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id(v, i){
if (i > 0)
return id(y, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);//A
v2 =id(2,i);//B

Oj| 5| = = 124
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assert (vl = v2);//query —> 8,2] —> 8,2,2]|— -
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id(v, i){
if (i > 0){
return id(v, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);//A
v2 =id(2,i);//B
assert (vl !=v2);//query

]

Oj| 5| = = 124




8: =1id(2,i);
assert (vl '=v2);//query
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id(v, i){
if (i > 0){
return id(v, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);//A
v2 =id(2,i);//B
assert (vl !=v2);//query

o hWPN—O
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id(v, i){
if (i > 0){
return id(v, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);//A
v2 =id(2,i);//B
assert (vl !=v2);//query

Oj| 5| = = 124




Call-Site Sensitivity IU(Q,IE{RE’TA;
* The best-known flavor of context sensitivity, which uses call-

sites as contexts.

* A method is analyzed under the context that is a sequence
of the last k call-sites

Partial Context-sensitivity

» The most common way: keep only the top-most k continuations (so-called k-CFA)

KAIST

k= 0:Iignore all contexts, i.e., context-insensitive

* K = o0: keep all contexts, i.e., fully context-sensitive

® The most common way: keep only the top-most k call-
strings (called k-CFA)

* Approach: set an upper bound for length of
contexts, denoted by k

* For call-site sensitivity, each context consists of the last k

e In p“ac'tic,kilsa small number (usually <3)
* Method contexts and heap contexts may use different k
e e.g., k=2 for method contexts, k=1 for heap contexts

(B 7|9/ E : Context Sensitivity Static Analysis Lecture)



“A key part of the appeal of last k-based context abstraction is its
simplicity and universal applicability.”

- A reviewer [expert]
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id(v, i){
if (i > 0){
return id(v, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);
v2 =id(2, i);
assert (vl !=v2);//query

]

Oj| 5| = = 124
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Exercise

class S {
Object id(0Object a) { return a; }
Object id2(0Object a) { return id(); }
Iy

class C extends S {
void fun1() {
Object al = new A1();
Object bl = id2(al);
+H}

class D extends S {
void fun2() {
Object a2 = new A2(Q);
Object b2 = id2(a2);
+H}

@ What is the result of 1-call-site-sensitive analysis? -?'-735_.*3.:.*

Hakjoo Oh AAA616 2022 Fall, Lecture 8 October 18, 2022 28 /31
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Exercise

class S {
Object id(0Object a) { return a; }
Object id2(0Object a) { return id(); }

Al EL A

} r
class C extends S { p N =
void fun1() { = L.
Object al = new A1(Q);
Object bl = id2(al); 151
}} _ _ ° o o ° I §
I | -call-site sensitivity= 3=

void fun2() { )
Object a2 = new A2();
Object b2 = id2(a2);

iy

@ What is the result of 1-call-site-sensitive analysis?

Hakjoo Oh

October 18, 2022
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id(v, i){
if (i > 0){
return id(v, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);
v2 =id(2, i);
assert (vl !=v2);//query

o hWPN—O

o O N

10: }

Oj| 5| = = 124
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..it covers more than two-thirds of the precision advantage of 2objH"

-Smaragdakis et al. [PLDI’ 14]

. 98.8% of the precision of 2obj can be preserved...” |
Li et al. [OOPSLA’ 18] |

“Scaler still attains most of the precision gains of 20bj ...”
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Parameterized Object Sensitivity for Points-to
Analysis for Java

ANA MILANOVA

Rensselaer Polytechnic Institute
ATANAS ROUNTEV

Ohio State University

and

BARBARA G. RYDER

Rutgers University

The goal of points-to analysis for Java is to determine the set of objects pointed to by a reference
variable or a reference object field. We present object sensitivity, a new form of context sensitivity
for flow-insensitive points-to analysis for Java. The key idea of our approach is to analyze a method
separately for each of the object names that represent run-time objects on which this method may
be invoked. To ensure flexibility and practicality, we propose a parameterization framework that
allows analysis designers to control the tradeoffs between cost and precision in the object-sensitive
analysis.

Side-effect analysis determines the memory 1 ions that may be modified by the ion ofa
program statement. Def-use analysis identifies pairs of statements that set the value of a memory
location and subsequently use that value. The information computed by such analyses has a wide
variety of uses in compilers and software tools. This work proposes new versions of these analyses
that are based on object: itive poi lysis.

We have impl d two in iations of our d object-sensitive points-to analy-
sis. On a set of 23 Java programs, our experiments show that these analyses have comparable cost
to a context-insensitive points-to analysis for Java which is based on Andersen’s analysis for C. Our
results also show that object itivity signifi ly imp: the precision of side-effect analysis
and call graph construction, compared to (1) context-insensitive analysis, and (2) context-sensitive
points-to analysis that models context using the invoking call site. These experiments demonstrate

that object-sensitive analyses can achieve suk ial precision imp: , while at the same
time r ining efficient and i
A preliminary version of this article appeared in Pr dings of the International S ium on

Software Testing and Analysis (July), 2002, pp. 1-11.
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Context-sensitive points-to analysis: is it worth it?*

Ondfej Lhoték"? and Laurie Hendren?
olhotak@uwaterloo.ca hendren@sable.mcgill.ca

1 School of Computer Science, University of Waterloo, Waterloo, ON, Canada
2 School of Computer Science, McGill University, Montreal, QC, Canada

Abstract. We present the results of an empirical study evaluating the precision
of subset-based points-to analysis with several variations of context sensitivity on
Java benchmarks of significant size. We compare the use of call site strings as the
context abstraction, object sensitivity, and the BDD-based context-sensitive algo-
rithm proposed by Zhu and Calman, and by Whaley and Lam. Our study includes

lyses that context: itively specialize only pointer variables, as well as ones
that also specialize the heap abstraction. We measure both characteristics of the
points-to sets themselves, as well as effects on the precision of client analyses. To
guide development of efficient analysis implementations, we measure the number
of contexts, the number of distinct contexts, and the number of distinct points-to
sets that arise with each context sensitivity variation. To evaluate precision, we
measure the size of the call graph in terms of methods and edges, the number of
devirtualizable call sites, and the number of casts statically provable to be safe.
The results of our study indicate that object-sensitive analysis implementations are
likely to scale better and more predictably than the other approaches; that object-
sensitive analyses are more precise than comparable variations of the other ap-
proaches; that specializing the heap abstraction improves precision more than ex-
tending the length of context strings; and that the profusion of cycles in Java call
graphs severely reduces precision of analyses that forsake context sensitivity in
cyclic regions.

1 Introduction

Does context sensitivity significantly improve precision of interprocedural analysis of
object-oriented programs? It is often suggested that it could, but lack of scalable imple-
mentations has hindered thorough empirical verification of this intuition.

Of the many context sensitive points-to analyses that have been proposed (e.g. [1,4,
8,11,17-19,25,28-31]), which improve precision the most? Which are most effective for
specific client analyses, and for specific code patterns? For which variations are we likely
to find scalable implementations? Before devoting resources to finding efficient imple-
mentations of specific analyses, we should have empirical answers to these questions.

This study aims to provide these answers. Recent advances in the use of Binary De-
cision Diagrams (BDDs) in program analysis [3, 12,29, 31] have made context sensitive
analysis efficient enough to perform an empirical study on benchmarks of significant size.
Using the JEDD system [14], we have implemented three different families of context-

i — == 3 t T om o i/

Evaluating the Benefits of Context-Sensitive
Points-to Analysis Using a BDD-Based
Implementation

ONDREJ LHOTAK
University of Waterloo
and

LAURIE HENDREN
McGill University

‘We present PApDLE, a framework of BDD-based context-sensitive points-to and call graph analyses
for Java, as well as client analyses that use their results. PADDLE supports several variations of
context- itive 1 , including call site strings and object sensitivity, and context-sensitively
specializes both pointer variables and the heap abstraction. We empirically evaluate the preci-
sion of these context-sensitive analyses on significant Java programs. We find that that object-
sensitive analyses are more precise than comparable variations of the other approaches, and that
specializing the heap abstraction improves precision more than extending the length of context
strings.

Categories and Subject Descriptors: D.3.4 [Progr ing L ]: Pro ; D.3.3 [Pro-
ing I ]: 1 Constructs and Features

General Terms: Languages, Design, Experimentation, Measurement

Additional Key Words and Phrases: Interprocedural program analysis, context sensitivity, binary
decision diagrams, Java, points-to analysis, call graph construction, cast safety analysis

ACM Reference Format:

Lhotdk, O. and Hendren, L. 2008. Evaluating the benefits of context-sensitive points-to analysis

using a BDD-based implementation. ACM Trans. Softw. Engin. Method. 18, 1, Article 3 (September
2008), 53 pages. DOI = 10.1145/1391984.1391987 http:/doi.acm.org/10.1145/1391984.1391987

This is a revised and extended version of an article which appeared in Proceedings of the 15th
International Conference on Compiler Construction, Lecture Notes in Computer Science, vol. 3923.
Springer, 47-64.

Authors’ addresses: O. Lhoték, D. R. Cheriton School of Computer Science, University of Waterloo,
200 University Avenue West, Waterloo, ON, N2L 3G1, Canada; L. Hendren, School of Com-
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Strictly Declarative Specification of Sophisticated Points-to Analyses

Martin Bravenboer

Department of Computer Science
University of Massachusetts, Amherst
Amberst, MA 01003, USA
martin.bravenboer@acm.org

Abstract

We present the Doop framework for points-to analysis of
Java programs. Doo builds on the idea of specifying pointer
analysis algorithms declaratively, using Datalog: a logic-
based language for defining (recursive) relations. We carry
the declarative approach further than past work by describ-
ing the full end-to-end analysis in Datalog and optimizing
ggressi using a novel i lly targeting
highly recursive Datalog programs.
As aresult, Doop achieves several benefits, including full
der-of- itude imp: in runtime. We compare
Door with Lhoték and Hendren’s PappLE, which defines the
state of the art for context-sensitive analyses. For the exact
same logical points-to definitions (and, quently, identi-
cal precision) Doop is more than 15x faster than PapbLE for
a l-call-site sensitive analysis of the DaCapo benchmarks,
with lower but still substantial speedups for other important
analyses. Additionally, Doop scales to very precise analyses
that are impossible with PappLe and Whaley et al.’s bddbddb,

directly open in past li Finally,

Yannis Smaragdakis

yannis@cs.umass.edu

analyses. It is, thus, not surprising that a wealth of research
has been devoted to efficient and precise pointer analysis
techniques. Context-sensitive analyses are the most common
class of precise points-to analyses. Context sensitive analysis
approaches qualify the analysis facts with a context abstrac-
tion, which captures a static notion of the dynamic context
of a method. Typical contexts include abstractions of method
call-sites (for a call-site sensitive analysis—the traditional
meaning of “context-sensitive”) or receiver objects (for an
object-sensitive analysis).

In this work we present Doop: a general and versatile
points-to analysis framework that makes feasible the most
precise context-sensitive analyses reported in the literature.
Door implements a range of algorithms, including context
i itive, call-site itive, and object itive analyses,
all specified modularly as variations on a common code base.
Compared to the prior state of the art, Doop often achieves

o .

our implementation is modular and can be easily
to analyses with a wide range of characteristics, largely due
to its declarativeness.

Categories and Subject Descriptors F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming
Languages—Program  Analysis; D.1.6  [Programming
Techniques]: Logic Programming

General Terms  Algorithms, L Per

peed of an ord de for several important
analyses.
The main elements of our approach are the use of the Dat-
" ] alog 1 for specifying the program analyses, and the
g

aggressive optimization of the Datalog program. The use of
Datalog for program analysis (both low-level [13,23,29] and
high-level [6,9]) is far from new. Our novel optimization ap-
proach, however, accounts for several orders of magnitude of
performance improvement: unoptimized analyses typically
run over 1000 times more slowly. Generally our optimiza-
tions fit well the approach of handling program facts as a

1. Introduction

Points-to (or pointer) analysis intends to answer the question
“what objects can a program variable point to?” This ques-
tion forms the basis for practically all higher-level program

Permission to ma
classroom useyd

datab: by ifically targeting the indexing scheme and
the i 1 evaluation of Datalog impls i Fur-
thermore, our approach is entirely Datalog based, encoding
declaratively the logic required both for call graph construc-
tion as well as for handling the full semantic complexity
of the Java language (e.g., static initialization, finalization,
reference objects, threads, exceptions, reflection, etc.). This
makes our pointer analysis specifications elegant, modular,
but also efficient and easy to tune. Generally, our work is a
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Object-Sensitivity

@ The dominant flavor of context-sensitivity for obje
languages.

o It uses object abstractions (i.e. allocation sites) as
qualifying a method's local variables with the alloc
receiver object of the method call.

class A { void m() { return; } }

b = new B();
b.m();

The context of m is the allocation site of b.

Hakjoo Oh AAAG616 2019 Fall, Lecture 8

Object-Sensitivity

(vs. call-site sensitivity)

[ program

class S {
Object id(Object a) { return a; }
Object id2(Object a) { return id(a)
}
class C extends S {
void funl() {

Object al = new Al();
Object bl = id2(al); 1-ci
} (1o
fun
class D extends S { fun
void fun2() { id?2
Object a2 = new A2(); id2
Object b2 = id2(a2); id:
} id2
fun
fun
Yannis Smaragdakig

University of Athens

UNIVERSITY

National and Kapodistrian
%, University of Athens

Object-sensitive pointeJ

e Milanova, Rountev, and Ryder. Parameteri:
sensitivity for points-to analysis for Java. AC
Eng. Methodol., 2005.

» Context-sensitive interprocedural pointer analysis
* For context, use stack of receiver objects
* (More next week?)

e Lhotak and Hendren. Context-sensitive poi
worth it? CC 06

 Object-sensitive pointer analysis more precise thg
for Java

e Likely to scale better

Lecture Notes:
Pointer Analysis

15-8190: Program Analysis
Jonathan Aldrich

jonathan.aldrich@cs.cmu.edu

Lecture 9

1 Motivation for Pointer Analysis

In programs with pointers, program analysis can become more d
Consider constant-propagation analysis of the following progra

1: z:=1
2: p:=&z
3: #p:=2
4: printz
In order to analyze this program correctly we must be aw
instruction 3 p points to z. If this information is available we ca
flow function as follows:

fepl=p:=yl(o) =[z— o(y)]lc where must-point-to(j

When we know exactly what a variable z points to, we say tif
must-point-to information, and we can perform a strong update
variable z, because we know with confidence that assigning td
to z. A technicality in the rule is quantifying over all z such
point to z. How is this possible? It is not possible in C or Java;
a language with pass-by-reference, for example C++, it is possilf
names for the same location are in scope.

Of course, it is also possible that we are uncertain to whic}
distinct locations p points. For example:

Pointer Analysis

Yannis Smaragdakis
University of Athens
smaragd@di.uoa.gr

George Balatsouras
University of Athens
gbalats@di.uoa.gr

noew

the essence of knowledge
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Mellon

University
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Pick Your Contexts Well: Underst}
The Making of a Precise and Scald

Yannis Smaragdakis
Department of Computer Science,

University of

Martin Bravenboe]

LogicBlox Inc.
T Al Dl

Amberst, MA 01003,
and Department of Inforr}
University of Athens, 1578:

yannis@cs.umass.edu—smg

Abstract

Object-sensitivity has emerged
for points-to analysis in object-
tical success, however, object-
instance, for a context depth

mentations deviate significant]]
object-sensitive analysis. The

degrees of freedom, relating t

at every method call and objex
for the analysis design space, af
” ding of object P

Hybrid Conte;

¢

Abstract

Context-sensitive points-to analysis is valuablj
precision with good performance. The standar|
sensitivity are call-site-sensitivity (kCFA) ar)
Combining both flavors of cont

)
sensitive analyses. The resulty
find that past implementations
contexts, to the severe detrimer]
define a “full-object-sensitive”
higher precision, and often pe:
text depth. We also introduce
proximation of object-sensitivil
ity at substantially reduced cos!
makes an unconventional use
are not dynamic types of obje
stead upper bounds on the dyn:
Our results expose the influen
of points-to analysis and demo:
with major impact: It decisivell
a spectrum of analyses that si
times faster than an analogous
ity (comparable to analyses wif
precision (comparable to the b
same context depth).

Categories and Subject Descril
of Programs]: Semantics of H
Analysis

; D.3.1 [Programming L
Theory—Semantics

General Terms  Algorithms,

Permission to make digital or hard cop}
classroom use is granted without fee pri
for profit or commercial advantage and
on the first page. To copy otherwise, to
to lists, requires prior specific permissi
POPL’11, January 26-28, 2011, Aust
Copyright © 2011 ACM 978-1-4503-04

but at an infeasibly high cost. We show tha
nation of call-site- and object-sensitivity for
ysis is highly profitable. Namely, by keeping
only when analyzing selected language featy
approximate the precision of an analysis that
at all times. In terms of speed, the selective

kinds of context not only vastly outperforms f
nations but is also faster than a mere object-sef
result holds for a large array of analyses (e.g|
2-object: itive with a context- itive heay

blishing a new set of per isil

Categories and Subject Descriptors F.3.2 [
of Programs): Semantics of Programming L]
Analysis; D.3.4 [Programming Languag
Compilers

General Terms  Algorithms, Languages, Per

Keywords points-to  analysis;  context-s|

sensitivity; type-sensitivity

1. Introduction

Points-to analysis is a static program analysis

puting all objects (typically identified by alloc:
gram variable may point to. The area of poj
its close relative, alias analysis) has been the
search and is among the most standardized an
inter-procedural analyses. The emphasis of po
rithms is on combining fairly precise modeling
with scalability. The challenge is to pick judic|
that will allow satisfactory precision at a reast
more, although increasing precision often leal
totic complexity, this worst-case behavior is r;
actual practice. Instead, techniques that are effd
good precision often also exhibit better averag]
since smaller points-to sets lead to less work.

Making k-Object-Sensitive Pointer Arj

More Precise with Still k-Limitin

Tian Tan', Yue Li', and Jingling Xue®*?

1 School of Computer Sgs

2 Advanced Innovation C

Abstract. Object-sensitivj
abstraction for pointer anal;
k-object-sensitive pointer a
sites (as k context element
call, may end up using son]
ducing a finer partition of t

method call. In this paper,
improving the precision of a]
by still using a k-limiting ¢

allocation sites that are re
Object Allocation Graph (

(e.g., a context-insensitive 4
program and then avoid thd
ysis for the program. BEAN|
precision that is guaranteed}
have implemented BEAN as
two state-of-the-art whole-]
representative clients (may-
nine large Java programs frf
succeeded in making both aj
under each client at only sn

1 Introduction

Pointer analysis, as an enabling|
client applications, including bug
compiler optimisation [6,33], ai
mensions of pointer analysis pred
For C/C++ programs, flow-seng
For object-oriented programs, e|
is known to deliver trackable an|

There are two general appro
oriented programs, call-site-sen:
24, 29] (among others). A k-CFA
call by using a sequence of k cg
site). In contrast, a k-object-sen
k labels with each denoting a n4
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fragment neither whether
nor to how many objects:
may be remote and unrel
it is not possible to comp
and a call-site-sensitive anf
not even clear whether the
all calls to foo as one cag

Efficient 4
Modeling the He
Tial
School of Cq
Abstract
Mai points-to analysis techni fol

languages rely predominantly on the allocat
tion to model heap objects. We present MA
heap abstraction that is specifically develfl
the needs of an important class of type-dd
such as call graph construction, devirtualif
fail casting. By merging equivalent autom)
type-consistent objects that are created b;
site abstraction, MAHJONG enables an allod
points-to analysis to run significantly faster]
nearly the same precision for type-dependef

MAHIJONG is simple conceptually, effi
easily on any allocation-site-based points
demonstrate its effectiveness by discussing
why it is a better alternative of the allocatioi]
for type-dependent clients and evaluating
12 large real-world Java programs with five
points-to analyses and three widely used
clients. MAHJONG is expected to provide si;
for many program analyses where call grapl

CCS Concepts o Theory of computatid
analysis

Keywords  points-to analysis, heap abstrac}

1. Introduction

Pointer Analyses should be designed to
in cost and precision for specific groups
lems. We do not need a different pointe;
client problem, but rather we should lool
client problems with similar needs.

— Baj
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Precision-Guided Context Sensitivity for Pointer Ana]

YUE LI, Aarhus University, Denmark
TIAN TAN, Aarhus University, Denmark
ANDERS MOLLER, Aarhus University,
YANNIS SMARAGDAKIS, University o

Context sensitivity is an essential technique
observed that applying context sensitivity p|
balance between analysis precision and sp
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precise and more efficient, especially fo|
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Smaragdakis et al. 2011], which allows eal
to separate the static abstractions of diff§

Yue Li Tian Tan
Aarhus University Aarhus University
yueli@cs.au.dk tiantan@cs.au.dj
ABSTRACT

Context-sensitivity is important in pointer analysis to ensure
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1 INTRODUCTION

Pointer analysis is a family of static analysis techniques that pro|
a foundation for many other analyses and software enginee
tasks, such as program slicing [36, 39], reflection analysis [19,
bug detection [13, 26], security analysis [1, 23], program veril
tion [8, 27], and program debugging and comprehension [5
The goal of pointer analysis is to statically compute a set of ob;
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We present a new data-driven approach to achie
for Java. While context-sensitivity has greater i
other precision-improving techniques, it is diffict
most from context-sensitivity and decide how nf
designing such rules is a nontrivial and laborioy
overcome these challenges, we propose an autom:

text-sensitivity from codeb In our appro:
heuristic rules, in disjunctive form of properties or}
context-sensitivity. We present a greedy algorith
‘We implemented our approach in the Doop fram

ding a preci
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found during the pre-analysis, MA}
jects if both are type-consistent, i.
from both along the same sequenc]
a common type. We formulate the
type-consistency of two objects as
alence of two sequential automata
applying a classic Hopcroft-Karp all

point to during run time. Although stating this goal is simple,

d as their sites) that a program variable
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1 INTRODUCTION

Points-to analysis is one of the most impor
memory locations that a pointer variable ma
for many program verification tasks (e.g., de
of subsequent higher-level program analyse
program understanding tools.

For object-oriented languages, context-se1}
guish method’s local variables and objects
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* program size is far from a reliable predictor—for ex:
(12718 methods) is smaller than briss (26 582 mq
ever, 2type is not scalable for the former but sc:
latter;

“These are all popular open-source applications, including the hea
eclipse) of the DaCapo benchmarks [3].
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We present GRAPHICK, a new technique for automatically
Striking a balance between precision and scalability of
heuristics. For example, because applying context sens|
impractical, pointer analysis typically uses a heuristic to ¢
Past research has shown that exploiting the program’s
cost-effective analysis heuristics, promoting the recent
graph representations of programs obtained from a pre-.
such heuristics remains challenging, requiring a great de
aim to reduce this burden by learning graph-based heurist]
application-specific features. To do so, we present a fea
algorithm for learning analysis heuristics within the langu:
used it to learn graph-based heuristics for object sensit]
show that our approach is general and can generate high
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Pointer analysis is a fundamental program analysiq
various software engineering tools. The goal of poir]
estimate heap objects that pointer variables may rg
essential for virtually all kinds of program analysj
et al. 2015; Livshits and Lam 2003; Naik et al. 2006,
et al. 2014; Avots et al. 2005; Grech and Smaragd
program verifiers [Fink et al. 2008], symbolic exed
repair tools [Gao et al. 2015; Hong et al. 2020; Le|

INTRODUCTION

- NT = o> =~ 3 - = . .® =R~ S \

/)

+ : : J

D

!

|

Precision-Preserving Yet Fast Object-Sensitive Pointer F
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Object-sensitivity is widely used as a ¢
sensitively for object-oriented languagd
programs, k-object-sensitive pointer aj
values of k, where k < 2 typically. A fd
k-obj to analyze only some methods in
analysis. While already effective, these h
consequently, are limited in the efficiend
that makes k-obj run significantly fastd
EAGLE is to enable k-obj to analyze a mq
some of its selected variables/allocation
by reasoning about context-free-langua
based on a new CFL-reachability form|
comparing it with the prior art in terms
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Traditional context-sensitive pointer analysis is hard to scale for large and complex Java programs. To address ' 4

this issue, a series of selective context-sensitivity approaches have been proposed and exhibit promising results.
In this work, we move one step further towards producing highly-precise pointer analyses for hard-to-analyze
Java programs by presenting the Unity-Relay framework, which takes selective context sensitivity to the next
level. Briefly, Uni ty-Relay is a one-two punch: given a set of different selective context-sensitivity approaches,
say S = Sy,...,5,, Unity-Relay first provides a mechanism (called Unity) to combine and maximize the

Partial Context Sensitivity. Proc. ACM  precision of all components of S. When Uni ty fails to scale, Unity-Relay offers a scheme (called Relay) to I ‘
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1 INTRODUCTION

For object-oriented languages such
precision for pointer analysis [Lhq
insensitive pointer analysis, such as
once, producing one points-to set f]
allocation site in the method. In ¢
multiple times under different callj
thereby producing multiple points-
abstract objects for modeling every

To tame the combinatorial explo:
sequence of k context elements, un|
object-oriented programs: (1) k-calls
of a method by its k-most-recent cal

pass and accumulate the precision from one approach S; in S to the next, S;;1, leading to an analysis that is
more precise than all approaches in S.

As a proof-of-concept, we instantiate Unity-Relay into a tool called BATON and extensively evaluate it on \
a set of hard-to-analyze Java programs, using general precision metrics and popular clients. Compared with U
the state of the art, BATON achieves the best precision for all metrics and clients for all evaluated programs. 3
The difference in precision is often dramatic—up to 71% of alias pairs reported by previously-best algorithms
are found to be spurious and eliminated.
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1 INTRODUCTION o
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Pointer analysis is important for an array of real-world applications such as bug detection [Chandra
et al. 2009; Naik et al. 2006], security analysis [Arzt et al. 2014; Livshits and Lam 2005], program
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verification [Fink et al. 2008; Pradel et al. 2012] and program understanding [Li et al. 2016; Sridharan
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“We do not discuss the performance of our approach for call-site-
sensitivity since call-site-sensitivity is less important than others

Jeon et al. [2019]
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Context-sensitivity is the primary approach for adding more preci-
sion to a points-to analysis, while hopefully also maintaining scal-
ability. An oft-reported problem with context-sensitive analyses,

George Kastrinis
Department of Informatics
University of Athens
{smaragd,gkastrinis,gbalats }@di.uoa.gr

George Balatsouras

of points-to analysis is to yield usefully precise infos
sacrificing scalability: the analysis inputs are large
algorithms are typically quadratic or cubic, but
near-linear behavior in practice, by exploiting pro;
and maintaining precision. Indeed precision and pes
g0 hand-in-hand in a good points-to analysis alf
algorithms are often found to be both more preg
because smaller points-to sets lead to less work [14]
Context-sensitivity is a common way of pursuin]
ility in points-to analysis. It consists of quali

ables and objects with context information: the anaj
formation (e.g., “what objects this method argumery
over all possible executions that map to the samd
while separating executions that map to different
way, context-sensitivity attempts to avoid precision
ing the behavior of different dynamic program
sensmvuy comes in many ﬂavon dependmg on the
such as call- [22, 23], o

19, 20], dnd type-sensitivity [24].
ked fact about context
even (hc beu algorithms have a common failure nf
cannot maintain precision. Past literature reports
‘mance of a [...] deep-context analysis is bimodal”
sensitive analyses have been associated with very I
contexts” [15]; “algorithms completely hit a wall
ations, with the number of tuples exploding expo|
Recent published results [12] fail to run a 2-object-
sis in under 90mins for 2 of 10 DaCapo benchmark]
benchmarks take more than 1,000sec, although mq
marks of similar or larger size get analyzed in unde]
Thus, when context-sensitivity works, it work:
terms of both precision and performance When i

it fails quickly exp

context-insensitive analyses uniformly sc.ﬂe well,
puts. Figure 1 vividly demonstrates this phenomer}
Capo benchmarks, analyzed with the Doop frame

(insens) analysis and a 2-object
ysis with a context-sensitive heap (20bjH). (The ch:
analysis time of the longest-running benchmarks]
hsqldb and jython, timed out after 90mins on a
and would not terminate even for much longer ting
be seen, context-insensitive analyses vary relative}
formance, while context-sensitivity often causes ru
memory use) to explode.

Faced with this unpredictability of context-sen)
mon reaction is to avoid it, fn\vunng context-ing

ses, and, y, missing precis
well-behaved programs. Even worse, for some af
chewing expensive context-sensitivity is not an opt
insensitive analysis is just not good enough. Rep
try [4] and academic researchers [3] alike reiter:
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]I A Machine-Learning Algorithm with Disjunctive Model for

Data-Driven Program Analysis

MINSEOK JEON, SEHUN JEONG’, SUNGDEOK CHA, and HAKJOO OH, Korea University,
Republic of Korea

We present a new machine-learning algorithm with disjunctive model for data-driven program analysis.
One major challenge in static program analysis is a substantial amount of manual effort required for tuning
the analysis performance. Recently, data-driven program analysis has emerged to address this challenge
by automatically adjusting the analysis based on data through a learning algorithm. Although this new
approach has proven promising for various program analysis tasks, its effectiveness has been limited due
to simple-minded learning models and algorithms that are unable to capture sophisticated, in particular
disjunctive, program properties. To overcome this shortcoming, this article presents a new disjunctive model
for data-driven program analysis as well as a learning algorithm to find the model parameters. Our model uses
boolean formulas over atomic features and therefore is able to express nonlinear combinations of program
properties. Key technical challenge is efficiently determine a set of good boolean formulas as brute-force
search would simply be impractical. We present a stepwise and greedy algorithm that efficiently learns
boolean formulas. We show the effectiveness and generality of our algorithm with two static analyzers:
context-sensitive points-to analysis for Java and flow-sensitive interval analysis for C. Experimental results
show that our automated technique significantly improves the performance of the state-of-the-art techniques
including ones hand-crafted by human experts.

CCS Concepts: « Theory of computation — Program analysis; « Computing methodologies — Ma-
chine learning approaches.

Additional Key Words and Phrases: Data-driven program analysis, Static analysis, Context-sensitivity, Flow-
sensitivity

ACM Reference Format:

Minseok Jeon, Sehun Jeong, Sungdeok Cha, and Hakjoo Oh. 2017. A Machine-Learning Algorithm with
Disjunctive Model for Data-Driven Program Analysis. ACM Trans. Program. Lang. Syst. 9, 4, Article 39
(December 2017), 42 pages. https://doi.org/0000001.0000001

1 INTRODUCTION

One major challenge in static program analysis is a substantial amount of manual effort required
for tuning the analysis performance for real-world applications. Practical static analysis tools use a
variety of heuristics to optimize their performance. For example, context-sensitivity is essential
for analyzing object-oriented programs, as it distinguishes method’s local variables and objects in
different calling-contexts. However, applying context-sensitivity to all methods in the program
does not scale and therefore real-world static analyzers apply context-sensitivity only to profitable
methods determined by some heuristic rules [Smaragdakis et al. 2014]. Another example is a
relational analysis such as ones with Octagons [Miné 2006]. Because it is impractical to keep track
of all variable relationships in the program, static analyzers employ variable-clustering heuristics
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“We do not discuss the performance of our approach for call-site-
sensitivity since call-site-sensitivity is less
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of points-to analysis is to yield usefully precise infos
sacrificing scalabil ¢ analysis inputs are large
algorithms are typically quadratic or cubic, but
near-linear behavior in practice, by exploiting prog
and maintaining precision. Indeed precision and per
g0 hand-in-hand in a good points-to analysis alf
algorithms are often found to be both more pre
because smaller points-to sets lead to less work [14]
Context-sensitivity is a common way of pursuis
scalability in points-to analysis. It cons of qualif
ables and objects with context information: the ana
formation (e.g., “what objects this method argume
over all possible executions that map to the samd
while separating executions that map to different d
way, context-sensitivity attempts to avoid precision
ing the behavior of different dynamic program
sensumly comes in many ﬂavors dcpendmg on the
such as call- [22, 23], o

19, 20], and type-sensitivity [24].
ked fact about context

even the besl algorithms have a common failure
cannot maintain precision. Past literature reports
‘mance of a [...] deep-context analysis is bimodal” |4
sensitive analyses have been associated with very I
contexts” [15]; “algorithms completely hit a wall
ations, with the number of tuples exploding expol
Recent published results [12] fail to run a 2-object-|
sis in under 90mins for 2 of 10 DaCapo benchmar
benchmarks take more than 1,000sec, although md
marks of similar or larger size get analyzed in unde}

Thus, when context-sensitivity works, it worksjp
terms of both precision and performance. When i
it fails mi quickly exp g in
context-insensitive analyses uniformly scale well, f}
puts. Figure 1 vividly demonstrates this phenomer}
Capo benchmarks, analyzed with the Doop frame

(insens) analysis and a 2-objec
ysis with a context-sensitive heap (20bjH). (The ch
analysis time of the longest-running benchmarks
hsqldb and jython, timed out after 90mins on a
and would not terminate even for much longer ti
be seen, context-insensitive analyses vary relati
formance, while context-sensitivity often causes ru
‘memory use) to explode.

Faced with this unpredictability of context-senfly
mon reaction is to avoid it, favunng context-ing

ses, and, ly, missing precis
well-behaved programs. Even worse, for some af
chewing expensive context-sensitivity is not an opt]
insensitive analysis is just not good enough. Repq
try [4] and academic researchers [3] alike reiter:

2 2 3. . .
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Abstract. Object-sensitivity is regarded as argu]  ABSTRACT - Abstract ne of ANDERS MOLLER, Aathus University, Denmark Abstract
abstraction for pointer analysis in object-oriented Context-sensiivity s important in pointer analysis to ensure high Context-sensitive points-to analysis is valuable for achieving high :;5':;':‘/5: o YANNIS SMARAGDAKIS, University of Athens, Greece Context-sensitivity is the primary approach for adding more preci-
. s N . . recision with good performance. The standard flavors of context- N y sion to a points-to analysis, while hopefully also maintaining scal-
k-object-sensitive pointer analysis, which uses a sef precision, but existing techniques suffer from unpredictable scala- P dl-si tivi bi " context infor PP . . . . . n 102 P! ysIs, opetuly - e
. § . bil . ants of context-sensitivity exist, and it is difficult sens t y (kCFA) and t vi same context] COntext sensitivity is an essential technique for ensuring high precisiq  ability. An oft-reported problem with context-sensitive analyses,
sites (as k context clements) to represent a calling  bil Many variants of context-sesitivity xist, and i i diffc Abstract 1. Inf Combining both flavors of context-sensitivity increases precision  F8" S0P oherved that applying context sensitivity partially, only on a select s however, is that they are bi-modal: cither the analysis is precise
call, may end up using some context elements re o choose one that leads to reasonable analysis time and obtains Obi itivity " " b . Poi but at an infeasibly high cost. We show that a selective combi- Al . L. - enough that it manipulates only manageable sets of data, and thus
. e high precision, without running the analysis multiple times. ject-sensitivity has emerged as an excellent context abstraction oints-to nation of call-site- and object-sensitivity for Java points-to anal- naturally resll - balance between analysis precision and speed. However, existing te| " . ) f !
ducing a finer partition of the space of (concrete) ¢ . for points-to analysis in object-oriented languages. Despite its prac- most fun| ton of ) ! po from differen] . A N . scales impressively well, or the analysis gets quickly derailed at the
- 8 We present the ScALER framework that addresses this problem. tical Y ) -, R dste of o YSiS is highly profitable. Namely, by keeping a combined context sensitivity haj 40 1ot provide much insight into what characterizes this method suf  first sign of imprecision and becomes orders-of-magnitude more
method call. In this paper, we introduce BEAN, af  scavsr efficiently estimates the amount of points-to information ical success, however, obj is poarly od. For sists of o only when analyzing selected language features, we can closely y incipled h for identifyi critical methods, based than would be expected given the program’s size. Thero
i 3 B sensiti By instance, for a context depth of 2 or higher, past scalable imple- expressid i s i [22,23]and 4 Principled approach for identitying p critic: asel ‘pe g progi
improving the precision of any k-object-sensitive af that would be needed to analyze each method with different variants ¢ comer : ) . approximate the precision of an analysis that keeps both contexts " . . o § : s is currem.ly no approach that makes precise context-sensitive analy-
N a . . P N N mentations deviate significantly from the original definition of an toduringl ¢ a1l times. In terms of speed, the selective combination of both A call-sitdl  explain where most of the arises in context: ive po;
by still using a k-limiting context abstraction. Th{ of context-sensitivity. It then selects ar; appmpnatefvanant for object-sensitive analysis. The reason is that the analysis has many cally eve]  kinds of context not only 5:::1)" outperforms non.selective combi labels of inst] an efficient algorithm to recognize these flow patterns in  given pr ses (of any flavor: call-site-, object-, or type- scnsmvc) scalc across,
. N each method so that the total amount of points-to information is o N dati e . Lo N -} ) " " e h ol That is, the af lhe board at a level to that of a t anal-
allocation sites that are redundant context elemdl "0 A0 B0 ki e available space to magimize precision. degrees of frecdom, relating to which context clements are picked mechani§  nations but is also faster than a mere object-sensitive analysis. This tradeoffs between analysis precision and speed. is. To address this issue, we propose introspective analysis: a
g P P! e method argus Lys1s p: P propo: P Y
Object Allocation Graph (OAG), which is built b: o imental resalts d bt § b at every method call and object creation. We offer a clean model pointer dl  result holds for a large array of analyses (e.g., 1-object-sensitive, arg X . . " o a :
( text-i itive Andersen’s analysis  Our experimental results demonstrate that SCALER achieves pre- for the analysis design space, and discuss a formal and informal un- object-off  2-object-sensitive with a t-sensitive heap, typ tive) es. method invo Our experimental results on standard benchmark and real-world pro Sech_mm_le for uniformly scaling context-sensitive analysis by elim-
e.g., a context-insensitive Andersen’s analysis) pe]  dictable scalabiliy for all the evaluated programs (e, specdups derstanding of object-sensitivity and of how to create good object-  lambda |  tablishing a new set of performance/precision sweet spots. the analysis ;o context sensitivity partially, only on the identified precision-cr]  "2tng its performance-detrimental behavior, at a small precision
program and then avoid them in the subsequent can reach 10x for 2-object-sensitivity), while providing a precision sensitive analyses. The results are surprising in their extent. We analysis method invod . X . 5 5 expense. Introspective analysis consists of a common adaptivity
ysis for the program. BEAN is generally more prec that matches or even exceeds that of the best alternative techniques. Figure 1: Comparisol 14 hat past have made a sub-optimal choice of hind anyl|  Categories and s,,,,]m D,,m‘,,,,,, F32 [ Logics and Mm,,,,,g: in the code | (98.8%) of the precision of a highly-precise conventional context-sensif pattern: first perform a context-insensitive analysis, then use the
precision that is guaranteed to be as good as k-obj sensitivity, 2-type sef ¢ oniexis, to the severe detriment of precision and performance. We Furthern] ~ of Programs): a context-insq - with a context-sensitive heap), with a substantial speedup (on averagdl ~ results to selectively refine (i.c., analyze conte ely) pro-
h: impl ted BEAN tool & CCS CONCEPTS sos The yais bs define a “full-object-sensitive" analysis that results in significantly analysis Aualysis; D3, 4 ! . ; ;nmmd fo: 1§ CCS Concepts: « Theory of computation — Program analysis; Fi dm’i‘%ms mhar:iwalln ;:Iofl oo § exp'losmn i u;c (:nm;g llm;
ave Implemente as an open-source tool aj « Theory of computation — Program analysis; andall truncatedcasf§  higher precision, and often performance, for the exact same con- interact Compilers oo separate’ epts: y P BT ysis; or space. The technical challenge is to appropriately identify sucl
two state-of-the-art whole-program pointer analy: text depth. We also introduce “type-sensitivity” as an explicit ap- functiond to anything d . . : 3 ) program elements. We show that a simple but principled approach
. . N ) to producd £ obicct th: high al hi General Terms ~ Algorithms, Languages, Performance obj2 may poff Additional Key Words and Phrases: static analysis, points-to analysis,| can be remarkably effective, Achlevmg scalability (often wnh dm,
representative clients (may-alias and may-fail-cast] ~ KEYWORDS ng P of obj at prescrves high context qual-  achieves
i ; ; scalability [12, 30, 3514ty at y reduced cost. A type-sensitive points-to analysis  consists @ Keywords points-to  analysis;  context-sensitivity; object- * class ¢ { | ACM Ref Format: fatic specdup) for
nine large Java programs from the DaCapo benchi static analysis, points-to analysis, Java ued to develop sophis|  makes an unconventional use of types as context: the context types objectab sel{s s .IP° easitivit ySisy ¥ ) 2 void foo(0| ELErEICE Format: for deep context-sensitive analyses
succeeded in making both analyses more precise fof]  ACM Reference Format: 16,18,22,24,25,32,33  are not dynamic types of objects involved in the analysis, but in-  informat s e Y ) Yue Li, Tian Tan, Anders Moller, and Yannis Smaragdakis. 2018. Pre
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of the 26th ACM Joint European Software Engineering Conference and Sympo-  analyzed differently aff  of points-to analysis and demonstrate type-sensitivity to be anidea  kinds of §  Points-to analysis i i 1 - ’ ; g S
N B lysis is a static program analysis that consists of com 1.f Compilers
1 Introducti sium on the Foundations of Software Engincering (ESEC/FSE '18), November Context sensitivity has]| ~ with major impact: It decisively advances the state-of-the-art with (18,1914 puting all objects (typically identified by allocation site) that apro- 3 .. oo INTRODUCTION i
ntroduction f.;;%iﬁ: Buena Vi, T, USA. ACM, New York, NY. USA, 1236 context informationusf] @ spectrum of analyses that simultancously enjoy speed (scveral Ever | gram variable may point to. The area of points-to analysis (and s  c2.foo(of] 1 General Terms ~ Algorithms, Languages, Performance
oL g and type-sensitivity [ times faster than an analogous object-sensitive analysis), scalabil- al. [13], its close relative, alias analysis) has been the focus of intense re- 10 f . f : X . o .
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Precise and Scalable Points-to Analysis via Data-Driven
Context Tunneling

MINSEOK JEON, Korea University, Republic of Korea
SEHUN JEONG, Korea University, Republic of Korea
HAKJOO OH?, Korea University, Republic of Korea

We present context tunneling, a new approach for making k-limited context-sensitive points-to analysis
precise and scalable. As context-sensitivity holds the key to the development of precise and scalable points-to
analysis, a variety of techniques for context-sensitivity have been proposed. However, existing approaches
such as k-call-site-sensitivity or k-object-sensitivity have a significant weakness that they unconditionally
update the context of a method at every call-site, allowing important context elements to be overwritten
by more recent, but not necessarily more important, context elements. In this paper, we show that this is a
key limiting factor of existing context-sensitive analyses, and demonstrate that remarkable increase in both
precision and scalability can be gained by maintaining important context elements only. Our approach, called

context tunneling, updates contexts selectively and decides when to propagate the same context without
modification.

We attain context tunneling via a data-driven approach. The effectiveness of context tunneling is very
sensitive to the choice of important context elements. Even worse, precision is not monotonically increasing
with respect to the ordering of the choices. As a result, manually coming up with a good heuristic rule for
context tunneling is extremely challenging and likely fails to maximize its potential. We address this challenge
by developing a specialized data-driven algorithm, which is able to automatically search for high-quality
heuristics over the non-monotonic space of context tunneling.

We implemented our approach in the Doop framework and applied it to four major flavors of context-
sensitivity: call-site-sensitivity, object-sensitivity, type-sensitivity, and hybrid context-sensitivity. In all cases,
1-context-sensitive analysis with context tunneling far outperformed deeper context-sensitivity with k = 2 in
both precision and scalability.

CCS Concepts: « Theory of computation — Program analysis; « Computing methodologies — Ma-
chine learning approaches;
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analysis
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Return of CFA: Call-Site Sensitivity Can Be Superior to I ] ~ 1= TEIT R /‘
Object Sensitivity Even for Object-Oriented Programs "l @ Of =mmm BQ

MINSEOK JEON and HAKJOO OH?*, Korea University, Republic of Korea ]

In this paper, we challenge the commonly-accepted wisdom in static analysis that object sensitivity is superior
to call-site sensitivity for object-oriented programs. In static analysis of object-oriented programs, object
sensitivity has been established as the dominant flavor of context sensitivity thanks to its outstanding precision. : ‘
On the other hand, call-site sensitivity has been regarded as unsuitable and its use in practice has been 3 . /3
constantly discouraged for object-oriented programs. In this paper, however, we claim that call-site sensitivity 3 £ L 5 4
is generally a superior context abstraction because it is practically possible to transform object sensitivity into ‘ ittt

more precise call-site sensitivity. Our key insight is that the previously known superiority of object sensitivity b & ;
holds only in the traditional k-limited setting, where the analysis is enforced to keep the most recent k context : | | h
elements. However, it no longer holds in a recently-proposed, more general setting with context tunneling. | "
With context tunneling, where the analysis is free to choose an arbitrary k-length subsequence of context

strings, we show that call-site sensitivity can simulate object sensitivity almost completely, but not vice versa. i = 7 F H O ’ H O
To support the claim, we present a technique, called OBj2CFaA, for transforming arbitrary context-tunneled o i

object sensitivity into more precise, context-tunneled call-site-sensitivity. We implemented OBj2CrA in Doop Ll
and used it to derive a new call-site-sensitive analysis from a state-of-the-art object-sensitive pointer analysis.

Sy X
Experimental results confirm that the resulting call-site sensitivity outperforms object sensitivity in precision v s :

and scalability for real-world Java programs. Remarkably, our results show that even 1-call-site sensitivity can

| (Object sensitivity) (Call-site Sensitivity)

“Since its introduction, object sensitivity has emerged as the dominant flavor of context
sensitivity for object-oriented languages.” : 2
—Smaragdakis and Balatsouras [2015] \ 7
Context sensitivity is critically important for static program analysis of object-oriented programs. T i e S S ah i b e i it s e i s O T A N I i
A context-sensitive analysis associates local variables and heap objects with context information
of method calls, computing analysis results separately for different contexts. This way, context
sen31t1v1ty prevents analys1s mformatlon from bemg merged along dlfferent call chams For object-

sensitive analys1s [Milanova et al. 2002, 2005 Smaragdakls et al 201 1] maintains a sequence of
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Exercise

class S {
Object id(0Object a) { return a; }
Object id2(0Object a) { return id(); }
Iy

class C extends S A
void funi1() {
Object al = new A1();
Object bl = id2(al);
+r

class D extends S {
void fun2() {
Object a2 = new A2();
Object b2 = id2(a2);
+H}

- . . . =PSk=igely
@ What is the result of 1-call-site-sensitive analysis?q T © ™ &5
@ What is the result of 1-object-sensitive analysis? < 2 <=tot

@ Explain the strength of object-sensitivity over call-site-sensitivity. obj > call

Hakjoo Oh October 18, 2022 28 / 31
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In this paper, we challenge the commonly-accepted wisdom in static analysis that object sensitivity is superior
to call-site sensitivity for object-oriented programs. In static analysis of object-oriented programs, object
sensitivity has been established as the dominant flavor of context sensitivity thanks to its outstanding precision. : ‘
On the other hand, call-site sensitivity has been regarded as unsuitable and its use in practice has been 3 . /3
constantly discouraged for object-oriented programs. In this paper, however, we claim that call-site sensitivity 3 £ L 5 4
is generally a superior context abstraction because it is practically possible to transform object sensitivity into ‘ ittt

more precise call-site sensitivity. Our key insight is that the previously known superiority of object sensitivity b & ;
holds only in the traditional k-limited setting, where the analysis is enforced to keep the most recent k context : | | h
elements. However, it no longer holds in a recently-proposed, more general setting with context tunneling. | "
With context tunneling, where the analysis is free to choose an arbitrary k-length subsequence of context

strings, we show that call-site sensitivity can simulate object sensitivity almost completely, but not vice versa. i = 7 F H O ’ H O
To support the claim, we present a technique, called OBj2CFaA, for transforming arbitrary context-tunneled o i

object sensitivity into more precise, context-tunneled call-site-sensitivity. We implemented OBj2CrA in Doop Ll
and used it to derive a new call-site-sensitive analysis from a state-of-the-art object-sensitive pointer analysis.
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Experimental results confirm that the resulting call-site sensitivity outperforms object sensitivity in precision v s :

and scalability for real-world Java programs. Remarkably, our results show that even 1-call-site sensitivity can
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Call-Site vs. Object Sensitivity

* In theory, their precision is incomparable

* In practice, object sensitivity generally outperforms
call-site sensitivity for OO languages (like Java)
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Call-site vs. Object Sensitivity

* Typical example that benefits from object sensitivity:

class A:

def g(self):
return

def f (self):
return self.g()

def main () :

a

b
a .
b.f()

= A()
= A()
£ ()

//
//
//
//

11
12
13
14

// 15

f

[13]
main/ \ |9
[15]

[14]

1-call-site sensitivity
f J 9
P (1]
main

I U
[12] [12]

1-object sensitivity
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“We generated |call+T by applying context tunneling tol call...”
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id(v, i){
if (i > 0){
return id(y, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);//A
v2 =id(2,i);//B
assert (vl !=v2);//query

]

Oj| 5| = = 124
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Marriage of Context Tunneling and Selective Context
Sensitivity in Pointer Analysis

ANONYMOUS AUTHOR(S)

In this paper, we identify a fundamental issue in the current trend of developing context sensitivity tech-
niques in pointer analysis and present a way to efficiently address it. Context sensitivity is a key factor that
significantly affects the performance of pointer analysis in object-oriented programs. In the literature, two
major refinements—context tunneling and selective context sensitivity—have been developed, where context
tunneling improves precision and selective context sensitivity enhances scalability. Though the two techniques
can be used together to maximize both precision and scalability, they have been developed independently
without considering whether individually optimized techniques will remain effective when combined. In this
work, however, we demonstrate that combining independently developed context tunneling and selective
context sensitivity techniques leads to suboptimal performance. To be an effective combination, the two
techniques must be developed together, considering their interdependencies. Developing a pair of techniques,
however, while accounting for all possible interactions is extremely challenging. To address this challenge,
we present a framework that significantly reduces the complexity of developing an effective combination
of the two techniques. Our evaluation results show that following our approach leads to the development
of an effective combination, achieving a state-of-the-art performance, that outperforms combinations of
independently developed context tunneling and selective context sensitivity techniques.

ACM Reference Format:
Anonymous Author(s). 2018. Marriage of Context Tunneling and Selective Context Sensitivity in Pointer
Analysis. J. ACM 37, 4, Article 111 (August 2018), 28 pages. https://doi.org/XXXXXXX XXXXXXX

1 INTRODUCTION

Context sensitivity plays a pivotal role in pointer analysis of object-oriented programs. It enhances
precision by distinguishing between multiple invocations of the same method based on their calling
contexts. However, tracking every possible context is impractical, leading to the widespread use
of k-limited context sensitivity. This approach retains only the k most recent context elements—
typically call sites in call-site sensitivity [Sharir and Pnueli 1981] or allocation sites in object
sensitivity [Milanova et al. 2002]. Despite its adoption, this conventional technique frequently falls
short in balancing precision and scalability in real-world applications.

Over the past decade, numerous techniques have been proposed to enhance the k-limited
approach in context-sensitive pointer analysis [He et al. 2024; Jeon et al. 2018; Jeon and Oh 2022;
Kastrinis and Smaragdakis 2013; Li et al. 2018a,b, 2020; Liang et al. 2011; Lu et al. 2021a,b; Milanova
et al. 2002; Oh et al. 2015; Smaragdakis et al. 2011, 2014; Tan et al. 2021, 2017; Zhang et al. 2014].
Two prominent approaches that excel in maximizing precision or scalability are:

e Context tunneling [Jeon et al. 2018; Jeon and Oh 2022] seeks to maximize precision while
adhering to a k-context limit. Instead of relying solely on the k most recent context elements,

it adopts a more flexible strategy by prioritizing the k most significant context elements.
Jeon and Oh [2022] demonstrated that context tunneling can markedly improve analysis

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0004-5411/2018/8-ART111 $15.00

https://doi.org/XXXXXXX XXXXXXX
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* We identify a fundamental issue in the current trend of developing context
sensitivity techniques in pointer analysis and present a way to efficiently address it.

24 7S5 SO NS

* We present a framework that significantly reduces the complexity of
developing an effective combination of the two techniques
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Definition 7.1 (Superiority of Call-Site Sensitivity). Let P be a set of target programs. Let S be a
context-tunneling space for the target programs. We say call-site sensitivity is superior to object
sensitivity with respect to S if is always possible to simulate object sensitivity via call-site sensitivity:

VP € PNTyp € S. AT qy € S.Vk € [0, o0]. ﬁxF Lean, Ucal (more precise than) ﬁngolbcj’ Vo (5)
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Exercise

class S {
Object id(Object a) { return a; }
Object id2(0Object a) { return id(); }
}
class C extends S {
void funi() {
Object al = new A1(Q);
Object bl = id2(al);
+}
class D extends S {
void fun2() {
Object a2 = new A2(Q);
Object b2 = id2(a2);
+}

.
LI

| -call-site sensitivity=2 J=5HA| e & cu’il—f?

AR

@ What is the result of 1-call-site-sensitive anaIysis?%
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id(v, i)
if (i > 0){
return id(v, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);
v2 =id(2, i);
assert (vl !=v2);//query
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2: return id(v, i-1);}
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id(v, i){
if (i > 0){
return id(v, i-1);}
return v;}

main(){
i = input();
vl =id(l,i);
v2 =id(2, i);
assert (vl !=v2);//query
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