-sensitivity and decide how nf
designing such rules is a nontrivial and laborioy
overcome these challenges, we propose an autom:

text-sensitivity from codeb In our appro:
heuristic rules, in disjunctive form of properties or}
context-sensitivity. We present a greedy algorith
‘We implemented our approach in the Doop fram

ding a preci

Authors’ email addresses: yueli@cs.au.dk, tiantan

found during the pre-analysis, MA}
jects if both are type-consistent, i.
from both along the same sequenc]
a common type. We formulate the
type-consistency of two objects as
alence of two sequential automata
applying a classic Hopcroft-Karp all

point to during run time. Although stating this goal is simple,

d as their sites) that a program variable

Permission to make digital or hard copies of all or part of this work for

yses: ¢ ional object-sensitivity, selectiy
experimental results show that our approach sig§

CCS Concepts: « Theory of computation — 1
chine learning approaches;

Additional Key Words and Phrases: Data-driven

ACM Reference Format:
Sehun Jeong, Minseok Jeon, Sungdeok Cha, and HY
Analysis. Proc. ACM Program. Lang. 1, OOPSLA,
https://doi.org/10.1145/3133924

1 INTRODUCTION

Points-to analysis is one of the most impor
memory locations that a pointer variable ma
for many program verification tasks (e.g., de
of subsequent higher-level program analyse
program understanding tools.

For object-oriented languages, context-se1}
guish method’s local variables and objects

“The first and second authors contributed equally to th
*Corresponding author

Authors’ email add) S. Jeong, gif: al
H. Oh, hakjoo_oh@korea.ac.kr.

Permission to make digital or hard copies of all or parf
provided that copies are not made or distributed for p:
the full citation on the first page. Copyrights for comy]
Abstracting with credit is permitted. To copy otherwis
prior specific permission and/or a fee. Request permis:
© 2017 A for Computing Machinery.
2475-1421/2017/10-ART100
https://doi.org/10.1145/3133924

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
by)t

republish, to post

di ists, prior specific p

and/or a fee. Request permissions from permissions@acm.org.

[ESEC/FSE '18, November 4-9, 2018, Lake Buena Vista, FL, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5573-5/18/11...$15.00
httpsy//doi.org/10.1145/3236024.3236041

3

* program size is far from a reliable predictor—for ex:
(12718 methods) is smaller than briss (26 582 mq
ever, 2type is not scalable for the former but sc:
latter;

“These are all popular open-source applications, including the hea
eclipse) of the DaCapo benchmarks [3].

Learning Graph-based Heuristig
without Handcrafting Applicatig

MINSEOK JEON, MYUNGHO LEE, and HAK](

We present GRAPHICK, a new technique for automatically
Striking a balance between precision and scalability of
heuristics. For example, because applying context sens|
impractical, pointer analysis typically uses a heuristic to ¢
Past research has shown that exploiting the program’s
cost-effective analysis heuristics, promoting the recent
graph representations of programs obtained from a pre-.
such heuristics remains challenging, requiring a great de
aim to reduce this burden by learning graph-based heurist]
application-specific features. To do so, we present a fea
algorithm for learning analysis heuristics within the langu:
used it to learn graph-based heuristics for object sensit]
show that our approach is general and can generate high
heuristics are as competitive as the existing state-of-the-a|

CCS Concepts: » Software and its engineering — Autd
Additional Key Words and Phrases: Data-driven static anal|
analysis, Context sensitivity, Heap abstraction

ACM Reference Format:
Minseok Jeon, Myungho Lee, and Hakjoo Oh. 2020. Leat
without Handcrafting Application-Specific Features. Pi
(November 2020), 31 pages. https://doi.org/10.1145/34282:

1

Pointer analysis is a fundamental program analysiq
various software engineering tools. The goal of poir]
estimate heap objects that pointer variables may rg
essential for virtually all kinds of program analysj
et al. 2015; Livshits and Lam 2003; Naik et al. 2006,
et al. 2014; Avots et al. 2005; Grech and Smaragd
program verifiers [Fink et al. 2008], symbolic exed
repair tools [Gao et al. 2015; Hong et al. 2020; Le|

INTRODUCTION

- NT = o> =~ 3 - = . .® =R~ S \

/)

+ : : J

D

!

|

Precision-Preserving Yet Fast Object-Sensitive Pointer F
Analysis with Partial Context Sensitivity

JINGBO LU, UNSW Sydney, Australif
JINGLING XUE, UNSW Sydney, Au

Object-sensitivity is widely used as a ¢
sensitively for object-oriented languagd
programs, k-object-sensitive pointer aj
values of k, where k < 2 typically. A fd
k-obj to analyze only some methods in
analysis. While already effective, these h
consequently, are limited in the efficiend
that makes k-obj run significantly fastd
EAGLE is to enable k-obj to analyze a mq
some of its selected variables/allocation
by reasoning about context-free-langua
based on a new CFL-reachability form|
comparing it with the prior art in terms

CCS Concepts: « Theory of computatf
Additional Key Words and Phrases: Poij

ACM Reference Format:
Jingbo Lu and Jingling Xue. 2019. Pre|

Making Pointer Analysis More Precise by Unleashing the }
Power of Selective Context Sensitivity -

/
TIAN TAN, Nanjing University, China ‘
YUE LI*, Nanjing University, China ¢
XIAOXING MA, Nanjing University, China .
CHANG XU, Nanjing University, China i 5
YANNIS SMARAGDAKIS, University of Athens, Greece
Traditional context-sensitive pointer analysis is hard to scale for large and complex Java programs. To address ' 4

this issue, a series of selective context-sensitivity approaches have been proposed and exhibit promising results.
In this work, we move one step further towards producing highly-precise pointer analyses for hard-to-analyze
Java programs by presenting the Unity-Relay framework, which takes selective context sensitivity to the next
level. Briefly, Uni ty-Relay is a one-two punch: given a set of different selective context-sensitivity approaches,
say S = Sy,...,5,, Unity-Relay first provides a mechanism (called Unity) to combine and maximize the

Partial Context Sensitivity. Proc. ACM precision of all components of S. When Uni ty fails to scale, Unity-Relay offers a scheme (called Relay) to I ‘

https://doi.org/10.1145/3360574

1 INTRODUCTION

For object-oriented languages such
precision for pointer analysis [Lhq
insensitive pointer analysis, such as
once, producing one points-to set f]
allocation site in the method. In ¢
multiple times under different callj
thereby producing multiple points-
abstract objects for modeling every

To tame the combinatorial explo:
sequence of k context elements, un|
object-oriented programs: (1) k-calls
of a method by its k-most-recent cal

pass and accumulate the precision from one approach S; in S to the next, S;;1, leading to an analysis that is
more precise than all approaches in S.

As a proof-of-concept, we instantiate Unity-Relay into a tool called BATON and extensively evaluate it on \
a set of hard-to-analyze Java programs, using general precision metrics and popular clients. Compared with U
the state of the art, BATON achieves the best precision for all metrics and clients for all evaluated programs. 3
The difference in precision is often dramatic—up to 71% of alias pairs reported by previously-best algorithms
are found to be spurious and eliminated.

CCS Concepts: » Theory of computation — Program analysis. ‘
Additional Key Words and Phrases: Pointer Analysis, Alias Analysis, Context Sensitivity, Java f.

ACM Reference Format: o
Tian Tan, Yue Li, Xiaoxing Ma, Chang Xu, and Yannis Smaragdakis. 2021. Making Pointer Analysis More
Precise by Unleashing the Power of Selective Context Sensitivity. Proc. ACM Program. Lang. 5, OOPSLA,
Article 147 (October 2021), 27 pages. https://doi.org/10.1145/3485524

1 INTRODUCTION o

Authors’ addresses: Jingbo Lu, UNSW Sydn|
jingling@cse.unsw.edu.au.

Pointer analysis is important for an array of real-world applications such as bug detection [Chandra
et al. 2009; Naik et al. 2006], security analysis [Arzt et al. 2014; Livshits and Lam 2005], program

“Corresponding author

verification [Fink et al. 2008; Pradel et al. 2012] and program understanding [Li et al. 2016; Sridharan

*Corresponding author

YRR

& = To 2%y o Qeata — LR T - IO A TR T A | - 2 5 TS Ny 5 2 3 posRa TS = v i A Be. posmaL s A AR DG posma IO AW sl o TR SN i AR B TR S, § s g v 33 _ 2

p e _ o \ o _ . _ b \ o _ = _ _ - . _ _ _ L , . _ = N _ - _ _ . N - _ _ _ . - _ _ . N L) - _ _ ~_-

4 / .
\. 4
k.

!]
>]]
X H O O t o |
v

. ‘.

1 ; : 13

i 4 4
)‘ [’

3 i

Y #)

D »

) Sy e < aaa o E g E il A C e o e Ty . A os b s BT T B O =T ech s SR e A . ma s s NV IR BT O - r . e erp o i S g Aok B sama v Ao B P AR R TS a2 2 . posaa Y o - Iy a Lo SR T, P Y . S e Lo e !
i ~ T = - ~ - N - ~ - T - = g - ol < N - = -l o~ N - = _ 3 g N - = 3. =~ 3 ~ = > - = 3 - ‘

{ A i , .

\) 1 Z ‘
. K
g . r
& R 4 ‘ ‘ o '

: ; d

H
x ¢
‘e P "
[V ? J

) b D [! i
P,) X
b’ f
b | ° ° ° ° ° ° ° ° ° ° , ' g
'S) \ 0
») | g
) R [

K X
‘ 9 " 3
) R . .
)]
R g 3 o L A

0 b 7)

. b |
& s °
b h !
| b ‘ 13

: ,
! . > e . | o S oS) pg S Y X PO Y. S oY) Yoo o oo - PSRN) o o NP Yo o S S o S - A |
b A [L

S \)

R ‘ o

o . b
X \
| T ! i
) 4 :

N)
{ . |0 .
‘N " 8

N\)

:)) ”)]) , — T : : : —

Y Making k-Object-Sensitive Po Pick Your Contexts Well: Underst Hyvbrid Context-Sensitivity for P Introspectlve Analysns: Context-Sensntlwty, Across the H A Machine-Learni ng Al go rithm with DISJ unctive Model for .

: More Precise with Still k& : : : :

4 The Making of a Precise and Scala Data-Driven Program Analysis ‘
N ee . . George Kastrinis ~ Yannis Smarf Yannis Smaragdakis ~ George Kastrinis ~ George Balatsouras d
R | . . - Scalability-First Pointer Analys} Yannis Smaragdakis Martin Bravenboer cormati Department of Informatics 3
" Tian Tan', Yue Li', and Jinglin 8 Department of Informatics s.s s epe partment - + iversi /)

() gling P N A

’ ’ Self-Tuning Context-Sensiti Department of Computer Science, LogicBlox Inc. University of Athens Precision-Guided Context Sensitivity fd University of Athens MINSEOK JEON, SEHUN JEONG", SUNGDEOK CHA, and HAKJOO OH?, Korea University, 3
e uning Contex ensiti P - N ini i {smaragd,gkastrinis,gbalats}@di.uca.gr i
1 . . . University of Massachusetts, Two Midtown Plaza {gkastrinis,smaragd} @di.uoa.gf gd.gl 8 -uoa.g Republic of Korea -
J School of Computer Science and Engineering} °t - 3
2 Aq a1 tion Center for Imagins Tech X . Amherst, MA 01003, USA Atlanta, GA 30309, USA J
b lvance nnovation Center Ior lmaginj ec DA el 1 " s P . . n y 2
\ ging A hY"S 1_‘1 ity Aargla’[‘] '1_'an ity f;‘sﬂz M”lli Un‘x"{:“;:‘;}'x::‘ n"j Il"‘sf;’gz““(‘i‘fs-c martin.bravenboer@acm. YUE LI, Aarhus University, Denmark We present a new machine-learning algorithm with disjunctive model for data-driven program analysis. '
arhus Universil us Universil us Universil ers| ens, , Greece .) h . 3
4 yueli@cs.au.dk tiantan@cs.an.dle amoeller@ca s d i umass.ed i.uoa.qr TIAN TAN, Aarhus University, Denmark gne m:for cha]lefnge in statllzc pmﬁrax:a a.nalli);fls isa substanua.lalamouh:l of manu;ail effo:'it dieqm:}id fo}x; atuumng ’
¢ i i e analysis performance. Recent ta-driven program analysis has emerged to address this challenge | /)
Abstract. Object-sensitivity is regarded as argu] ABSTRACT R Abstract One of ¢2£E:§SSAA®A§I;F§D‘Z§};;S University, Denmark Abstract of points-toanalysis s o ieldusfully precise nfo b 4 t' P11 P Zl based Pdgt e Z o j t Althoeh thi g ;
N o . T X imeout Context-sensitive points-to analysis is valuable for achieving high ~ Cision/perfory University of Athens, Gi -sensitivity i ; : addi i sacrificing scalability: the analysis inputs are large automatically adjusting the analysis based on data through a learnin, orithm. ou s new
& abstraction for pointer analysis in object-oriented Context-sensitivity is important in pointer analysis to ensure high ontex Se"s';:m p;:nl:f o an ys'.i.;‘s v u;m; ﬂa r ac 'e}’mg s sensitivity cd » University o ens, Lreece Context Sensitivity 1s the primary approach for adding more prec algorithms are typically quadratic or cubic, but Y Y ady g. . Y . . & . g g g' .
k-object-sensiti N Ivsis. which uses a s fex ity : i i precision with good performance. The standard flavors of context- ! sion to a points-to analysis, while hopefully also maintaining scal- : pree : O approach has proven promising for various program analysis tasks, its effectiveness has been limited due B
- object-sensitive pointer analysis, which uses a sef precision, but existing techniques suffer from unpredictable scala: o sens Il itivity (kCFA) and object-sensiti context inforf§ 1t ext sensitivity is an essential technique for ensuring high precisid ability. An oft-reported problem with context-sensitive analyses near-linear behavior in practice, by exploiting pro . : : N isti ; : A
» sites (as k context elements) to represent a calling bilty. Many variants of context-sensitivity exist, and it is difficult , Abstract 1. Inf Combining both flavors of context-sensitivity increases precision sal:w c(:m:m observed that applying context sensitivity partially, only on a select | however, s that they are bi-modal: cither the analysis i precise and maintaining precision. Indeed precision and pef§ ~ to simple-minded learning models and algorithms that are unable to capture sophisticated, in particular 3
call, may end up using some context elements re: to choose one that leads to reasonable analysis time and obtains o - ectosensitivi ; but at an infeasibly high cost. We show that a selective combi- oo : . § - enough that it manipulates only manageable sets of data, and thus g0 hand-in-hand in a good points-to analysis alf ~ disjunctive, program properties. To overcome this shortcoming, this article presents a new disjunctive model
d : 6 titi £ the f N | high precision, without running the analysis multiple times. - Object-sensitivity has emerged as an excellent context abstraction Points-tod yation of call-site- and object-sensitivity for Java points-to anal- naturally resll - balance between analysis precision and speed. However, existing te| scales impressively well, or the analysis gets quickly derailed at the algorithms are often found to be both more pred ?) ; 3 9
| ucing a finer par %t}on of the space o (concrete) ¢ We present the SCALER framework that addresses this problern. |for Yom o n Obju.l -oriented Ianguagula Despitcits ,pr:‘.- molcl f;*”’ yais is highly profitable. Namely, by keeping a combined context grec;r;: :\:ﬂe':: do not provide much insight into what characterizes this method s firat i of imprecision and becomes ordersof-magnitude more because smaller points-to sets lead to less work [14 for data-driven program analyss as well as a learning a}gonthm to find the m(fdel paramelters.‘ Our model uses ¥

[method call. In this paper, we introduce BEAN, aj Scater efficiently estimates the amount of points-to information s ical success, howe is poorly or sists of o Gnly when analyzing selected language features, we can closely y incipled h for identifyi -critical methods, based h 1d be d h The Context-sensitivity is a common way of pursuin} - hoolean formulas over atomic features and therefore is able to express nonlinear combinations of program)
! improving the precision of any k-object-sensitive aff that would be needed to analyze each method with different variants instanc, for contex depl of 2 or highet, pust scalble mple- expresi approximate the precision of an analysis tha kecps both conexts 122 23]and § principled approach for identifying p critic ase han ouId b oxpected Biven the program’s sae. mhere ility in points-to analysis. It consists of quali) : .) ; p

! b pc'll g pk - yt ; Jb A of comtextaensitiity. 1 e sppropriate yasiant for o mentations deviate significantly from the original definition of an toduring] o211 times. In terms of speed. the selective combination of both Acallsitd explain where most of the i arises in context-i itive poi ig‘z:f“::yy a‘:vf:)l‘rl’i‘;f‘:l:‘f‘ :;;‘:ls P;";Cl‘;;e i s analy- ables and objects with context information: the ana] Properties. Key technical challenge is efficiently determine a set of good boolean formulas as brute-force R

y still using a k-limiting context abstraction. 1hg A : object-sensitive analysis. The reason is that the analysis has many cally evell kinds of context not only vastly outperforms non-selective combi- labelsof instlfl o6 ot aloorithm to e . . . - - : . . " . . h . R . :

1 . e et tion i X : ¢ - - : ecognize these flow patterns in a given pr formation (e.g., “what objects this method argumenl search would simply be impractical. We present a stepwise and greedy algorithm that efficiently learns .

allocation sites that are redundant context elemd cach method so that the total amount of points-to information is 1000 degrees of freedom, relating to which context elements are picked mechani pations but is also fas[e,{ha,‘ nymerepob_,eu sensitive analysis. This That is, the a & recogniz P g P u‘e board ata level tothatof a anal- over all possigble executif)ns that map to 'mg samd Py P . P P) g Y ,g . . Y |

¢ Object Allocation Graph (OAG), which is built b: bounded, while utiizing the available space to maxinize precision. at every method call and object creation. We offer a clean model pointer & result holds for a large array of analyses (e.g., 1-object-sensitive method arguff tradeoffs between analysis precision and speed. is. To address this issue, we propose introspective analysis: a while scparating executions that map to different PO0lean formulas. We show the effectiveness and generality of our algorithm with two static analyzers: /

N) on rap ’ : Our experimental results demonstrate that ScaLER achieves pre- o for the analysis design spac, and discuss a formal and informal un- object-of§ 2-gbj it " iive) e, method imvod Our experimental results on standard benchmark and real-world pro techique foruniformiy scaling context-sensiive analysi by lin- e sttind P oid procisi _sensitive points-to analysis f d flow-sensitive interval analysis for C. Experimental resull ¥
. (e.g, & context-insensitive Andersen’s analysis) pel dictable sealability for all the evaluated progeams (e.g, speccups lysis design space, a I J witha heap, typ es. o zuslval inating its performance-detrimental behavior. at a small precision way, context-sensitivity attempts to avoid precision | context-sensitive points-to analysis for Java and flow-sensitive interval analysis for C. Experimental results

N -8 ! ! y Ve programs (e.g,, speedup: derstanding of object-sensitivity and of how to create good object- lambda 4| tablishing a new set of performance/precision sweet spots. the analysis S5 hplies context sensitivity partially, only on the identified precision-cr, £ 1ts pe! " N ! : precisi ing the behavior of different dynamic program how that t ted techni P tly i the £ f the state-of-the-art techni q

b program and then avoid them in the subsequent k can reach 10x for 2-object-sensitivity), while providing a precision . X sensitive analyses, The results are surprising in their extent, We analysis method invod (98.8%) of the precision of a highly-precise conventional context-sensi expense. Introspective analysis consists of a common adaptivity sensmmy comes in many ﬂavon dcpm ding on the show that our automated technique sxgmﬁcan ly improves the performance of the state-ol e-art techniques 3}

N ysis for the program. BEAN is generally more prec that matches or even exceeds that of the best alternative techniques. Figure 1: C"‘“""‘“’ find that past implementations have made a sub-optimal choice of hind anyl] Categories and Sub]u't Descnpmrs E32 [Loglc: and Meanmg: in the code ¢ ©-6% precisio y°P! v pattern: first perform a context-insensitive analysis, then use the such as call. 122.231,0] including ones hand-crafted by human experts. A
N L . sensitivity, 2-type se; N e severe detrimes ecisi formance. Furthe: of Programs): a context-insd with a context-sensitive heap), with a substantial speedup (on averagd results to selectively refine (i.c., analyze) pro-

8 precision that is guaranteed to be as good as k-obj Réd contexts, to the severe detriment of precision and performance. We Furtherny 8 thod 1 th 1 1 in th y : (19, 20], ,,,,d type-sensitivity [24]. wr
q - CCS CONCEPTS ses. The y-axis is trd§ qefinc a “full-object-sensitive™ analysis that results in significantly analysis § Analysis; D. 3“ [L P method foo . . gram clements that will not cause explosion in the running time ked fact about context CCS Concepts: » Theory of computation — Program analysis; Computing methodologies — Ma- ‘

)) have implemented BEAN as an open-source tool a Theory of computation —» Program analysis; and all truncated cas| higher precision, and often performance, for the exact same con- interact Compilers foo separatel] CCS Concepts: » Theory of computation — Program analysis; or space. The technical challenge is to appropriately identify such :h be tal h fail A N
| sta f-the- hole-i i anal ! o “type. * as an explicit 2 " to anything d program elements. We show that a simple but principled approach even the best algorithms have a common failure n§ - chine learning approaches.

two state-of-the-art whole-program pointer analy: text dg,plh We also mlroduCL “type-sensi as an explicit ap- functiong . 21s . . . y nnot maintain precision. Past literatur orts] ¢
J . . X . to producd bi i ext qua achievesl] Gemeral Terms Algorithms, Languages, Performance obj2 may pofl Additional Key Words and Phrases: static analysis, points-to analysis, can be remarkably effective, achieving scalability (often wnh dm, cal au precision. Past literature reports 5
representative clients (may-alias and may-fail-cast KEYWORDS scalabilty [12. ‘; 0,35) of obj that preserves high context qual- achieves matic speedup) fo): & Y mance of a [..] deep-context analysis is bimodal” | A 44itio o e Ny acan phra o e e alysis, Stati lysis. Context-sensitivity, Flow- /
1 ine large J s fi he DaCapo bench; . i 4y 112, 50, 351 ity at y reduced cost. A type-s points-to analysis COnsists § - Keywords points-to analysis; ~ context-sensitivity; object- 1 class C { ACM Reference Format: D sensitive analyses have been associated with very 1 tonal Rey Words an ases: Data en program analysis, Static ysis, Context-sensitivity, Flow:
nine large Java programs from the DaCapo bent static analysis, points-to analysis, Java d to devel hi . for deep context-sensitive anal: ses Y o
\ ¥ dod 1 Ling both analvses ise f ued to develop sophisf makes an unconventional use of types as context: the context types objectabl cenitivity; type-sensitivity 2 void foo0f o Tan Anders Moll d Yannis S dakis. 2018, P P 4 contexts” [15]; “algorithms completely hit a wall § sensitivity
\ hu((:icee e hm Edcmtg olt am:l ly§e=. more ?rem:l of AcMBdemcefomat 16,18,22,2,25,32 39 are not dynamio types of objct involved n the analysis, bt o- inormag 3} P“? t" ian Tan, o "'::CM P:”* an mesz g‘(‘;’;ﬁ: As}r ot 41” Categoriesand Subject Desciptors 3.2 [Logicsand Meanings tions, ith he number of ples exploing cxpol]
under each client at only small increases in analysj ue Li, Tian Tan, Anders Mofler, and Yannis Smaragdakis. 2018. Scalability- me of the key mecl stead upper bounds on the dynamic types of their allocator objects. t0”) oves . N . ointer Analysis. Proc.)gram. Lang. 2, , Article P o] Recent published results [12] fail to run a 2-object- s
4 First Pointer Analysis with Self-Tuning Context-Sensitivity. In Proceedings s context sensitivity, | Our results expose the influence of context choice on the quality while sef 1. Introduction s crase oeal orgi0.1145/3276511 DAfmlr;g;:am[;]g 4 ing L T orogram sis i wnfer S0mins for 2[of]10 DaCapo benchmar] A(.:M Reference Format
of the zaii;‘AgM 3;1,::5."@;.:" Safhvngngxr{zevlng an/pf;;?lb; anNdSymfn' analyzed differently al of points-to analysis and demonstrate type-sensitivity o be an idea kinds of @ Points-to analysis is a static program analysis that consists of com- , ¢1_feo(o Compilers benchmarks take more than 1,000sec, although m Minseok Jeon, Sehun Jeong, Sungdeok Cha, and Hakjoo Oh. 2017. A Machine-Learning Algorithm with ‘

. 1 Introducti sium on dhe Foundations of Software Enginecring (25) November Context sensitivity hasf| with major impact: It decisively advances the state-of-the-art with — [18, 1914 puting all objects (typically identified by allocation site) thatapro- o ... 1 INTRODUCTION marks of similar or larger size get analyzed in unde§ Disjunctive Model for Data-Driven Program Analysis. ACM Trans. Program. Lang. Syst. 9, 4, Article 39

- ntroduction b Lake Duena Vista 1, 3”253:61\1@“' New York, NY, USA, 12pages. optextinformationusq| @ spectrum of analyses that simultaneously enjoy speed (Ever § gram variable may point to. The area of points-to analysis (and s ¢2.foo(o General Terms Algorithms, Languages, Performance Thus, when context-sensitivity works, it work b https://doi

; ttps://doi org/10.1145 and type-sensitivity []| times faster than an analogous object-sen al. [13], 4 its close relative, alias analysis) has been the focus of intense re- 10 Pointer analysis is a fundamental family of static analyses tH)) o . terms of both precision and perﬂ,m,ance When 1] (December 2017), 42 pages. https://doi.org/0000001.0000001 -
G Pointer analysis, as an enabling technology, plays a TRODUCTIO former s strictly more] ity (comparable to analyses with much less context-sensitivity), and itisa sff search and is among the most standardized and well-understood of 11 ¥ N Hysis 1s wy tic analyses | Keywords points-to ~ analysis; context-sensitivity; object- it fails quickly N

v lient applications. including bue detection 3. 25, 35. 3 1 INTRODUCTION 37 However with any| _ Precision le o the best object-s analysis withthe yielding | inter-procedural analyses. The emphasis of points-to analysisalg- | pointer variables in a program. Such information is essentialf sensitvity; type-sensitivity context. insensitive analysws amiformly scale well 1 INTRODUCTION

client applications, including bug detection [5 49,99, Pointer analysis is a family of static analysis techniques that provide gain in precision, scal same context depth). sensitivif] rithms is on combining fairly precise modeling of pointer behavior of instruction i.nter-procedural control flow in object-oriented programs, and if} puts. Figure 1 vividly demonstrates this phenomer 4
. compiler optimisation [6,33], and program understal a foundation for many other analyses and software engineerin X analyses] with scalability. The challenge is to pick judicious approximations . N N g . 4 : s . PU . .
J P! puim 6, X i3 ', progr o tasks, such Y e 136 y39] feation a8 19 “jg in the sense that progral (ysp00ries and Subject Descriptors F3.2 [Logi(.s and Meanings sensitivel] that will allow satisfactory precision at a reasonable cost. Further- (Hence, a bl engineering tools, e.g., for bug detection [Chandra et al. 200! 1. Introduction Capo benchmarks, analyzed with the Doop framew§ - One major challenge in static program analysis is a substantial amount of manual effort required !
mensions of pointer analysis precision are flow-sensitiy asks, such as program slicing (36, 39], reflection analysis [19, 31), metrics may have com f Py): £ es—P; ? “allocation-si A . L. Points-to analysis is probably the most common wholl (insens) analysis and a 2-objec I
b ") B G/C ot oog p o o bug detection [13, 26), security analysis [1, 23], program verifica. Ergure 1 shows i .;A lrogmnu of P rogram is conces mz{c although i ml:easmg pmcls::;l often leads lm higher lasri:m an object 1) analysis [Arzt et al. 2014; Grech and Smaragdakis 2017; Livshit] static analysis, and ofien serves a5 2 substrate for a Vmﬂyrn high ysis with a context-sensitive heap (20bjH). (The chf| for tuning the analysis performance for real-world applications. Practical static analysis tools use a p
b or programs, flow-sensitivity is needed by 1 tion [8, 27], and debuggi d hension [5, 21]. ‘ nalysis - i totic avior is rarely encountered in . .) K . - alvsis ti - runn, arks P . R
For object-oriented pr:ngrams e.g., Java programs, h The g[a;l og}JTlexr:i:;:is s tucgftlar:igc:]l}y ::K:e s setof .Eh}m]s grams' under 2-objed : 'DA3.1 [Programming Languages): Formal Definitions and evenmof actual practice. Instead, techniques that are effective at maintaining ::‘ ar::D:ha;:im tion [Fink et al. 2008; Pradel et al. 2012], and program debuggin level program analysis tasks. Points-to analysis computes the st of :‘s‘d}g;‘::éﬂ? K;z:‘ii::ge:;lf‘;'f‘:‘;‘gob;;:sl“own ‘1:3 variety of heuristics to optimize their performance. For example, context-sensitivity is essential
S . . I FPI bstracted as their allocation sites) tha jabl the most precise variaJ Theory—Semantics Whatf| good precision often also exhibit better average-case performance, et Sridharan et al. 2007]. objects (abstracted as their allocation sites) that a program variable a o tommins i] for analyzing object-oriented programs, as it distinguishes method’s local variables and objects in 13
'K is known to deliver trackable and useful precision (17 ;ao;ttr ?;tgur?:g n?x: un:ec ?&Tgcx:)s:au:.; S:;z::l“ 1‘;1::1plz :::al)sr (@type) [32], and cont estway ff - since smaller points-to sets lead to less work. :»2’1‘1‘22‘:»1;1‘: For decades, numerous analysis techniques have been develo may point to during runtime. The promise, as well as the challenge, g‘;ds:le:ulgo::: ::::::ﬁii:e:ng?;agfr:rlyo:glea:ti‘:': diff 4 al%) Prog! ’ 1 & all hod: th) -
] There are two general approaches to achieving coif . . o 20bj is not scalablf] ~ Gemeral Terms Algorithms, Languages, Performance better-kn) . 8 4 . N) " A P " erent calling-contexts. However, applying context-sensitivity to all methods in the program '
X g 3 PP che g Pemmisionto ke dghal o hardcopies ol o patof i work forpersondl o it oo e oi3 scs objects that ¢ precise and more efficient, especially for object-oriented langul plmmmn to make d.lg;ul o hm'd cop.esdnrd a'j: or part of this warkd for p:so.:l o formance, while context-sensitivity often causes ru s b e
- oriented programs, call-site-sensitivity (k-CFA) [27] oo v Gt ot e PR Tt copc s o made o gt s fragment nei ¢ classroom s is granted without fee provided that copies are not made or distibute ‘memory use) to explode. does not scale and therefore real-world static analyzers apply context-sensitivity only to profitable
. for peott o program sizeis far f the meth Permission to make digital or hard copies of all or part of this work for personal or nor to how nff Balatsouras 2015; Sridharan et al. 2013], One of the most sul for profit or commercial advantage and that copies bear this notice and the full citation Faced with this unpredictability of context-sen N L d .
24,29] (among others). A k-CFA analysis represents a Bt o o o o thode) is]] Permission to make digial or hard copics ofal o part of this work for personal or scparates} classoom use is ranied without fee provided that copiesare ot made or distibwed y ey s o : on the frs page. Copyrighis for components o this work owned by others than the e | methods determined by some heuristic rules [Smaragdakis et al. 2014]. Another example is a
all by usi . £k call sites (L. & labelsl oo mosoe homsret Aboescing with st s posiued Tocopy atesve, o (12718 methods) is] 0 e ranted without fee provided that copies are not made or distributed per callf| forprofitor commercial advantage and tht copies beartis notce and the ull citaion. 112V precision is context sensitivity [Milanova et al. 2002, 2005; Shel author(s) must be honored. Abstracting it it s permittd. o copy otherwise,or - mon xeaction is to avoid it, favoring context-int . X - o o X {
& y using a sequence of k call sites (i.e., k label republish, to post on servers or lis peciic permissi ever, 2type is not for profit or commercial advantage and that copies bear this notice and the full citation fhat led] 0 he st paee. Tocopy otheruise, o epublis. o post o srvers o o reistriute ;‘n 'ds :g;lr:l Smaragdaks et al. 2011], which allows each program method to epublish o poston servers r o e X pecific permission seslyl Ti n y, rr]l;smg < precisf relational analysis such as ones with Octagons [Miné 2006]. Because it is impractical to keep track d
site). In contrast, a k-object-sensitive analysis uses k d/or a fee. Request permissions from permissions@acm.o: latter; on the first page. To copy otherwise, to republish, to post on servers or to redistribute h to lists, requires prior specific permission and/or a fee. - . 4 and/or a fee. Request permissions from permissions @acm. org» well-behaved programs. Even worse, for some a| . . L.
) 5 4) Y ESECPSE 1, Noverstor 625, 2018, Lake wuena Vista, 11, 54" s, e o e prmiion e informatf pLDI'I3, June 16-19, 2013, Seatle, WA, USA. not even cledl 0 separate the static abstractions of different dynamic instantia] ~ PLDPI4 June9-11, 2014, Edinburgh, Uniced Kingdo chewing expensive context-sensitivity is notan optf Of all variable relationships in the program, static analyzers employ variable-clustering heuristics ¢
N k labels with each denoting a new statement) as cont] © 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM. — POPL'11, January 26-28, 2011, Austin, Texas, that led tf] Copyright © 2013 ACM 9781-4503-2014-6/13/06....$15.00 all calls to £ Copyrieht ‘fj;g’;’%’é‘:;w“;;é““"‘s"“" Publcaion ighs icesed 10 ACM. insensitive analysis is just not good enough. Repof —— 9
-1-4503-5573- The: 1 populs - @2 97 13-049 clow, N o) _ Al 14 . A . . . N
{ Qﬁ:‘ Tt iotrsmomagmain, eclipee)of the DaCapu benf] CTTEM @ 20T ACMY L or 000 below, a Authors’ email yueli@cs.au.dk, au.dk, amoeller@cs.au.d hup//dx.doi.org/10.1145/2594291.2594320 try [4] and academic researchers [3] alike reiterfl “The first and second authors contributed equally to this work -
——————— fCorresponding author X
S N
B
NG ., = 0 o @ <ok = ” G 0 - @ <ok Q 2 - ~A(7 <ok o - ” ~A(7 Q o - ” < Q o G <ok - ” - g <ok = ” . g —s = '~ ~ —-— g
) > 5 . —_ e - =P = PTIY L — 2 = e - 2 = Prar D P - = PTG P =~ o o . P = e - PVl X o oy PIOND V., DRI s oy PIIND Vo DT RIY -, e\ = .a3. TRy - B NS
" @
0 0,
N
N ;
s ¢
\
(Vi
N - - - o a - < . . o o - < . -~ = o - o - .
-2 Do o e n o - w9 3 o > g AR o v o g oS 3 y iRy e 3 2. v o mami — o p = w3 3 - y

o - 5 T 5
o 3 . G B7 w paeae b A P "
8 s . ” g e _ Aga Bt S - SRR = % - _ .
: 2 _ RS D T = = ~ =~ - o _ .
. 12,26 A IR iGe s LR - 5 _) R N _ ‘
- S Zad2 30 =S SiGionds NS T T T T S e e a AL N e '
o ; Stz e g S Gl : R 4 ’ - kil :) - _ 3
e Skach i S = =~ 5) . _ ‘
-’ :
\. 4)
" E— E !
e, ‘ p
),) 4 "
I I g i
A b
»
\ i v - - PR 3 = ik - N /
3 i . -~ =ya Saie e s S G N — g i S ; D 3
o . . . san o o gl o — = i o~ o - = . ! 4
y - NPy rong v L S Ee =ere ST ~ i A '
D . oy e e A . waaa g g B - y 7% - - - - P
) - " - AR - O A - *n = — = - - L=~ 3 ¢
& il S = = o - .
7 y i
4
\ |
| ” [M
" ‘ ‘¢ " L al e
<o i » ¥
H
) "
J ' |
b ‘ I
‘ 3 0
. g ’
P, , , l
v . 3
4 ? »
)
{ l‘
b ' /)
‘
\ ‘ R A
4 ‘ '
3 o
. . N
0 a K l X
o P, b
v x :
! o 19
VJ . /| v
. i 5 N - Coe = S S o i A
‘ ; SO S N o= . SR Caiob o o e S B 2 ’
‘ 2 = X = N ot — N R R > r 3
L = - § o SRR M _ ro & 3 IRy =
\ P N NP T - e ; '
o A
") ‘
b 2 N ‘
4 rF ‘
4]I Machi i Igorithm with Disjunctive Model for
| . : itivi A Machine-Learning Algorithm)
| . al - Introspective Analysis: Context-Sensitivity, Across the ! g NIg el ‘
¥ Makine k-Obiect-Sensitive Po Pick Your Contexts Well: Underst Hybrid Context-Sensitivity for P Data-Driven Program Analysis ‘
b aking k- ject- - v,
‘ ' ' i i Kastrinis ~ George Balatsouras ,.
k. . . . The Making of a Precise and Scala Yannis Smaragdakis George . .]
3 ore Precise with Still k& George Kastrinis Yannis Smar} Department of Informatics MINSEOK JEON, SEHUN JEONG*, SUNGDEOK CHA, and HAKJOO OH, Korea University, 3
S i artm f i . ege University of Athens 4
.. Scalability-FirSt Pointer AnalyS| Yannis Smaragdakis Martin Bravenboer De{)}n“::it;i}n:\t:;r::cs Precision-Guided Context Sensitivity f {smaragd,gkastrinis gbalats }@di.uoa.gr Republic of Korea]
| . 1 1 ingli ogs - r Qeiene LogicBlox Inc. L N ' ‘ B ') vsis !
[an', Yue Li', and Jingling . Department of Computer Science, gic astrinis,smaragd } Odi.uoa. gt . . for data-driven program analysis
R Tian Tan’, ’ € Self-Tuning Context-Sensiti University of Massachusetts Two Midiown Plaza (e ed} We present a new machine-learning algorithm with disjunctive m°d31f s 1-5 uiie d for tuning !
tts, oo M 3 o A ‘ g L. R e uning =
! School of Computer Science and Engincering} A Dot o et i eenboerac YUE LI, Aarhus University, Denmark One major challenge in static program analysis is a substantial amount of manu: d this chall
q 00) P i i Tian Tan Anders Melle: and Department of Informatics, martin.bravenboer@acm. ity N ajor e e Bomen dare-dyivens programs analysts s esnerged 1o addres fiis challene
? Advanced Innovation Center for Imaging Tech Yue Li iversi niversity of Athens, 15784, Greece TIAN TAN, Aarhus University, Denmar] o] the analysis performance. y, - X X
' Aarhus University Aarhus University Aarhus Universit] University of Adhens, 13784, j.uoa.gr ANDERS M@LLER, Aarhus University, Denmark Abstract ofpoints-to analysisis o yield usefully precis info by automatically adjusting the analysis based on data through a learning algorithm. Although this new ¢
: ; au.dk amoeller@cs.au.d uma One of th > Aarl : o . o N sacrificing scalability: the analysis inputs are large - > N N : 1 limited due !
‘ yueli@cs.au.dk tantan@cs.au Abstract cor achieving hi cision/perford YANNIS SMARAGDAKIS, University of Athens, Greece Context-sensitivity i the primary approach for adding more preci algorithms are typically quadratic or cubic, but § - 1,05 ch has proven promising for various program analysis tasks, its effectiveness has been limitec !
T 10800) Context-sensitive points-to analysis is valuable for achieving high sensitivity cd » sion (0 a points-to analysis, while hopefully also maintaining scal- near-linear behavior in practice, by exploiting pro r A : dels and algorithms that are unable to capture sophisticated, in particular
Abstract. Object-sensitivity is regarded as argu] ABSTRACT _ timeout (> precision with good performance. The standard flavors of context- 2#1 /FY ° R tial technique for ensuring high precisid] ability. An oft-reported problem with context-sensitive analyses, and maintaining precision. Indeed precision and pef§ to simple-minded learning models g hm_ _ ot o 2 new distnetive model)
¥ abstraction for pointer analysis in object-oriented e D D i O e nigh sens 11 itivity (kCFA) and object-sensitivi same conext] COntext sensitivity is an essential techniq ially, only on a select s| however, is that they are bi-modal: either the analysis is precise o % iin hand in o good points-to analysis al disjunctive, program properties. To overcome this shortcoming, this article presents j .
; B e o Do e hmea - L e et et om0 Incredecs PIeciso? entcontexts. | observed that applying context sensitivity partially, only o enough tha it manipulaes only managesble sets of data and thus &0 Manbin-band in @ ool poinsio analveis o for data-driven program analysis as well as a learning algorithm to find the model parameters. Our model uses ,
.0 ~0bJ 1) t resent a calling bility. Many variants of context-sensitivity exist, and it is dlﬂ":c}llt Abstract but at an infeasibly high cost. We show that a selective combi- naturally resll - balance between analysis precision and speed. However, existing te| scales impressively well, or the analysis gets quickly derailed at the because smaller points-to sets lead to less work [14]] for daf prog; y herefore is able to express nonlinear combinations of program ‘
<5 sites (as k context elements) to rep hoose one that leads to reasonable analysis time and obtains so00 ject-sensitivity has emerged as an excellent context abstraction Points-tof - pot o0 0 S Y VEG SO0 B SIEW SRS SRy from differen|) 4 cioht i erizes this method sl first sign of imprecision and becomes orders-of-magnitude more Context-sensitivity is a common way of pursuin} hoolean formulas over atomic features and therefore is able to exp R
0 . 1 ts re tod me ai Object-sensitivity has emerg i ined context do not provide much insight into what charact g p! iy ity 3 : : I e o AR
Sacing e patitios of he spane of (ot oo e Sent o ot e - for poin Mbjm Omn“d lmg‘mgu e e el ysisis tighly profitable. Namely, by Recping & comeine ulm e;‘ sensitivity ha inci o h for identifyin, -critical hods, based than would be expected given the program’s size. ffe ility in points-to analysis. It consists of quali roperties. Key technical cha]lenge is eﬂiclently determine a set of good oolean formul
ducing a finer partition of the space of (concrete) ¢ We present the ScALER framework that addresses this problem. tical success, howey is poorly unds d. For sists of. § only when analyzing selected language features, w: c‘:n cl ot:iti (22,23]and 4 principled approach for i en gp sion- al me pased. b cunemly 0 approach that makes precise context 1 analy- R Ao I technical T et st o good boole At efeiently learms K
thod call. In this paper, we introduce BEAN, al scarer efficiently estimates the amount of points-to information 3000 instance, for a context depth of 2 or higher, past scalable imple- CXPIessi approximate the precision of an analysis that keeps bol o both A callsitdl - explain where most of the arises In ¢ ! tve p ses (of any flavor: call-site-, object-, or type-sensitive) scale v formation (e.g., “what objects this method argumerf ~ search would simply be impractical. Ve P ity of algorithm with two static analyzers: a
method call. ision of any k-object-sensitive az] that wouldbe needed to analyze each method with different variants mentations deviate significantly from the original definition of an to duringl gt all times. In terms of speed, the pettorms nomseiecie comp. abelsofinsif _ Fome algorithm to recognize these flow patterns in a given pr lhe board at a level tothat of a analysis: a over all possible exccutions that map to the samel oo e o gt o iveness and generality of our algorithm :
Jmproving the procision of any ; i ~sensitivity. It then selects an appropriate variant for o object-sensitive analysis. The reason is that the analysis has many cally evell inds of context not only vastly outperforms non-sc combi That is, the af : isi d speed. is. To address this issue, we propose introspective analysis: a while separating executions that map to different " . is f d flow-sensitive interval analysis for C. Experimental results g
by still using a k-limiting context abstraction. Thq of context S:ns‘:l:q:);h total amount of points-to information is dcjgn:us of freedom, relating to which context elements are picked mechani nations but is also faster than a mere object-sensitive analysis. This method arguf| tradeoffs between analysis precision and sp al 1d (echniquc for uniformly scaling context-sensitive analysis by elim- way, context-sensitivity attempts to avoid precision] context-sensitive points-to analysis for Java ang f the state-of-the-art techniques n.
. y 1 -object- il 1 - N ; et y . . N . —oft . f
1 allocation sites that are redundant context elemq ,‘j?,ff,‘,;’;f{}l‘,’h.f: utilaizmg the available space to maximize precision. 100 at every method call and object creation. We offer a clean model psmlcr o result holds for a laxlie array of analyses ;ee fp 1-object sfnsm::v method invo Our experimental results on standard bend}llxna;ka;l;l: world proj inating its performance-detrimental behavior, at a small %,gct{s,_tzn ing the behavior of different dynamic program § show that our automated technique significantly improves the performance of the stat ’
| i ich i bui i i - c analysis design space, scuss a formal and informal un- ooject-olf - 2-obj itive with a t woct ; the analysis i itivi i nly on the identified precision-cr] ive analysis consists of a common adaptivity ding on the] R]
2 Object Allocation Graph (OAG)Y i T demonslmtg o SCALE(‘1 ﬂch‘“ezp;es ’ (rlm l:“ ?lndly:];:l:‘;l? ;itlhw‘:ll;'da‘:rﬁ ;:wu::n:m‘:l‘c good object- lambda 4 mbhshmg anew set of performance/precision sweet spots. m:ﬂax"oz ?nv‘x ?PPL‘e; C:"”t‘ltleXt 531.15_"-“/1‘}’ pahlitglhaily’l)zec)i,se conventional col;text-sensi ;:ﬁ::e h',’::';:f?;:f:zon{el: insensitive analysis, lhﬂn use the sensmvl(y Co:‘;;’:sma':‘:y Havors, depm [122g 23], o mcludmg ones hand-crafted by by experts. ,
N insensiti sen’s analysis i ility for all the evaluated programs (e.g., speedu erstanding ject-sel 0 ¢ 3 ! r 98.8%) of the precision of a y- : . . ‘ -
e.g., a context-insensitive Andersen’s analysis) pq dictable scalability v . i s sensitive analyses. The results are surprising in their extent. We analysis in the code ¢ o y v ot ety oo (s aaaiyge > pro lsite e uman i .. Computing methodologies —» Ma
o ;rfﬁam and then avoid them in the subsequent ki can reach 10x for Z-Ghleﬂ'smsmvx;y})‘, “l’,h‘le :l"rowﬂll_llgl;*l’}'::i‘s“’" Figure 1: Cﬂmp"i“’ ;.Lnnj‘(ll:; ;:s‘:liy:;ic;l:;:::n:ha\:c ;::]c a sgub—oplimxl choice of hind any C}a‘;&ﬂnﬁ a?d Sub]ect Descf'P""’ E3.2 [l”g‘c’ and M""""‘g: a context-insd with a context-sensitive heap), with a substantial speedup (on averagd ;:1“ Sc Lo “fems mm}'wm ot case explosion in the running tme 119, 20]' ﬂ.,,e_| ,ypi 5:711-:0 :‘:& ‘[“). . CCS Concepts: » Theory of computation — Program analysis; « p g !
1 : ceeds that of the best alternative techniques. re 1: i mal choic ind anyl - Categories ‘ vl eploion e o y ' . |
ysis for the program. BEAN is generally more prec that matches or even excee sens;;:’lt% Z-fyl_;e(se cu?lcxls, to ltlhc hs_cvcrc detriment urlgrtc“;:;n‘i:glzc:;u:;:g:dn\l‘{; ; :;};:: Analysis; D34 [F L P ’f’i"'s':s;:el, CCS Concepts: » Theory of computation — Program analysis; or space. 'l]'hc Iif?"&fsitﬂlﬁ.ﬁe als; ilr:. ;]ip;zfgzt:gpﬁzngg r;:z: even :hc b?“ algorithms ha;:s : IC&T;:::;: :;’1::; ,‘, chine learning approaches. l
nigi at is guars as as k-ob; ses. The y-axis is try define a “full-object-sensitive™ analysis b~ . . Pprogram eleme: cannot maintain precision. Past literature re N - P ow- .3
precision that is guaranteed to be as good as] CCS CONCEPTS . andall truncated casf higher precision, and often performance, for the exact same con- interact Compilers to anything of dditional Key Words and Phrases: static analysis, points-to analysis, can be remarkably effective, achieving scalability (often wnh dm— mance of a [...] deep-context analysis is bimodal Additional Key Words and Phrases: Data-driven program analysis, Static analysis, Context-sensitivity, F
have implemented BEAN as an open-source toolla « Theory of computation — Program analysis; text depth. We also introduce “type-sens " as an explicit apl- ru:guum General Terms ~ Algorithms, Languages, Performance obj2 may pof] Additional Key : matic speedup) for scnsitive analyses have been associated with very | it
. , ' e ‘ analysis cansists j + alyses. " [15]; “algorithms letely hit a wall 4 sensitivity
g two state-of-the-art whole-program pointer analy: to producd of obj that preserves high context qual achie . i ensitivity: object. 1 class © € ACM Reference Format: for deep context-sensitive analy: contexts” [157; “algorithms completely
' . N . . —fail- KEYWORDS ility [12, 30, 35]. d cost. A S points-to analysis consists Keywords points-to analysis; ~ context-sensitivity; j s o Ref . . ontexts” e e :
reprosentative clionts (may alios and ey f‘”; C‘lj}i alysis, points-to analysis, Java i‘;ﬁattl]:ite),\r[elop soph!s :::);::»s an uncumi‘:lcni::alc use Zr types as context: the context types objectabll sengitivity; type-sensitivity i)"""’ foo(Yue Li, Tian Tan, Anders Moller, and Yannis Smaragdakis. %0118.1 flre Categories and S"bje“ Dz sc npmts F3 21 Lagm and Me:)nmg: ;‘;2::' :‘::;ig::d“:uhs o fii s n})n 3 2_‘g)bjw_ ACM Reference Format: . ' ' . ‘
ine latge pava programs fronl1 R e f Ao Keteene Format. Y 16,38, 22, 21,25, 32, 394 are not dynamic types of objects involved in the analysis, but in- s ¢ Pointer Analysis. Proc. ACM Program. Lang. 2, OOPSLA, Article of Programel: I e] ttoie ™ e e Snmin for 291 10 DaCapo benchmarky - i o6 ok Jeon, Sehun Jeong, Sungdeok Cha, and Hakjoo Oh. 2017. A Machine-Learning Algori T 1““39
b succeeded in making both analyses more precise fo: ACM Reference Format: . . - " er bounds on the dynamic types of their allocator objects. t0”) ove . s class Clien| 2276511 Amiysis 7 P i under 90min for2of 10 DCapo benchmar in ' , : : ' chine Leaming Algo AthnmIC >
\ under each client atg only small increases in analys] e e B e e i b o 15 Zﬁi&i“:;ii%:ﬁ‘;‘* S remmte expose the influcnce of context choice on the quality while s 1. Introduction st commotcom. "8 BEC org/10.1145/32 Pl penchmas ke mor an 000, atough O B T e Program Anlysis, ACM Trans, Prog 2. Sy g
a First Pointer Analysis with Self-Tuning Context- 2 y g * P o ctrate e-sensitivity to be an idea kinds of Points-to analysis is a static program analysis at cor - c1.£o0(ol)) . e size ge jzed in unds) 000001 0000001 '
o the 26tk ACM Joint Buropean SaﬂwmE"gmmw(zzszcgn/pf;;?;;)mpzﬂy:n"f:; analysed mm?;l}f ;] &r,&‘)::\,(;: iﬁ;:.y;hﬁ‘ 2%::::5?::::35: :hin i "-gr the-art with (18,1914 puting all objects (typically identified by a}l]oc;[lon site) :hag a (pn»d Y iteoe 1 INTRODUCTION General Terms Algorithms, Languages, Performance mm‘l‘:nz;,bv;i:; lcet?:z:l ;i‘:;‘;‘c}/r‘f‘;'n‘::;c:' When i (December 2017), 42 pages. https://doi.org/ o
the Foundations of Software Engineering) Nove Context sensitivity has| T &) b ety ari SRR ‘ ' ‘ formance. - r
. j‘.u;n zna';e zak: Buena Vista, FL, USA. ACM, New York, NY, USA, 12 pages. context information us: a spectrum of analyses that simultancously enjoy speed (1 LI;L]' i’:{o‘s'e"::hﬁv':aﬁnﬁ analysis) has been the focus of intense re- 10 Pointer analysis is a fundamental family of static analyses th Keywords points-to analysis; ~ context-sensitivity; ~ object it fails quickly exp i
& 1 Introduction httpsi/dof.org/10.145/3236024.3236041 " itivity (§ times faster than an analogous object-sens al (13,4 is among the most standardized and well-understood of 1 ¥ ! - ; Such information is essential] sensitivity; type-sensitivity contextinsensitive analyses uniformly ‘Seale well 1 INTRODUCTION -
5 tps://doi.org/10. and type-sensitivity ble to analyses with much less context-sensitivity), and itis a sl searchand is among the mos ized and tood pointer variables in a program. Suc ormaf cineniive amalyes uifomly sl well N .] o secuied ’
former is strictly more| ity (comparable y: alysis with the ielding inter-procedural analyses. The emphasis of points-to analysis algo- In contrast, of N n N aid puts. Figur y) ") atic brogr analysis is a substantial amount of manual effo g '
.0) . . . lays 4 recision le to the best object-s analysis with the yielding n r e . £ o of Doi havior ‘o " i . dural control flow in object-oriented programs, and i . apo benchmarks, analyzed with the Doop frame One major c! a]lenge ins program y: : .
K " Pointer analysis, as an enabling technology, plays a 1 INTRODUCTION 37). However, with an P " depth) sensitivi] rithms is on combining fairly precise modeling of pointer bel @ of instructioff inter-procedural c ° oL 200 1. Introduction Cap l (lmcym) analysis and a 2-objec ‘ i f al 1d applications. Practical static analysis tools use a R
' client applications, including bug detection [3,25,35, 3 pointeranalysisisa family of staic analysistechniques thatprovide oo 0 v oo V) same context depth). et] it il alow satiiactory aecsion st o esonabie pow. purtner. 010, 3 b engineering tools, e.g., for bug detection [Chandra et al. Points-to analysis is probably the most common whole-p s with a contextsensive heap (b, Thechf - for tuning the analysis performance for real-world app ; itivity is essential 3
y : ‘ : b i i i s Li i -
. imisation [6,33], and program understa] a foundation for many other analyses and software engineering i1 the sense that progra Categories and Subject Descriptors F.3.2 [Logu.s and Meanings sensitivef] that will allow satisfactory precisior fren leads o higher asymp. ‘allocation-s} analysis [Arzt et al. 2014; Grech and Smaragdakis 2017; Livshit} % analysis, and often serves as a substrate for a variety of high- Yy time o the longest-running benchmarks§ yarjety of heuristics to optimize their performance. For example, context-sensitivity is N 1
/ mrsions o peter sy s precision ar f itiy b drection 15 2] sy aalyie L 29, progrm veies, s may bave com of Frogran; ort g s soncel o compionty mz:mmg pms::;n:wzr is rarely encountered in e atocaio] i ink et al. 2008; Pradel et al. 2012], and program debuggin} level program analysis tasks. Points-to analysis computes the set of hsqlt);b and jython, timed out after 90mins on a VoL ; i d as it distinguishes method’s local variables and objects in ,
mensions of pointer analysis precision are flow-sensiti bug detection [13, 26], security analysis [1, 23], program verifica- Figure 1 shows gm Analysis N fnitions and i mc‘lj\fnl ratice. Instead, techniques that are cffective i maintaining |:e allu‘ch::;:ior tion [Fink et al. 3 T . g objects (abstracted as their allocation sites) that a program variable and would not terminate even for much longer tin for ana]yzmg object-onente programs, ! g neth ol thods in the Bromn Y
For C/C-++ programs, flow-sensitivity is needed by tf - ion (5, 7}, and program debuging and comprehension [5, 211, grams' under 2-objed ; D3.1 [Programming Languages): Formal Definitions an YRR ood precision often also exhibit better average.case performance. contoxt. Tna] Sridharan et al. 2007]. . may point o during rutime, The promise,as wellas th challenge, 214 would bt rminaie even for much fonger i different calling-contexts. However, applying context-sensitivity to all methods in the prog
4 . : S ava programs, h| ‘The goal of pointer analysis is to statically compute a set of objects the most precise varial Theory-Semantics What since smaller points-to sets lead to less work. 1l anal For decades, numerous analysis techniques have been develo} or personal or formance, while context-sensitvity often causes ru) ! context-sensitivity only to profitable
. For object-oriented programs, e.g., prog; 4 (abstracted as their allocation sites) that a program variable may (2type) [32], and cont est way P will analyze 3 P ally for object-oriented langy Permission to make digital or hard copies of all or part of this wmkd personalox oo does not scale and therefore real-world static yzers apply ! ;
: : > i : : iti I ' % Perfoxmance eiter-k dhjects twt = i d more efficient, especially for object-orien classroom use is granted without fee provided that copies are not made o distribut ‘memory us ld Y L 2014 ther ex eis a
| 3 to deliver trackable and useful precision [17] . i . Although stating this goal is simple, it is . General Terms Algorithms, Languages, better-kn) el precise and mq : i ; e o it of comertacn ' < [Somaragonios et al, 204, Y 8 ‘
') kr{%vglc are o general approaches o achieving coif - £00 e -) Z‘E '.i""l ;c,:-la}:’l, the met f this work for personl o g:g:e:;v'\:e; Balatsouras 2015; Sridharan et al. 2013). One of the most suf i pgs. oyt o coponcs o s work oveed by tbcs v mu:arc:fc:g:.hllh‘;“:f:: ‘;mf;\l’uynng context.ind Methods determined by some heuristic rule [M ., 2(%06] Because it is impractical to keep track
h . it can finis . ; i ‘ is work for pers ; . . ; .
3 . ;, call-site-sensitivity (k-CFA) [27] remision I°j;“’:j;ﬁ‘ﬁ&l:{'}f;;ﬁﬁfﬁﬂa",r(‘i,:',if fthis work for personal o while it can f P thometh) reomiston w oo AL N e may be rem ision is context sensitivity [Milanova et al. 2002, 2005; Sl b misibe homorc Absctn wih e s i, T coptienie or N 1o o misting precisf relational analysis such as ones with Octagons [Miné ‘ o keep tra
oy oriented programs, call-site-sen:) sl s * program size s far Permission to make digital or hard copies of all or part of this work for personal or SPAT ot proftor commereil advantage and ht copies bear tis notee and the ul citation it is not posq PTECH S ! h method tolf FTlsh opostonsencrs ortoedis e lss e - pec well-behaved programe, Even wonc, for some o £ all variable relationships in the program, static analyzers employ variable-clustering heuristics
X 24,29] (among others). A k-CFA analysis represents a on he st page Copyrihts o components of s work owned by others han the (12718 methods) isJ)0 eranted without fee provided thatcopcs e not mace o istbued per tiaﬂ-. cn e s e Tocopy v o b, 0 ot on s o b e wda o Smaragdakis etal. 2011], which allows each program :,g:,ln;“ : eq..‘;s.l ,1,,,2,3;4 s i e et s mon] varial
! i i th credit s permitted. To copy otherwise, is not for profi v d that copies bear this notice and the full cit at led 1 e o ocaten 3 - ¢ - . ot , g e cont
3 call by using a sequence of & call sites (i.c., k labels] s ichred Aoy o copy o otee P TS mOUY oot commcil aivaagead i cpies b s s ad e cion informa] LDt e 10,3015 et WA U5 not even cleif to separate the static abstractions of different dynamic instantial ~ FLor g ek e vt s Tights lcensed o ACM. imsensiveanalyss s st ot goo(zsin:l.;]g(:rﬁg e et sccond authors contributed equally tothis work ¥
] i j it is uses Ot v N 15 20, ek pana Vot D") o ks, Toquies rioe spoifi prrmion sadfor o o M 978.1-4503- ...$15.00 all calls o # ACM 9 try [4] and academic researchers L
Y ol site). In contrast, a k-object-sensitive analysis uses k g"f/m’f ';surfr:::n:b}:f'«'?lz D016, Lake Buena Vista FL, USA ‘P(::f l'l““ :':M‘;’r‘)'b"“ . ”[‘l""“:f: :'m" - Lh?l led tfl Copyright © 2013 ACM 9781-4503-2014-6/13/06. . §1. J—— T audk, amoeller@cs.aud] midedor et 114312504551 3854450 ry [4] FCortenpnting authur ’
i i] .). Publication rights licensed to ACM. _— | ‘ e s Austin, Texas, U sm 0 clow, a > ’
| k labels with each denoting a new statement) as cont} © 2018 Copyright held by the owner/author(s). Pul Ve ol popular o L o e
! ACM ISBN 978-1-4503-5573-5/18/11...$15.00 eclipes) of e DaCope oo
https://doi.org/10.1145/3236024,3236041
{ A
5357
— g = b - S . -
= 2 - e - - — .- e ! —~ — g N =
\ - < ’ g Bl - o - . e = o e e o e e o o ey \ | y =
4 = g s g = 2 - J LT i e s = g o g PV AT g q
! - > g 3 3 d == _ = - T e Ty oy RO Y vV T - v\
o = ” - g Sl D P = e e £ e o & B = - .
. g =g = = - P i - gt = g o o oz v g — 3 % Y FAREET T oS) - d
= g o . zre o e — g g o - ‘
(
< = s a - D E o - E
‘ . - -) | =)) = - - - eg w3 %3 4
> y) . —_— — i « <. 3 AN -, — ~
_ . - e .Y o A0 g g
2 = B o o > S O SR "y
Y- 2= Bafl- oy - omre

'y

'y
o

)

“We do not discuss the performance of our approach for call-site-
sensitivity since call-site-sensitivity is less important than others

Jeon et al. [2019]

I

Making k-Object-Sensitive Po

More Precise with Still k&

Tian Tan', Yue Li', and Jingling
1 School of Computer Science and Engineeringll
2 Advanced Innovation Center for Imaging Tech|

Abstract. Object-sensitivity is regarded as argul
abstraction for pointer analysis in object-oriented
k-object-sensitive pointer analysis, which uses a sef

| X

Scalability-First Pointer Analys]
Self-Tuning Context-Sensiti

Yue Li Tian Tan
Aarhus University Aarhus University
yueli@cs.au.dk tiantan@cs.au.dk
ABSTRACT

Context-sensitivity is important in pointer analysis to ensure high
precision, but existing techniques suffer from unpredictable scala-
bility. Many variants of context-sensitivity exist, and it is difficult

Anders Molle
Aarhus Universit]
amoeller@cs.au.d

timeout (>10800)

Pick Your Contexts Well: Understal

The Making of a Precise and Scalal

Yannis Smaragdakis
Department of Computer Science,
University of Massachusetts,
Amherst, MA 01003, USA
and Department of Informatics,
University of Athens, 15784, Greece

umass.ed

i.uoa.gr

Martin Bravenboer
LogicBlox Inc.
Two Midtown Plaza
Atlanta, GA 30309, USA
martin.bravenboer@acm.

Hybrid Context-Sensitivity for P

George Kastrinis

Department of Informatics
University of Athens
{gkastrinis,smaragd} @di.uoa.gr

Abstract

Context-sensitive points-to analysis is valuable for achieving high
precision with good performance. The standard flavors of context-
sens 1 itivity (kCFA) and obj

Yannis Smarj

One of
cision/perfors
sensitivity cd
context infors
same context]

Precision-Guided Context Sensitivity fq

YUE LI, Aarhus University, Denmark

TIAN TAN, Aarhus University, Denmark

ANDERS M@LLER, Aarhus University, Denmark
YANNIS SMARAGDAKIS, University of Athens, Greece

Context sensitivity is an essential technique for ensuring high precisid

s Ay,

Artyy

Introspective Analysis: Context-Sensitivity, Across the

Yannis Smaragdakis

Abstract

Context-sensitivity is the primary approach for adding more preci-
sion to a points-to analysis, while hopefully also maintaining scal-
ability. An oft-reported problem with context-sensitive analyses,

George Kastrinis
Department of Informatics
University of Athens
{smaragd,gkastrinis,gbalats }@di.uoa.gr

George Balatsouras

of points-to analysis is to yield usefully precise infos
sacrificing scalability: the analysis inputs are large
algorithms are typically quadratic or cubic, but
near-linear behavior in practice, by exploiting pro;
and maintaining precision. Indeed precision and pes
g0 hand-in-hand in a good points-to analysis alf
algorithms are often found to be both more preg
because smaller points-to sets lead to less work [14]
Context-sensitivity is a common way of pursuin]
ility in points-to analysis. It consists of quali

ables and objects with context information: the anaj
formation (e.g., “what objects this method argumery
over all possible executions that map to the samd
while separating executions that map to different
way, context-sensitivity attempts to avoid precision
ing the behavior of different dynamic program
sensmvuy comes in many ﬂavon dependmg on the
such as call- [22, 23], o

19, 20], dnd type-sensitivity [24].
ked fact about context
even (hc beu algorithms have a common failure nf
cannot maintain precision. Past literature reports
‘mance of a [...] deep-context analysis is bimodal”
sensitive analyses have been associated with very I
contexts” [15]; “algorithms completely hit a wall
ations, with the number of tuples exploding expo|
Recent published results [12] fail to run a 2-object-
sis in under 90mins for 2 of 10 DaCapo benchmark]
benchmarks take more than 1,000sec, although mq
marks of similar or larger size get analyzed in unde]
Thus, when context-sensitivity works, it work:
terms of both precision and performance When i

it fails quickly exp

context-insensitive analyses uniformly sc.ﬂe well,
puts. Figure 1 vividly demonstrates this phenomer}
Capo benchmarks, analyzed with the Doop frame

(insens) analysis and a 2-object
ysis with a context-sensitive heap (20bjH). (The ch:
analysis time of the longest-running benchmarks]
hsqldb and jython, timed out after 90mins on a
and would not terminate even for much longer ting
be seen, context-insensitive analyses vary relative}
formance, while context-sensitivity often causes ru
memory use) to explode.

Faced with this unpredictability of context-sen)
mon reaction is to avoid it, fn\vunng context-ing

ses, and, y, missing precis
well-behaved programs. Even worse, for some af
chewing expensive context-sensitivity is not an opt
insensitive analysis is just not good enough. Rep
try [4] and academic researchers [3] alike reiter:

sites (as k context e_lements) to represent a calling st, a L . Abstract 1. Infl Combining both flavors of context-sensitivity increases precision entcontexts.§ observed that applying context sensitivity partially, only on a select s| however, is that they are bi-modal: either the analysis is precise
o s . to choose one that leads to reasonable analysis time and obtains b feasibly high We show th 1 bi- . ot it maniaulatos snageable s . .
call, may end up using some context elements re 3 - O 2 ¢ 5 me ar Object-sensitivity has emerged as an excellent context abstraction Points-to ut at an infeasibly high cost. We show that a selective combi- naturally restf balance between analysis precision and speed. However, existing tel enough that it manipulates only manageable sets of data, and thus
ducing a finer partition of the space of (concrete) | high precision, without running the analysis multple imes. 000 for points-to analysis in object- -oriented languages. Despite its prac- most fun] "0 of call-site- and object-sensitivity for Java points-to anal- from differen| ysis p peed i 8 scales impressively well, or the analysis gets quickly derailed at the
o o T thi I We present the SCALER framework that addresses this problem. ‘Mfl’ oS hm: et J ‘g oirl sp ,Ph)r nost iia ysis i highly profitable. Namely, by keeping a combined context seaitirity b do not provide much insight into what characterizes this method suf first Sign of imprecision and becomes orders-of-magnitude morc
s 2 N N . N success, howe sists of ! > > no sight Int er
method call. In this paper, we introduce .E'AN, al ScatLeR efficiently estimates the amount of points-to information 2000 instance, for a context G of 2 of by h:: d:" scalable imple- xoreesid only when analyzing selected language features, we can closely 122.23]and 4 principled approach for identifying p -critical methods, based than would be expected given the program’s size. There
improving the precision of any k-object-sensitive af that would be needed to analyze each method with different variants P Sher, P P pres: approximate the precision of an analysis that keeps both contexts y : . . L : i~ is curremly no approach that makes precise context-s analy-
X A o . ’ - hen sel N ant f 2000 mentations deviate significantly from the original definition of an toduringl 5t all times. In terms of speed, the selective combination of both A call-sitdl explain where most of the arises in context ive po;
by still using a k-limiting context abstraction. Thef of context-sensitivity. It then selects an appropriate variant for object-sensitive analysis. The reason is that the analysis has many cally cve : g ¢ " labels of inst]) . . o ses (of any flavor: callsite-, object:,or type-sensitive) scale across
X € each method so that the total amount of points-to information is it - n ¢ kinds of context not only vastly outperforms non-selective combi- Thatis, th an efficient algorithm to recognize these flow patterns in a given pre the board at a level to that of a anal-
allocation sites that are redundant context elemd o ¥ . o0 1000 degrees of freedom, relating to which context elements are picked mechani Dations but is also faster than a mere object-sensitive analysis. This at is, the af . L
Object Allocation Graph (OAG), which is built b: bounded, while utilizing the available space to maximize precision. at every method call and object creation. We offer a clean model pointer 1t holds for a 1 { analyse (e.g. 1-obj rensit method arguf ~ tradeoffs between analysis precision and speed. ysis. To address this issue, we propose introspective analysis: a
ect ocation Gra , which is bui . . 3 result holds for a large array of analyses (e.g., 1-object-sensitive, a . . i . L N "
(, a context-ins f Andersen’s analysis) Our experimental results demonstrate that SCALER achieves pre- o for the analysis design space, and discuss a formal and informal un- object-ol 2 b siti wni a e hefp, p et s method invox Our experimental results on standard benchmark and real-world prof technique for uniformly scaling context-sensitive analysis by elim-
e.g., a context-insensitive Andersen’s analysis) pd dictable scalability for all the evaluated programs (e.g., speedups & a’° & derstanding of object-sensitivity and of how to create good object- lambda ¢ mbhshmg 4 new set of peformance/precision swest spots. the analysis appl.ies context sensitivity parti ally only on the identified precision-cr] inating its perfonna_ncevdemr{xemzl pehav:or. at a small precision
program and then avoid them in the subsequent k: can reach 10x for 2-object-sensitivity), while providing a precision . < sensitive analyses. The results are surprising in their extent. We analysis method invod (98.8%) of th ision of a highly-preci tional context _J expense. Introspective analysis consists of a common adaptivity
ysis for the program. BEAN is generally more prec that matches or even exceeds that of the best alternative techniques. Figure 1: Compariso} fi1,q ha(past implementations have made a sub-optimal choice of hind any] ~ Categories and Subjm Descnptws E32 [Loglc: and Meanmg: in the code ef (96.8%) ol the precision of a %hY precise conventiona’ context-sensi| pattern: first perform a context-insensitive analysis, then use the
sision that is guaranteed to be as good as k-ob sensitivity, 2-type sef coniexts, to the severe detriment of precision and performance. We Furthernf] ~ of Programs): a context-insql with a context-sensitive heap), with a substantial speedup (on averagd results to selectively refine (i.c., analyze) pro-
precision that is guaranteed to be as good as fv-00] CCS CONCEPTS ses. The y-axis is trl efine a “full-object-sensitive” analysis that results in significantly analysis Analysis; D.3. 4 (F L P method foo i i gram elements that will not cause explosion in the running time
have implemented BEAN as an open-source tool a: + Theory of computation —> Program analysis; andall truncated casf higher precision, and often performance, for [m exact same con- interact Compilers foo separatel] CCS Concepts: » Theory of computation — Program analysis; or space. The technical challenge is to appropriately identify such
two state-of-the-art whole-program pointer analy: i P e text depth. We also introduce ‘1)’pc sensitivity” as an explicit ap- functiong N to anything d . . : 3 . program elements. We show that a simple but principled approach
F-the- ° ‘ o produc 150 it - General Terms ~ Algorithms, Languages, Performance ovs2may pof Additional Key Words and Phrases: static analysis, points-to analysis,| can be emarkably effctve, ahieving scalaily oftn with dra-
representative clients (may-alias and may-fail-cast KEYWORDS scalability [12, 30, 35) of obj L sens that preserves high context ‘}“-’l matic speedup) for
i " " ” X . 2 30 221 u at reduced cost. A S oints-to analysis ists ints- sis: s . cect- 14 c .
nine large Java programs from the DaCapo benchi static analysis, points-to analysis, Java ued to develop sophis m);kcs an unconventional use o £ types as context Plhc context types objectah lie'_‘yw:xd; ‘5::‘:2 ,:o’m’f;alym' context-sensitivity; object 3 clase foim ACM Reference Format: for deep context-sensitive analyses.
suc i aki 8 ses . P y . Sensitivity; type-sensitivi i, Ti i i
succeeded in making both analyses more precise fo ACM Reference Format: 16, 18, 22, 24, 25,32, 3 are not dynamic types of objects involved in the analysis, but in- informat] 5} Yue Li, Tian Tan, Anders Moller, and Yannis Smaragdakis. 2018. Pref Categories andSllb]echeu‘nplﬂn E32 [Lagm lmdenmg:
under each client at only small increases in analys| Yue Li, Tian Tan, Anders Moller, and Yannis Smaragdakis. 2018. Scalability- One of the key mech| stead upper bounds on the dynamic types of their allocator objects. t0”) oves . N . Pointer Analysis. Proc. ACM Program. Lang. 2, OOPSLA, Article 141 of Programs): —Program
First Pointer Analysis with Self-Tuning Context-Sensitivity. In Proceedings is context sensitivity, | ~ Our results expose the influence of context choice on the quality while sef 1. Introduction s crase oeal orgi0.1145/3276511 Analysis; D.3.4 [F ing L S
of the 26th ACM Joint European Software Englneering Conference and Symgo- analyzed differently al of points-to analysis and demonstrate type-sensitivity to be an idea kinds of @ Points-to analysis is a static program analysis that consists of com- , ¢1_feo(o Compilers
1 Introducti sium on the Foundations of Software Engineering (ESEC/FSE '13), November Context sensitivity has| ~ with major impact: It decisively advances the state-of-the-art with [18, 1914 puting all objects (typically identified by allocation site) that apro- 5 ... INTRODUCTION
ntroduction b 2”/3& Lake Duena Vista 1, ;sz;hi\f“"v New York, NY, USA, 12pages. ¢optent informationusq @ spectrum of analyses that simultaneously enjoy speed (several Ever | gram variable may point to. The area of points-to analysis (and s c2.foo(of] 1 General Terms Algorithms, Languages, Performance
ps://doi.org/10.1145 i iect- il i i i isi i -
. . . and typg.sc,?mmty [times faster than an analogous object-se ve analysis), scalabil a].{l}L its close rcl_auvc. alias analysis) has bgen the focus of intense re- w0 R Pointer analysls is a fundamental fanuly of static analys es th Keywords points-to _analysis; context-sensitivity; _ object-
Pointer analysis, as an enabling technology, plays a 1 INTRODUCTION former s strictly morel] ity (comparable to analyses with much less context-sensitivity), and itisasfl search and is among the most standardized and well-understood of 1 ! N > N e a A Keywords » 3 3
lient licati includi bug detecti 3.925.35 37). However, with an; precision le to the best object-sensitive analysis with the yielding inter-procedural analyses. The emphasis of points-to analysis algo- In contrast, o pointer variables in a program. Such information is essentiall sensitivity; type-sensitivity
client applications, including bug detection 3,25,35, Pointer analysis is a family of static analysis techniques that provide gain in precision, scala] $ame confext depth). sensitiviff rithms is on combining fairly precise modeling of pointer behavior ¢ UE: W jnter brocedural control flow in object-oriented programs, and iff
compiler optimisation [6,33], and program understa| a foundation for many other analyses and software engineering in the sense that progra analyses] with scalability. The challenge is to pick judicious approximations H b . . X 1. Introduction
. . : . o e [» & 19,9 ¢ P8 Cutegories and Subject Deseriptors F32 (Logics and Meanings sensitive] that will allow satisfactory precision at a reasonable cost. Further- (1€nce, 2 bl engineering tools, e.g., for bug detection [Chandra et al. 200
mensions of pointer analysis precision are flow-sensitiy tasks, such as program slicing [36, 35), reflection analysis [19, 31], metrics may have com| of P 1: f es—P: sensitive " P “allocation-s} . X ks Points-to analysis is probably the most common whol
PPN bug detection [13, 26], security analysis [1, 23], program verifica- i i Y - ograms, ot rogram is concefl more, although increasing precision often leads to higher asymp- analysis [Arzt et al. 2014; Grech and Smaragdakis 2017; Livshit] P
For C/C++ programs, flow-sensitivity is needed by o ion [8, 27], and deb, d hension [5, 21 Figure 1 shows timfl A paysi totic this behavior is rarely encountered in an object, thy . . . static analysis, and often serves as a substrate for a variety of hgh-
. P tion [8, 27), and program debugging and comprehension [5, 21]. grams! under 2-objed - D3.1 [Programming Languages): Formal Definitions and & al d. techniques th e the allocatiof) tion [Fink et al. 2008; Pradel et al. 2012], and program debugginfl level program analysis tasks. Points-to analysis computes the set of
For object-oriented programs, e.g., Java programs, hf The goal of pointer analysis is to statically compute a set of objects the most precise variaf } 87 g Language cvenmog 2ot practice. l';ma e e ective at "'?‘"m“'ng the method bjects (abstracted as their allocation sites) that abl
. Theory—Semantics , i ibi 4 -z ; objects (abstracted as their allocation sites) that a program variable
s k deli Xabl of s (abstracted as their allocation sites) that a program variable may P Theory—Semantics Whatl] 800 ?mcxslono_ ten also exhibit better average-case performance, context. Thu Sridharan et al. 2007]. jects (e e wes) o P! _EI
is known to deliver trac e and useful precision [17] . a a na) (2type) [32], and cont est way since smaller points-to sets lead to less work. : . . may point to during runtime. The promise, as well as the challenge,
L. point to during run time. Although stating this goal is simple, it is . § s P ance Y will analyze For decades, numerous analysis techniques have been develo
. - General Terms ~ Algorithms, Languages, Performance "
There are two general approaches to achieving coy + 20b3 is not scalabl better-kn objects that o 1o i o1 more efficient, especially for obiect-oriented lan Permission to make digital or hard copis of allor part of this wrk for personal or
oriented programs, call-site-sensitivity (k-CFA) [27] Permision o make igal r hardcopies ofall o prt o this work o personal o while it can finish o sis uses fragment nei] P > esp Yy) BUN classroom use is granted without fec provided that copies arc not made or distributed
) X e .) F;s;::::n use s granted without fee provided that copies are not made ot stribute o program size s far } the meth Permission to make digital or hard copies of all or part of this work for personal o nor to how nff Balatsouras 2015; Sridharan et al. 2013], One of the most sul for profit or commercial advantage and that copies bear this notice and the full citation
24’ 29] (among Othcrb)' A k-CFA andly&h represents a on the first page. Copyrights for components of this work owned by others than the (12718 methods) i Permission to make digital or hard copics of all or part of this work for personal or separateg] classroom use is granted without fee provided that copies are not made or distributed may be rem .. . i . on the first page. Copyrights for components of this work owned by others than the
all by usi ¢k call si ic. k labels athors) st e horores Abstacton methods) is h d without fee provided that c de or distributed er cs for profit or commercial advantage and that copies bear this notice and the full ctation e precision is context sensitivity [Milanova et al. 2002, 2005; Shl author(s) mustbe honored. Abstracting it rits permitid. o copy oherwise, or
. . o J ' with credit is permitted. To copy otherwise, of h classroom usc is granted without fee provided that copies arc not made or distribute per call-4 c i it is not pos:
¢ y using a sequence of k call sites (i.e., k labe . " ever, 2type is not for profi cial adv . on the first page. To copy otherwise, o republish, o post on servers or to redistribute po . . republish, to post on servers or pecific permission
republish, o post an servers ar lis for profit or commercial advantage and that copies bear this notice and the full citation - page. To copy P po 1 s dakis et al. 2011), which all h thod to H
site). In contrast, a k-object-sensitive analysis uses k and/or a fee. Request permissions from permissions@acmorg, latter; on the first page. To copy otherwisc, to republish, to post on servers or o redistributc that led (1o ists,requires prior specific permission andior & fee. and a callsitf STaragdaxis et al. » which allows each program method to and/or a fee. Request permissions from pcrmmmns@ﬂcm org.
. 2 . ESEC/FSE '18, November 4-9, 2018, Lake Buena Vista, L, USA to lists, requircs prior \pL\|ﬁc permission and/or a fec. informat pLDII3, June 16-19, 2013, Seattle, WA, USA. not even cledl o separate the static abstractions of different dynamic instantial PLDI'14, June 9-11,2014, Edinburgh, United Kingdom.
k labels with each dcnotmg a new statcrncnt) as cont] © 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM. - POPL 11, January 26 011, Austin, Texas, that led tff Copyright © 2013 ACM 978-1-4503-2014-6/13/06....$15.00 all calls to £ Cg&;r:%hgl |1; :;:)ds b2y7lxh:sn/wn;;/6anlh;mi Publication rights licensed to ACM.
- 1-4503-5573- The: 1 populs - 52 97 3-049 clow, N o) . Al 14
ot s Torpire] GonesBAGI A0 or S0 below. Authors el ddresses yoehi@es aud, prps—— Wlfcetoientiiti it
= T i - d7 s 5 i - - - d7 = i . o == = oL . o == = o i ¥ i - - o == = . p ¥ -
SER e =2 e 2 e A o e o i X S e e e e 7 oy PR OT 0 =2 QAo e o D & oo e P = PV XN e
D
- IS e pow

]I A Machine-Learning Algorithm with Disjunctive Model for

Data-Driven Program Analysis

MINSEOK JEON, SEHUN JEONG’, SUNGDEOK CHA, and HAKJOO OH, Korea University,
Republic of Korea

We present a new machine-learning algorithm with disjunctive model for data-driven program analysis.
One major challenge in static program analysis is a substantial amount of manual effort required for tuning
the analysis performance. Recently, data-driven program analysis has emerged to address this challenge
by automatically adjusting the analysis based on data through a learning algorithm. Although this new
approach has proven promising for various program analysis tasks, its effectiveness has been limited due
to simple-minded learning models and algorithms that are unable to capture sophisticated, in particular
disjunctive, program properties. To overcome this shortcoming, this article presents a new disjunctive model
for data-driven program analysis as well as a learning algorithm to find the model parameters. Our model uses
boolean formulas over atomic features and therefore is able to express nonlinear combinations of program
properties. Key technical challenge is efficiently determine a set of good boolean formulas as brute-force
search would simply be impractical. We present a stepwise and greedy algorithm that efficiently learns
boolean formulas. We show the effectiveness and generality of our algorithm with two static analyzers:
context-sensitive points-to analysis for Java and flow-sensitive interval analysis for C. Experimental results
show that our automated technique significantly improves the performance of the state-of-the-art techniques
including ones hand-crafted by human experts.

CCS Concepts: « Theory of computation — Program analysis; « Computing methodologies — Ma-
chine learning approaches.

Additional Key Words and Phrases: Data-driven program analysis, Static analysis, Context-sensitivity, Flow-
sensitivity

ACM Reference Format:

Minseok Jeon, Sehun Jeong, Sungdeok Cha, and Hakjoo Oh. 2017. A Machine-Learning Algorithm with
Disjunctive Model for Data-Driven Program Analysis. ACM Trans. Program. Lang. Syst. 9, 4, Article 39
(December 2017), 42 pages. https://doi.org/0000001.0000001

1 INTRODUCTION

One major challenge in static program analysis is a substantial amount of manual effort required
for tuning the analysis performance for real-world applications. Practical static analysis tools use a
variety of heuristics to optimize their performance. For example, context-sensitivity is essential
for analyzing object-oriented programs, as it distinguishes method’s local variables and objects in
different calling-contexts. However, applying context-sensitivity to all methods in the program
does not scale and therefore real-world static analyzers apply context-sensitivity only to profitable
methods determined by some heuristic rules [Smaragdakis et al. 2014]. Another example is a
relational analysis such as ones with Octagons [Miné 2006]. Because it is impractical to keep track
of all variable relationships in the program, static analyzers employ variable-clustering heuristics

“The first and second authors contributed equally to this work

*Corresponding author
S
- - LT b = - - y = - .
. Py 0y PR T e a - e ae 2o e v -
- ompe AR oG - — en D I Te 3 .Y o Sl > 4 SR BT y

/)

- \\‘
.l
8
A ’
f
"
S
[
9 ,‘ t‘
N p
I
,
"3 :
2 B
i S
|
b /)
x R
;3
n‘ ‘
/ /) w
K 4
3 N
b
. '3
7 s
, A
o
-
8
.
)
'3
|
/A
b
L3
b
A
'
&
X
.
)
»
A
o
&
)
/’
Y
BRRy>

v

PO

)

| X

“We do not discuss the performance of our approach for call-site-
sensitivity since call-site-sensitivity is less

I

Making k-Object-Sensitive Po

More Precise with Still k&

Tian Tan', Yue Li', and Jingling

! School of Computer Science and Engineering}

important than others

Scalability-First Pointer Analys}
Self-Tuning Context-Sensiti

Pick Your Contexts Well: Understal
The Making of a Precise and Scalal

Yannis Smaragdakis Martin Bravenboer

Department of Computer Science,
University of Massachusetts,
Amherst, MA 01003, USA

LogicBlox Inc.
Two Midtown Plaza
Atlanta, GA 30309, USA

Hybrid Context-Sensitivity for P

George Kastrinis

Department of Informatics
University of Athens
{gkastrinis,smaragd} @di.uoa.gr

Yannis Smarj

Precision-Guided Context Sensitivity fq

Introspective Analysis: Context-Sensitivity, Across the

Yannis Smaragdakis

George Kastrinis
Department of Informatics
University of Athens
{smaragd,gkastrinis,gbalats }@di.uoa.gr

George Balatsouras

of points-to analysis is to yield usefully precise infos
sacrificing scalabil ¢ analysis inputs are large
algorithms are typically quadratic or cubic, but
near-linear behavior in practice, by exploiting prog
and maintaining precision. Indeed precision and per
g0 hand-in-hand in a good points-to analysis alf
algorithms are often found to be both more pre
because smaller points-to sets lead to less work [14]
Context-sensitivity is a common way of pursuis
scalability in points-to analysis. It cons of qualif
ables and objects with context information: the ana
formation (e.g., “what objects this method argume
over all possible executions that map to the samd
while separating executions that map to different d
way, context-sensitivity attempts to avoid precision
ing the behavior of different dynamic program
sensumly comes in many ﬂavors dcpendmg on the
such as call- [22, 23], o

19, 20], and type-sensitivity [24].
ked fact about context

even the besl algorithms have a common failure
cannot maintain precision. Past literature reports
‘mance of a [...] deep-context analysis is bimodal” |4
sensitive analyses have been associated with very I
contexts” [15]; “algorithms completely hit a wall
ations, with the number of tuples exploding expol
Recent published results [12] fail to run a 2-object-|
sis in under 90mins for 2 of 10 DaCapo benchmar
benchmarks take more than 1,000sec, although md
marks of similar or larger size get analyzed in unde}

Thus, when context-sensitivity works, it worksjp
terms of both precision and performance. When i
it fails mi quickly exp g in
context-insensitive analyses uniformly scale well, f}
puts. Figure 1 vividly demonstrates this phenomer}
Capo benchmarks, analyzed with the Doop frame

(insens) analysis and a 2-objec
ysis with a context-sensitive heap (20bjH). (The ch
analysis time of the longest-running benchmarks
hsqldb and jython, timed out after 90mins on a
and would not terminate even for much longer ti
be seen, context-insensitive analyses vary relati
formance, while context-sensitivity often causes ru
‘memory use) to explode.

Faced with this unpredictability of context-senfly
mon reaction is to avoid it, favunng context-ing

ses, and, ly, missing precis
well-behaved programs. Even worse, for some af
chewing expensive context-sensitivity is not an opt]
insensitive analysis is just not good enough. Repq
try [4] and academic researchers [3] alike reiter:

2 2 3. . .
Advanced Innovation Center for Imaging Tech) Yue Li Tian Tan Anders Molle and Department of Informatics, martin.bravenboer@acm. YUE LI, Aarhus University, Denmark
Aarhus University Aarhus University Aarhus Universit] University of Athens, 15784, Greece TIAN T:AN T
yueli@cs.au.dk tiantan@cs.au.dk amoeller@cs.au.d umass.edi j.uoa.gr , Aarhus University, Denmark
Abstract. Object-sensitivity is regarded as argu] ABSTRACT - Abstract ne of ANDERS MOLLER, Aathus University, Denmark Abstract
abstraction for pointer analysis in object-oriented Context-sensiivity s important in pointer analysis to ensure high Context-sensitive points-to analysis is valuable for achieving high :;5':;':‘/5: o YANNIS SMARAGDAKIS, University of Athens, Greece Context-sensitivity is the primary approach for adding more preci-
. s N . . recision with good performance. The standard flavors of context- N y sion to a points-to analysis, while hopefully also maintaining scal-
k-object-sensitive pointer analysis, which uses a sef precision, but existing techniques suffer from unpredictable scala- P dl-si tivi bi " context infor PP n 102 P! ysIs, opetuly - e
. § . bil . ants of context-sensitivity exist, and it is difficult sens t y (kCFA) and t vi same context] COntext sensitivity is an essential technique for ensuring high precisiq ability. An oft-reported problem with context-sensitive analyses,
sites (as k context clements) to represent a calling bil Many variants of context-sesitivity xist, and i i diffc Abstract 1. Inf Combining both flavors of context-sensitivity increases precision F8" S0P oherved that applying context sensitivity partially, only on a select s however, is that they are bi-modal: cither the analysis is precise
call, may end up using some context elements re o choose one that leads to reasonable analysis time and obtains Obi itivity " " b . Poi but at an infeasibly high cost. We show that a selective combi- Al . L. - enough that it manipulates only manageable sets of data, and thus
. e high precision, without running the analysis multiple times. ject-sensitivity has emerged as an excellent context abstraction oints-to nation of call-site- and object-sensitivity for Java points-to anal- naturally resll - balance between analysis precision and speed. However, existing te| " .) f !
ducing a finer partition of the space of (concrete) ¢ . for points-to analysis in object-oriented languages. Despite its prac- most fun| ton of) ! po from differen] . A N . scales impressively well, or the analysis gets quickly derailed at the
- 8 We present the ScALER framework that addresses this problem. tical Y) -, R dste of o YSiS is highly profitable. Namely, by keeping a combined context sensitivity haj 40 1ot provide much insight into what characterizes this method suf first sign of imprecision and becomes orders-of-magnitude more
method call. In this paper, we introduce BEAN, af scavsr efficiently estimates the amount of points-to information ical success, however, obj is poarly od. For sists of o only when analyzing selected language features, we can closely y incipled h for identifyi critical methods, based than would be expected given the program’s size. Thero
i 3 B sensiti By instance, for a context depth of 2 or higher, past scalable imple- expressid i s i [22,23]and 4 Principled approach for identitying p critic: asel ‘pe g progi
improving the precision of any k-object-sensitive af that would be needed to analyze each method with different variants ¢ comer :) . approximate the precision of an analysis that keeps both contexts " . . o § : s is currem.ly no approach that makes precise context-sensitive analy-
N a . . P N N mentations deviate significantly from the original definition of an toduringl ¢ a1l times. In terms of speed, the selective combination of both A call-sitdl explain where most of the arises in context: ive po;
by still using a k-limiting context abstraction. Th{ of context-sensitivity. It then selects ar; appmpnatefvanant for object-sensitive analysis. The reason is that the analysis has many cally eve] kinds of context not only 5:::1)" outperforms non.selective combi labels of inst] an efficient algorithm to recognize these flow patterns in given pr ses (of any flavor: call-site-, object-, or type- scnsmvc) scalc across,
. N each method so that the total amount of points-to information is o N dati e . Lo N -}) " " e h ol That is, the af lhe board at a level to that of a t anal-
allocation sites that are redundant context elemdl "0 A0 B0 ki e available space to magimize precision. degrees of frecdom, relating to which context clements are picked mechani§ nations but is also faster than a mere object-sensitive analysis. This tradeoffs between analysis precision and speed. is. To address this issue, we propose introspective analysis: a
g P P! e method argus Lys1s p: P propo: P Y
Object Allocation Graph (OAG), which is built b: o imental resalts d bt § b at every method call and object creation. We offer a clean model pointer dl result holds for a large array of analyses (e.g., 1-object-sensitive, arg X . . " o a :
(text-i itive Andersen’s analysis Our experimental results demonstrate that SCALER achieves pre- for the analysis design space, and discuss a formal and informal un- object-off 2-object-sensitive with a t-sensitive heap, typ tive) es. method invo Our experimental results on standard benchmark and real-world pro Sech_mm_le for uniformly scaling context-sensitive analysis by elim-
e.g., a context-insensitive Andersen’s analysis) pe] dictable scalabiliy for all the evaluated programs (e, specdups derstanding of object-sensitivity and of how to create good object- lambda | tablishing a new set of performance/precision sweet spots. the analysis ;o context sensitivity partially, only on the identified precision-cr] "2tng its performance-detrimental behavior, at a small precision
program and then avoid them in the subsequent can reach 10x for 2-object-sensitivity), while providing a precision sensitive analyses. The results are surprising in their extent. We analysis method invod . X . 5 5 expense. Introspective analysis consists of a common adaptivity
ysis for the program. BEAN is generally more prec that matches or even exceeds that of the best alternative techniques. Figure 1: Comparisol 14 hat past have made a sub-optimal choice of hind anyl| Categories and s,,,,]m D,,m‘,,,,,, F32 [Logics and Mm,,,,,g: in the code | (98.8%) of the precision of a highly-precise conventional context-sensif pattern: first perform a context-insensitive analysis, then use the
precision that is guaranteed to be as good as k-obj sensitivity, 2-type sef ¢ oniexis, to the severe detriment of precision and performance. We Furthern] ~ of Programs): a context-insq - with a context-sensitive heap), with a substantial speedup (on averagdl ~ results to selectively refine (i.c., analyze conte ely) pro-
h: impl ted BEAN tool & CCS CONCEPTS sos The yais bs define a “full-object-sensitive" analysis that results in significantly analysis Aualysis; D3, 4 ! . ; ;nmmd fo: 1§ CCS Concepts: « Theory of computation — Program analysis; Fi dm’i‘%ms mhar:iwalln ;:Iofl oo § exp'losmn i u;c (:nm;g llm;
ave Implemente as an open-source tool aj « Theory of computation — Program analysis; andall truncatedcasf§ higher precision, and often performance, for the exact same con- interact Compilers oo separate’ epts: y P BT ysis; or space. The technical challenge is to appropriately identify sucl
two state-of-the-art whole-program pointer analy: text depth. We also introduce “type-sensitivity” as an explicit ap- functiond to anything d . . : 3) program elements. We show that a simple but principled approach
. . N) to producd £ obicct th: high al hi General Terms ~ Algorithms, Languages, Performance obj2 may poff Additional Key Words and Phrases: static analysis, points-to analysis,| can be remarkably effective, Achlevmg scalability (often wnh dm,
representative clients (may-alias and may-fail-cast] ~ KEYWORDS ng P of obj at prescrves high context qual- achieves
i ; ; scalability [12, 30, 3514ty at y reduced cost. A type-sensitive points-to analysis consists @ Keywords points-to analysis; context-sensitivity; object- * class ¢ { | ACM Ref Format: fatic specdup) for
nine large Java programs from the DaCapo benchi static analysis, points-to analysis, Java ued to develop sophis| makes an unconventional use of types as context: the context types objectab sel{s s .IP° easitivit ySisy ¥) 2 void foo(0| ELErEICE Format: for deep context-sensitive analyses
succeeded in making both analyses more precise fof] ACM Reference Format: 16,18,22,24,25,32,33 are not dynamic types of objects involved in the analysis, but in- informat s e Y) Yue Li, Tian Tan, Anders Moller, and Yannis Smaragdakis. 2018. Pre
. X . N . . " . P jects, ! ysis, bu . . X Categories and Subject De.vcnpmm F32 [Laglcs and Meanings
under each client at only small increases in analys| Yue Li, Tian Tan, Anders Moller, and Yannis Smaragdakis. 2018. Scalability- One of the key mech| stead upper bounds on the dynamic types of their allocator objects. t0”) ove: . N . Pointer Analysis. Proc. ACM Program. Lang. 2, OOPSLA, Article 141 of Programs): Pros
F}u’: Pointr Analysis wih Selr-T;rxng Conuxt-Sensm?ty. InProccdings - is context sensiivity, f - Our resuls expose the influence of context choice on the quality while se 1. Introduction s class Clienf o/10.1145/3276511 Analyes D34 L oera ; gram
of the 26th ACM Joint European Software Engineering Conference and Sympo- analyzed differently aff of points-to analysis and demonstrate type-sensitivity to be anidea kinds of § Points-to analysis i i 1 - ’ ; g S
N B lysis is a static program analysis that consists of com 1.f Compilers
1 Introducti sium on the Foundations of Software Engincering (ESEC/FSE '18), November Context sensitivity has]| ~ with major impact: It decisively advances the state-of-the-art with (18,1914 puting all objects (typically identified by allocation site) that apro- 3 .. oo INTRODUCTION i
ntroduction f.;;%iﬁ: Buena Vi, T, USA. ACM, New York, NY. USA, 1236 context informationusf] @ spectrum of analyses that simultancously enjoy speed (scveral Ever | gram variable may point to. The area of points-to analysis (and s c2.foo(of] 1 General Terms ~ Algorithms, Languages, Performance
oL g and type-sensitivity [times faster than an analogous object-sensitive analysis), scalabil- al. [13], its close relative, alias analysis) has been the focus of intense re- 10 f . f : X . o .
Poi alysis. as bli hnol lays former i strictly morel| ity (comparable to analyses with much less context-sensitivity), and it is a s search and is among the most standardized and well-understood of 1 ¥ Pointer analysis is a fundamental family of static analyses thf keywords points-to analysis; context-sensitivitys object-
ointer analysis, as an enabling technology, plays a 1 INTRODUCTION y i 8 . . . X L . ores)
client applications, including bug detection [3, 25, 35, 4 37]. However, with an; precision ble to the best object-s analysis with the yielding | inter-procedural analyses. The emphasis of points-to analysis algo- In contrast, o pointer variables in a program. Such information is essentialf ~ sensitivity; type-sensitivity
) y 49,99, 4 Pointer analysis is a family of static analysis techniques that provide i isi ald same context depth). sensitivifl rithms is on combining fairly precise modeling of pointer behavior N " i » dural 1 fl in object-ori d di
g L0, gain in precision, sc: h L ¢ recise mocering oehay of instructiof] inter-procedural control flow in object-oriented programs, and it
compiler optimisation [6,33], and program understa a foundation for many other analyses and software engineerin; : analyses | with scalability. The challenge is to pick judicious approximations 5 N - :
mcngions D? ointer ana[l i L rccisi(f)n ai How-sensiti] tasks. suchas program lcing (3, 19, refleetion analysis [19 1), ::::‘,;s:::yﬂ}’;‘v‘:ff: Categorles and Subject Descriptors F3.2 [Logics and Meanings sensiive]| that will allow satsfactory precision at reasonable cost. Further- (Hence. 2 b4 engineering tools, e.g,, for bug detection [Chandra et al. 200 113 Introd:.lctlon bably th -
P YSIS Precsion ar bug detection [13, 26], security analysis [1, 23], program verifica- Fi hows ti of Programs]: of ¥ cs—Program s concefl more, although increasing precision often leads to higher asymp-] analysis [Arzt et al. 2014; Grech and Smaragdakis 2017; Livshit] ~ Poinis-fo analysis is probably the most common P
For C/C s. flow-sens q ded b ! 5 ! igure 1 shows tim) Analysis : an object, static analysis, and often serves as a substrate for a variety of lugh-
or ++ programs, flow-sensitivity is needed by tion [8, 27), and program debugging and comprehension [5, 21] grams’ under 2-objed . totie this bekavior i arcly encountered in the allocation} tjon [Fink et al. 2008; Pradel et al. 2012], and program debugginfl level al ks. Points-to anal tes the f
. . » 273, an e : ol -~ . DA [F ing L]: Formal Definitions and even mof] actual practice. Instead, techniques that are effective at maintaining - g 8 s level program analysis tasks. Points-to analysis computes the set of
For object-oriented programs, e.g., Java programs, by The goal of pointer analysisis to statically compute a set of bjects - the most precise variafl Theory-Semantics Whatl| £00d precision often also exhibit better average-case performance, W€ Me0d g b et al. 2007). objects (abstracted as their allocation sites) that a program variable
is known to deliver trackable and useful precision [17] (“b,“:“;d as their l‘““‘;‘]‘: s“chs) :h:‘ ”5:,"5“:,"",“"11" ‘f‘:}’ (2type) [32], and cont est way | since smaller points-to sets lead to less work. “’,’l‘l"“:ln‘“ For decades, numerous analysis techniques have been develd may point to during runtime. The promise, as well as the challenge,
- point to during run time. Although stating this goal is simple, it is o General Terms Algorithms, Languages, Pecformance will analyze 3
There are two general approaches to achieving coyf ® 20bj is not scalabl & suag better-knf objects that ¢ recise and more efficient, especially for object-oriented lan Permission to make digital or hard copies of all or part of this work for personal or
oriented programs, call-site-sensitivity (k-CFA) [27] Permission to make digital or hard copies of al or part of this work for personal or while it can finish o sis uses fragment nei] P » €Sp! y) BUR classroom use is granted without fee provided that copies are not made or distributed
4 . :Es;:xg:n use is granted without fec provided that copies are not made or distributed o program size s far } the meth@ permission to make digital or hard copies of all or part of this work for personal or norto how nf| Balatsouras 2015; Sridharan et al. 2013]. One of the most su| for profit or commercial advantage and that copies bear this notice and the full citation
24,29] (among others). A k-CFA analysis represents a B o o e s o movice ond the full ctaten 12718 methods) is] Permission to make digial or hard copics of sl or part of ths work for personal or separates] classroom use is granted without fee provided that copies are ot made or distibued may o romy N e . on the first page. Copyrights for components of this work owned by others than the
. . . page. Copyrig P Y (methods) is foo pov for profit or commercial advantage and that copies bear this notice and the full citation ma precision is context sensitivity [Milanova et al. 2002, 2005; Sh: authors) mustbehonored. Abstsacting ith et s pemited Tocopyotbervise, o
Call b using a sequence Of k Call sites (1 e. k labcls author(s) must be honored. Abstracting with cxedxl is permitted. To copy mherw:se or . classroom use is granted without fee provided that copics are not made or distributed per call-{ it is not s:
y g q! -e., Tepublich to poston servers or ever, 2type is not for profit or commercial advantage and tht copics bear this notice and the full citation that lod (] o7 e st page. To copy otherwise, o republish, o poston servers or o redissbute Posq ¢ aragdakis et al. 2011 1, which allows each program method to republish, to post on servers or pecific permission
site). In contrast, a k-object-sensitive analysis uses k and/or a fee. Request permissions from pum.suom@-cm org. latter; on the fist page. To copy otherwisc, to republish, to post on servers or o redistribute b tolists, requires prior specific pecmission and/or a fe. and a call-siy g - 4 prog! and/or a fee. Request permissions from permi ions@om ot
. 2 3 ESEC/FSE *15, November 4-9, 2015, Lake Buena Vista, FL, USA to lists, requires prior specific permission mdrﬂrn l’cc informat§ pLDI13, June 16-19, 2013, Seattle, WA, USA. not even cled) tg separate the static abstractions of different dynamic instantiaf ~ PLDI'I4. June 9-11, 2014, Edinburgh, United Kingdo
k labels with each denoting a new statement) as cont] © 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM. — POPL’11, January 26-28, 2011, Austin, Texas, that led tf] Copyright © 2013 ACM 975-1-4503-2014-6/13/06....$15.00 all calls to £ i;);%r:%hsl ‘15-:;(1)‘13"2:/7?: ;vlf:;;/:mhmm Publication ngh!s licensed to ACM.
1-4503-5573- These are all popular open- 52 9 9 a P - "
ﬁﬁx lf:)llv frv: |lu 4‘5‘235 s;ﬁusm/zl };«I\’.ﬁm eCll:l;:)"D ‘ !hl:"é"C":P‘:P::" Copyright © 2011 ACM 978-1-4503-0490-0/1 M)l sm 00 below, a Authors’ email yueli@cs.au.dk, au.dk, amoeller@cs.au.d ‘http://dx.doi.org/10.1145/2594291.2594320
———————
- — . @ -~ - " ~ A - o . @ .o - — . @ .o - . - " . @ .o - . - " .
e TR PNV ORI - cE a2 et Ty W P TEe Zomes oy PINEES e O PV TR EC z PINEES20 PV WX~ ee? -
N
- IS e pow

Jeon et al. [2019]

/)

—

/ /) .

—

X ¢
7 s
N
)
.
X
.
b
|
Z
B
o)
.
A
P
&
.
13
4
h.
[
)
N
4
7
Y
TR e

1981

b)

v 4

Precise and Scalable Points-to Analysis via Data-Driven
Context Tunneling

MINSEOK JEON, Korea University, Republic of Korea
SEHUN JEONG, Korea University, Republic of Korea
HAKJOO OH?, Korea University, Republic of Korea

We present context tunneling, a new approach for making k-limited context-sensitive points-to analysis
precise and scalable. As context-sensitivity holds the key to the development of precise and scalable points-to
analysis, a variety of techniques for context-sensitivity have been proposed. However, existing approaches
such as k-call-site-sensitivity or k-object-sensitivity have a significant weakness that they unconditionally
update the context of a method at every call-site, allowing important context elements to be overwritten
by more recent, but not necessarily more important, context elements. In this paper, we show that this is a
key limiting factor of existing context-sensitive analyses, and demonstrate that remarkable increase in both
precision and scalability can be gained by maintaining important context elements only. Our approach, called

context tunneling, updates contexts selectively and decides when to propagate the same context without
modification.

We attain context tunneling via a data-driven approach. The effectiveness of context tunneling is very
sensitive to the choice of important context elements. Even worse, precision is not monotonically increasing
with respect to the ordering of the choices. As a result, manually coming up with a good heuristic rule for
context tunneling is extremely challenging and likely fails to maximize its potential. We address this challenge
by developing a specialized data-driven algorithm, which is able to automatically search for high-quality
heuristics over the non-monotonic space of context tunneling.

We implemented our approach in the Doop framework and applied it to four major flavors of context-
sensitivity: call-site-sensitivity, object-sensitivity, type-sensitivity, and hybrid context-sensitivity. In all cases,
1-context-sensitive analysis with context tunneling far outperformed deeper context-sensitivity with k = 2 in
both precision and scalability.

CCS Concepts: « Theory of computation — Program analysis; « Computing methodologies — Ma-
chine learning approaches;

Additional Key Words and Phrases: Points-to analysis, Context-sensitive analysis, Data-driven program
analysis

ACM Reference Format:

Minseok Jeon, Sehun Jeong, and Hakjoo Oh. 2018. Precise and Scalable Points-to Analysis via Data-Driven

Context Tunneling. Proc. ACM Program. Lang. 2, OOPSLA, Article 140 (November 2018), 30 pages. https:
//doi.org/10.1145/3276510

*Corresponding author

Authors’ addresses: Mi k Jeon, mi k_j k ackr, Department of Computer Science and Engineering, Korea

University, 145, Anam-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea; Sehun Jeong, gifaranga@korea.ac kr, Department
of Computer Science and Engineering, Korea University, 145, Anam-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea;
Hakjoo Oh, hakjoo_oh@korea.ac.kr, Department of Computer Science and Engineering, Korea University, 145, Anam-ro,
Sungbuk-gu, Seoul, 02841, Republic of Korea.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissi org.

© 2018 Association for Computing Machinery.

2475-1421/2018/11-ART140

https://doi.org/10.1145/3276510

L

EHAE 2=

L —1——

/)

Return of CFA: Call-Site Sensitivity Can Be Superior to I] ~ 1= TEIT R /‘
Object Sensitivity Even for Object-Oriented Programs "l @ Of =mmm BQ

MINSEOK JEON and HAKJOO OH?*, Korea University, Republic of Korea]

In this paper, we challenge the commonly-accepted wisdom in static analysis that object sensitivity is superior
to call-site sensitivity for object-oriented programs. In static analysis of object-oriented programs, object
sensitivity has been established as the dominant flavor of context sensitivity thanks to its outstanding precision. : ‘
On the other hand, call-site sensitivity has been regarded as unsuitable and its use in practice has been 3 . /3
constantly discouraged for object-oriented programs. In this paper, however, we claim that call-site sensitivity 3 £ L 5 4
is generally a superior context abstraction because it is practically possible to transform object sensitivity into ‘ ittt

more precise call-site sensitivity. Our key insight is that the previously known superiority of object sensitivity b & ;
holds only in the traditional k-limited setting, where the analysis is enforced to keep the most recent k context : | | h
elements. However, it no longer holds in a recently-proposed, more general setting with context tunneling. | "
With context tunneling, where the analysis is free to choose an arbitrary k-length subsequence of context

strings, we show that call-site sensitivity can simulate object sensitivity almost completely, but not vice versa. i = 7 F H O ’ H O
To support the claim, we present a technique, called OBj2CFaA, for transforming arbitrary context-tunneled o i

object sensitivity into more precise, context-tunneled call-site-sensitivity. We implemented OBj2CrA in Doop Ll
and used it to derive a new call-site-sensitive analysis from a state-of-the-art object-sensitive pointer analysis.

Sy X
Experimental results confirm that the resulting call-site sensitivity outperforms object sensitivity in precision v s :

and scalability for real-world Java programs. Remarkably, our results show that even 1-call-site sensitivity can

| (Object sensitivity) (Call-site Sensitivity)

“Since its introduction, object sensitivity has emerged as the dominant flavor of context
sensitivity for object-oriented languages.” : 2
—Smaragdakis and Balatsouras [2015] \ 7
Context sensitivity is critically important for static program analysis of object-oriented programs. T i e S S ah i b e i it s e i s O T A N I i
A context-sensitive analysis associates local variables and heap objects with context information
of method calls, computing analysis results separately for different contexts. This way, context
sen31t1v1ty prevents analys1s mformatlon from bemg merged along dlfferent call chams For object-

sensitive analys1s [Milanova et al. 2002, 2005 Smaragdakls et al 201 1] maintains a sequence of

1981 2002 2010 2018

36

= AotA| & A7

Exercise

class S {
Object id(0Object a) { return a; }
Object id2(0Object a) { return id(); }
Iy

class C extends S A
void funi1() {
Object al = new A1();
Object bl = id2(al);
+r

class D extends S {
void fun2() {
Object a2 = new A2();
Object b2 = id2(a2);
+H}

- . . . =PSk=igely
@ What is the result of 1-call-site-sensitive analysis?q T © ™ &5
@ What is the result of 1-object-sensitive analysis? < 2 <=tot

@ Explain the strength of object-sensitivity over call-site-sensitivity. obj > call

Hakjoo Oh October 18, 2022 28 / 31

= AotA| & A7

Exercise

class S {
Object id(0Object a) { return a; }
Object id2(0Object a) { return id(); }
Iy

class C extends S A
void fun1() {
Object al = new A1();
Object bl = id2(al);
+r

class D extends S {
void fun2() {
Object a2 = new A2();
Object b2 = id2(a2);
+H}

@ What is the result of 1-call-site-sensitive analysis?

Q What IS the resuIt of 1- obJect senS|t|ve anaIyS|s7

o Explam the strength of object senS|t|V|ty over caII S|te senS|t|V|ty f<cobi-=2-cat

Hakjoo Oh October 18, 2022 28 / 31

| @ Explain the strength of object-sensitivity over call-site-sensitivity. ',

Hakjoo Oh

October 18, 2022

28 /31

| @ Explain the strength of object-sensitivity over call-site-sensitivity. ',

Hakjoo Oh October 18, 2022

28 /31

Return of CFA: Call-Site Sensitivity Can Be Superior to I] ~ 1= TEIT R /‘
Object Sensitivity Even for Object-Oriented Programs "l @ Of =mmm BQ

MINSEOK JEON and HAKJOO OH?*, Korea University, Republic of Korea]

In this paper, we challenge the commonly-accepted wisdom in static analysis that object sensitivity is superior
to call-site sensitivity for object-oriented programs. In static analysis of object-oriented programs, object
sensitivity has been established as the dominant flavor of context sensitivity thanks to its outstanding precision. : ‘
On the other hand, call-site sensitivity has been regarded as unsuitable and its use in practice has been 3 . /3
constantly discouraged for object-oriented programs. In this paper, however, we claim that call-site sensitivity 3 £ L 5 4
is generally a superior context abstraction because it is practically possible to transform object sensitivity into ‘ ittt

more precise call-site sensitivity. Our key insight is that the previously known superiority of object sensitivity b & ;
holds only in the traditional k-limited setting, where the analysis is enforced to keep the most recent k context : | | h
elements. However, it no longer holds in a recently-proposed, more general setting with context tunneling. | "
With context tunneling, where the analysis is free to choose an arbitrary k-length subsequence of context

strings, we show that call-site sensitivity can simulate object sensitivity almost completely, but not vice versa. i = 7 F H O ’ H O
To support the claim, we present a technique, called OBj2CFaA, for transforming arbitrary context-tunneled o i

object sensitivity into more precise, context-tunneled call-site-sensitivity. We implemented OBj2CrA in Doop Ll
and used it to derive a new call-site-sensitive analysis from a state-of-the-art object-sensitive pointer analysis.

Sy X
Experimental results confirm that the resulting call-site sensitivity outperforms object sensitivity in precision v s :

and scalability for real-world Java programs. Remarkably, our results show that even 1-call-site sensitivity can

| (Object sensitivity) (Call-site Sensitivity)

“Since its introduction, object sensitivity has emerged as the dominant flavor of context
sensitivity for object-oriented languages.” : 2
—Smaragdakis and Balatsouras [2015] \ 7
Context sensitivity is critically important for static program analysis of object-oriented programs. T i e S S ah i b e i it s e i s O T A N I i
A context-sensitive analysis associates local variables and heap objects with context information
of method calls, computing analysis results separately for different contexts. This way, context
sen31t1v1ty prevents analys1s mformatlon from bemg merged along dlfferent call chams For object-

sensitive analys1s [Milanova et al. 2002, 2005 Smaragdakls et al 201 1] maintains a sequence of

1981 2002 2010 2018

41

xalan

1obj7} 1call=2LCt

351434'Eéf f

| |obj | call |}
700 800 900 1000 1100 1200

alarms

0

2000 -

1750 A

= = =
o N Ul
o Ul o
o o o

analysis time(s)

500 -

250 -

750 -

= |k 7|9k

A B20| Wt A50] B

xalan

700

800 900 1000 1100

H# alarms

1200

analysis time(s)
= = =

~ o N Ul

Ul o Ul o

o o o o

U
o
o

250 -

xalan

700

800 900 1000 1100

H# alarms

1200

2000 - 2000 -

1750 - 1750 -
“n 1500 - “n 1500
O . o
£ 1250 . & 1250 :
-|: : I b. -|: °
n . n ¢
9 000] OD]J I | call
> . > .
Q750 . O 750 :
© . © :

500 X 500 .

250 : 250 .

700 Y 800 900 1000 1100 1200 700 h 800 900 1000 1100 1200

H# alarms H alarms

4|2

110
0

k 7|8r0{[2]

=2

xalan

o
| O
@
—
o
- O
—
—
o W
O
S s
O Ke
S 3
(@)}
............... Yb
o
- O
00
o
- O
| | N~
o o o o o
o) LN o LN
LN o M~ LN N
— —
(S)oawl] sIsAjeue
o
O
N
—
o
O
—
—
o W
O
.J nlU m
b
®) o
| a
g H
(@)}
............... Y a
o
- O
00
o
- O
| | | | | N~
o o o o o o o o
o LN o LN o LN o LN
o ™~ LN @\ o ™~ LN N
N — — — —

(S)awl] SIsAjeue

|obj+T

xalan

750

700

650

600

T)

+ 13

Ir|5

= 2|

Yo

o

:)

o o o o o Oown
o o o o o
LN o LN o LN

N N — —

 ElmlokE

(S) swn sisAjeue

800

e Obj2CFA = =

2500
- : bloat
2000/ 20b;] 2500
: 2-obj4 Last g
4 /UTZOOO- . o
Y Q ()
N 1500} 3 glsoo-]
V € v
E S . %ooo- Important k I,L,?St K|
I _ wi s | -obj
w1000 § < I-ob]+T
%) ' 500} .4‘ — cascronss !
N
‘© Apply the heurlstlc
C 0
(3 500 i 1300 1400 1500 1600 1700 1800 1900 2000
may-fail cast alarms
Precise

500 550 600 650 700 750 800

49

—1 HA L —1
= Ol = O =] xX=|LL- = o = D=
o HHSHEI QX[7|8 QU2 SESIH= of 7|8t QLUSHL =2 FeIE 2 55 HE
jython
700 8000
[lobj+T : timeout (> 10,800) |
600} 7000r ' 20bj : timeout (> 10,800) ;
, . 1
. 5000l] timeout (> IOSOS) |
D v 5000
@ 400)
g g 4000} | call+SL
$=J $=J
1 300 “ (ours)
wn v 3000
2 2
& 200} 20Dbj e “
& |lcall+T ©°) & 2000
o B | call
100} 1000} .
B
700 720 740 760 _ 780 800 820 840 860 300 900 1000 1100 1200 1300 1400
Halarms Halarms

Some parts of the paper is too strong; this paper should be rejected. |

- A reviewer [Expert]

POPL should accept this paper to encourage discussions.

- A reviewer [Expert] ,

OOPSLA2019 PLDI 2020 |CSE 2020 OOPSLA 2021 POPL 2022
(Rejected) (Rejected) (Rejected) (Rejected) (Accepted)

50

L= B
L L

Call-Site vs. Object Sensitivity

* In theory, their precision is incomparable

* In practice, object sensitivity generally outperforms
call-site sensitivity for OO languages (like Java)

166

>
=

I}

-

[<)
T

Call-site vs. Object Sensitivity

* Typical example that benefits from object sensitivity:

class A:

def g(self):
return

def f (self):
return self.g()

def main () :

a

b
a .
b.f()

= A()
= A()
£ ()

//
//
//
//

11
12
13
14

// 15

f

[13]
main/ \ |9
[15]

[14]

1-call-site sensitivity
f J 9
P (1]
main

I U
[12] [12]

1-object sensitivity

Z15}7 |

ol &=

]
-
KO

J

Future work

Tunneling |=>»| ODbj2CFA —>-—>

IIIIIIIIII

IIIIIIIIII

VR P R TNy g Lo R TN e ’
A ~ = L~ 3 < N

o1=7| 3

L
-

<k

4l

52

HIESH|: S & R =S S8 /s
= 9= 24 (selective ctx sensitivity): A2t E FX[2H
2500
2000
v |call+T call
GE) 1500f Ca
i =
=] 2
>N 1000
(qv]
-
<
500}
|call + S
féOO 1400 1500 1600 1%00 1éOO 1§OO

JJpalarms

2000

“We generated |call+T by applying context tunneling tol call...”

b

Analysis time (s)

2000

| call+T

[

Ul

o

o
T

=
o
o
o

500

«— '

| call

|call + S

O |
1300 1400

1500

1600 1700

1800

1900

2000

b

M E QXS S E 2T =T

Analysis time (s)

" “Our selective context sensitivity preserves 98% of the precision

of conventional context sensitive analysis”

2000F

| call+T
| call

[

Ul

o

o
T

=
o
o
o

500

V

|call + S

O | | | | | |
1300 1400 1500 1600 1700 1800 1900 2000

Analysis time (s)

2500
2000}
| call+T call
1500} Ca
L 4
‘0
‘0
1000
0"
‘0
0“
lcall + T + S |call + S
féOO 1400 1500 1600 1%00 1éOO 1§OO

2000

oo AEANA PP e e o

}EMWHEgé

217} J|HESE VA EL = 23
—|I-—|I- 7H Eon_l' 7‘EE = oA‘O'” A|'OO
2500 |
lcall + T + S
2000}
N 01
D | call+T
GE) 1500} \Ica” .
=
(Vy)
¥
>~ 1000}
S
C
<
500}
|call + S
10300 14IOO 15|OO 16IOO 17IOO 18IOO 19IOO 2000
~ #alarms

50| Lt

-IO ,
O |
OF |
1

bl
;
|

O 0VONOUTRAWN—O

id(v, i){
if (i > 0){
return id(y, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);//A
v2 =id(2,i);//B
assert (vl !=v2);//query

]

Oj| 5| = = 124

O 0VONOUTRAWN—O

id(v, i){
if (i > 0){
return id(y, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);//A
v2 =id(2,i);//B
assert (vl !=v2);//query

]

Oj| 5| = = 124

O 0VONOUTRAWN—O

id(v, i){
if (i > 0){
return id(y, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);//A
v2 =id(2,i);//B
assert (vl !=v2);//query

]

Oj| 5| = = 124

O 0VONOUTRAWN—O

id(v, i){
if (i > 0){
return id(y, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);//A
v2 =id(2,i);//B
assert (vl '=v2);//query

]

Oj| 5| = = 124

O 0VONOUTRAWN—O

id(v, i){
if (i > 0){
return id(y, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);//A
v2 =id(2,i);//B
assert (vl !=v2);//query

]

Oj| 5| = = 124

CE e SEHLE A4 /MET V|52 SAI0| ArE5tH 850| 20|58 Lt

2500 | |
lcall + T + S
2000}
AN 01
Q) |call+T eall
o call .*°
E 1500 \ o*
=
(Vy)
‘5
>N 1000}
(Q°]
C
<
500}
|call + S

O | | | | | |
1300 1400 1500 1600 1700 1800 1900 2000

o =2/ ds= W7 o Mz27101E E

Analysis time (s)

L OO =L | —
oF= 1124l sA|0f| BH=
2500
2000}
|call+T
1500} \kall
1000} ‘.*’
500} k
call + (T, S) call + S
1300 1400 1500 1600 1700 1800 1900 2000

O{OF

ol
]

o 22O M52 U7] M MZ7t0|E Faks 1248l SA|of| 2HS0{0f &t

Marriage of Context Tunneling and Selective Context
Sensitivity in Pointer Analysis

ANONYMOUS AUTHOR(S)

In this paper, we identify a fundamental issue in the current trend of developing context sensitivity tech-
niques in pointer analysis and present a way to efficiently address it. Context sensitivity is a key factor that
significantly affects the performance of pointer analysis in object-oriented programs. In the literature, two
major refinements—context tunneling and selective context sensitivity—have been developed, where context
tunneling improves precision and selective context sensitivity enhances scalability. Though the two techniques
can be used together to maximize both precision and scalability, they have been developed independently
without considering whether individually optimized techniques will remain effective when combined. In this
work, however, we demonstrate that combining independently developed context tunneling and selective
context sensitivity techniques leads to suboptimal performance. To be an effective combination, the two
techniques must be developed together, considering their interdependencies. Developing a pair of techniques,
however, while accounting for all possible interactions is extremely challenging. To address this challenge,
we present a framework that significantly reduces the complexity of developing an effective combination
of the two techniques. Our evaluation results show that following our approach leads to the development
of an effective combination, achieving a state-of-the-art performance, that outperforms combinations of
independently developed context tunneling and selective context sensitivity techniques.

ACM Reference Format:
Anonymous Author(s). 2018. Marriage of Context Tunneling and Selective Context Sensitivity in Pointer
Analysis. J. ACM 37, 4, Article 111 (August 2018), 28 pages. https://doi.org/XXXXXXX XXXXXXX

1 INTRODUCTION

Context sensitivity plays a pivotal role in pointer analysis of object-oriented programs. It enhances
precision by distinguishing between multiple invocations of the same method based on their calling
contexts. However, tracking every possible context is impractical, leading to the widespread use
of k-limited context sensitivity. This approach retains only the k most recent context elements—
typically call sites in call-site sensitivity [Sharir and Pnueli 1981] or allocation sites in object
sensitivity [Milanova et al. 2002]. Despite its adoption, this conventional technique frequently falls
short in balancing precision and scalability in real-world applications.

Over the past decade, numerous techniques have been proposed to enhance the k-limited
approach in context-sensitive pointer analysis [He et al. 2024; Jeon et al. 2018; Jeon and Oh 2022;
Kastrinis and Smaragdakis 2013; Li et al. 2018a,b, 2020; Liang et al. 2011; Lu et al. 2021a,b; Milanova
et al. 2002; Oh et al. 2015; Smaragdakis et al. 2011, 2014; Tan et al. 2021, 2017; Zhang et al. 2014].
Two prominent approaches that excel in maximizing precision or scalability are:

e Context tunneling [Jeon et al. 2018; Jeon and Oh 2022] seeks to maximize precision while
adhering to a k-context limit. Instead of relying solely on the k most recent context elements,

it adopts a more flexible strategy by prioritizing the k most significant context elements.
Jeon and Oh [2022] demonstrated that context tunneling can markedly improve analysis

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0004-5411/2018/8-ART111 $15.00

https://doi.org/XXXXXXX XXXXXXX

4SS 22 oY

* We identify a fundamental issue in the current trend of developing context
sensitivity techniques in pointer analysis and present a way to efficiently address it.

24 7S5 SO NS

* We present a framework that significantly reduces the complexity of
developing an effective combination of the two techniques

submitted

—>» | Combination | =>

IIIIIIIIII

IIIIIIIIII

Obj2CFA

—

Tunneling

« CFA2| Obj Cht| O|2F 244 H0|7|

006

_ 52
m - C
% S 5
S 3
...................... Y bA
c T mvm&_pm_lmzmcm)
~N
) uF
1} = I
<
= 4
QS o:
{1 —— 0
ﬂ KIF
ﬁl S
m \ Sl o
M| Kl
nH 1K
4

A|Fo| 2R) BT

2000

—~ N)

™ _._.__u Q
|l]= Ik |5 g
i|d 75 5
04 - g ®
K1 N +
T R =
OF H D
=) %

< 3 S

e ® -

O

I S

(s) sawn sisAjeuy

classifier(e):

else:

return false //

o}
b
9
— |
W
)
™
10
O
.
i
o
_|
abe
0x
]
©
Hil
HT
©
N

V

Definition 7.1 (Superiority of Call-Site Sensitivity). Let P be a set of target programs. Let S be a
context-tunneling space for the target programs. We say call-site sensitivity is superior to object
sensitivity with respect to S if is always possible to simulate object sensitivity via call-site sensitivity:

VP € PNTyp € S. AT qy € S.Vk € [0, o0]. ﬁxF Lean, Ucal (more precise than) ﬁngolbcj’ Vo (5)

£ & @+ 4: Ef 210{0] HE5}7)

Java JaaScrip ;’ Python ‘ C %

OOPSLA’ I 8
POPL’> 22 .

160 -

140 -

120 A

100 -

Scalable '

80 A

Analysis time

60_3caII+T
__

3 4
~ Precise |

Exercise

class S {
Object id(Object a) { return a; }
Object id2(0Object a) { return id(); }
}
class C extends S {
void funi() {
Object al = new A1(Q);
Object bl = id2(al);
+}
class D extends S {
void fun2() {
Object a2 = new A2(Q);
Object b2 = id2(a2);
+}

.
LI

| -call-site sensitivity=2 J=5HA| e & cu’il—f?

AR

@ What is the result of 1-call-site-sensitive anaIysis?%

submitted Future work

Tunneling

Oix|2t Kk —> T2k |

12 e —> SAlof THet |

Back up

1-call : {) 1-call : {id}
... 0-call : {main}

O 0VONOUTRAWN—O

ZHEIAE E

— 1

id(v, i)
if (i > 0){
return id(v, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);
v2 =id(2, i);
assert (vl !=v2);//query

]

Of|X| ===

| 7e€{78}77 |

8 € {7.812?

lgs

L =S

1 p— p—

—.7 1.
-_— N
> >

5
8:

/0

S
~
-
>
—"
RS
-
|
-
=)
Q
|

2:

’r’

2: return id(v, i-1);}

TR @A710td A&
22k AFE X

FHE| A E F

L— 1

id(v, i){
if (i > 0){
return id(v, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);
v2 =id(2, i);
assert (vl !=v2);//query

o hWPN—O

o O N

10: }

Oj| 5| = = 124

