Return of CFA: Call-Site Sensitivity an
Be Superior to Object Sensitivity Even for
Object-Oriented Programs

Minseok Jeon and Hakjoo Oh
= KOREA

UNIVERSITY

POPL 2022 @ Philadelphia, USA

1

CaII Slte Sen5|t|V|t

TwOo major camps -
Object Sensitivity)

Call-site Sensmwty VS Object Sensitivity

CaII-S|te sen5|t|V|ty was born in I98I

, e Considers “Where”

0: foo(){

3: }

I: goo();
2: goo();

/v [I] Context

go0 @

g00
[2] Context

/AN
\ &

Call graph ; Call-site sensitivity

2010 2022

Call-site Sensmwty VS Object Sensitivity

CaII-S|te SenSItIVIt)' was born in |98| Where is it called from?
e Considers “Where”

Call-site is context

2 Call-site is context (,

Call graph ; Call-site sensitivity

CaII-S|te Sensitivity vs Object Sensitivity

- Object senS|t|V|ty appeared in 2002
e Considers “What”

=

1981

- foo(p)t

| ;
2:)

p-goo();

2002

g00
/ (O]

g00
[02]

Context

Ccntext

|
Z
b
.
]
v,
;.
- . e a2 N — o o s N n— - e s N r— o\ e . - § s . -
3 e~ — B et e T L RGN T TP Ot e T L G I O e 2 P NIRRT L el el T e .o g Tl

2010

Object sensitivity

2022

CaII-S|te Sensitivity vs Object Sensitivity

- Object senS|t|V|ty appeared in 2002
e Considers “What”

What is it called with?

':, Object is context

Object sensitivity

&
r)
l
v,
S ' AR ISR ANT STy NPT IS TN S e ey MRS TR PSS ' e

1981 2002 2010 2022

Call-site Sensitivity vs Object Sensitivity

* An example shows the limitation of CFA and strength of object sensitivity

class C{
id(v){
return v;}
id | (v){

return this.id(v);}

J

main(){
cl = new C();//CI

c2 = new C();//C2
a = (A) cl.idl(new A());//queryl
= (B) c2.idl(new B());//query2

5\?995'9.‘.“.".-'?99!\.’.—.9

—

http://c1.id
http://c2.id

Call-site Sensitivity vs Object Sen5|t|V|ty

Method & Context

9:)a = (A) clidl (new AQ)//queryl .~~~ Call-graph of 1-CFA
10:).b = (B) c2.idl(new B()) //quer

http://c1.id
http://c2.id

Call-site Sensitivity vs Object Sensitivity

* An example shows the limitation of CFA

| Limitation of CFA : |
Nested method calls | \
" return th|s |d v b

(9: a=(A) clidl(new A();//query] Call-graph of 1-CFA
10: b = (B) c2.id |l (new B());//query]

http://c1.id
http://c2.id

Call-site Sensitivity vs Object Sensitivity

* An example shows strength of object sensitivity
0: class C{ dI
| : id(v){ |
2. returnv;} / [Cl] _’ [CI]
3 idION “
. return this.id(v);} X
D : \n_.
7. ¢l = new C()/C| [CZ] [CZ]
8: c2 = new C();//C2
9 a = (A) cl.idl(new A());//query Call-graph of I'Obl
IO = (B) c2.idl(new B());//query2

—

10

http://c1.id
http://c2.id

Call-site Sensitivity vs Object Sensitivity

* An example shows strength of ob]ect sen5|t|V|ty .

o = -
I O 2 e /
return t |s |d(v) }
;

\ id |

ic2 = new C() //C2
: = (A) cl.idl(new A()) //queryl Call-graph of | Obl
= (B) c2.id | (new B()); //queryZ

11

http://c1.id
http://c2.id

Call-site Sensitivity vs Object Sensitivity

* An example shows the limitation of object sensitivity and strength of CFA

. class C{
id(v){

return v;}

: main(){ [*] [CI]

cl = new C();//CI

A — (A) clld(new A()),//queryl Ca”_graph Of I 'Ob]
b = (B) cl.id(new B());//query2

c = (B) cl.id(new C());//query3

NONSL WY TQ

ey

12

http://c1.id
http://c1.id
http://c1.id

Call-site Sensitivity vs Object Sensitivity

* An example shows the Ilmltatlon of object sen5|t|V|ty

main | 67/.8
main(){ [*]
new C();//ClI

cl =
a — (A) Cl |d(neWA()) //queryl Ca”_graph Of I 'Ob]
= (B)] cI .id(new B());//query2
c = (B): cI |d(new C()) //query3
The three method caIIs share the same receiver ob]ect CI

, A13A, S

http://c1.id
http://c1.id
http://c1.id

Call-site Sensitivity vs Object Sen5|t|V|ty

* An example shows the

(6: a=(A) clid(new A());//query] |
'7: b =(B) cl.id(new B()) /Iquery2 |
8 ¢ = (B) cl.id(new C());//query3

Call-graph of |-CFA

Call-site sensitivity easily separates the three method calls

http://c1.id
http://c1.id
http://c1.id

Call-site Sensitivity vs Object Sensitivity

o Call-site Sensitivity and Object Sensitivity had been actively compared

N
o
v)
b
\ . . g s .
Parameteriz nsitivity for Points- itive poi it i : iti ; ; ificati st .
Aa al et? 3d Object Sensitivity for Points-to Context-sensitive points-to analysis: is it worth it? Evaluating the Benefits of Context-Sensitive Strictly Declarative Specification of Sophisticated Points-to Analyses
\ y Ondfej Lhoték!2 and Laurie Hendren? POIntS'tO AnalyS|S USlng a B D D-Based . . .
h olhotak@uwaterloo.ca hendren@sable.mcgill.ca Im Iementation Martin Bravenboer Yannis Smaragdakis
ANA MILANOVA 1 . L p Department of Computer Science
.] Rensselaer Polytechnic Institute fchool of Computer Scl@ce, Umvers}ty of'Wat?rloo, Waterloo, ON, Canada University of Massachusetts, Amherst
L ATANAS ROUNTEV School of Computer Science, McGill University, Montreal, QC, Canada ONDREJ LHOTAK ‘ Amberst, MA 01003, U.SA
' Ohio State University University of Waterloo martin.bravenboer@acm.org yannis@cs.umass.edu
Y ’ and Abstract. We present the results of an empirical study evaluating the precision and
b BARBARA G. RYDER of subset-based points-to analysis with several variations of context sensitivity on LAURIE HENDREN
b Rutgers University Java benchmarks of significant size. We compare the use of call site strings as the McGill University Abstract analyses. It s, thus, not surprising that a wealth of rescarch
3 context abstraction, object sensitivity, and the BDD-based context-sensitive algo- T N . . .
3) ; 8 We present the Doop framework for points-to analysis of has been devoted to efficient and precise pointer analysis
o rithm proposed by Zhu and Calman, and by Whaley and Lam. Our study includes p Door builds on the idea of specify int techniques. Context-sensitive analyses are the most common
] i -~ 4 . ava programs. Doop builds on the idea of specifying pointer - ; 10)
) The goal of points-to analysis for Java is to determine the set of objects pointed to by a reference analyses that (l:mlnext-sensmvely specfahze only pointer variables, as Yve.ll as ones ‘We present PADDLE, a framework of BDD-based context-sensitive points-to and call graph analyses analysis algorithms declaratively, using Datalog: a logic- class of precise points-to analyses. Context sensitive analysis
o variable or a reference object field. We present object sensitivity, a new form of context sensitivity thff‘ also specialize the heap abstraction. We measure })‘?lh char?ctenst1cs of the for Java, as well as client analyses that use their results. PADDLE supports several variations of based language for defining (recursive) relations. We carry approaches qualify the analysis facts with a context abstrac-
S for flow-insensitive points-to analysis for Java. The key idea of our approach is to analyze a method points-to sets themselves, as well as effects on the precision of client analyses. To context-sensitive analyses, including call site strings and object sensitivity, and context-sensitively the declarative approach further than past work by describ- tion, which captures a static notion of the dynamic context
o separately for each of the object names that represent run-time objects on which this method may guide development of efficient analysis implementations, we measure the number specializes both pointer variables and the heap abstraction. We empirically evaluate the preci- ing the full end-to-end analysis in Datalog and optimizing of a method. Typical contexts include abstractions of method
) be invoked. To ensure flexibility and practicality, we propose a parameterization framework that of contexts, the number of distinct contexts, and the number of distinct points-to sion of these context-sensitive analyses on significant Java programs. We find that that object- aggressively using a novel technique specifically targeting call-sites (for a call-site sensitive analysis—the traditional
h allows analysis designers to control the tradeoffs bet cost and ision in the object iti sets that arise with each context sensitivity variation. To evaluate precision, we sensitive analyses are more precise than comparable variations of the other approaches, and that highly recursive Datalog programs. meaning of “context-sensitive”) or receiver objects (for an
A anaéy;:s. Iysis d ines the locations th be modified by th ion of measure the size of the call graph in terms of methods and edges, the number of :E:;m;)zmg the heap abstraction improves precision more than extending the length of context As a result, Doop achieves several benefits, including full object-sensitive analysis). .
{) e'eﬁ;ec: ana {sg fetermm(;s u e_:lnel:li;)iry oc?mox;s: :etmayt :}:n : tet,h vt le ex;cutmn ora devirtualizable call sites, and the number of casts statically provable to be safe. gs. . der-of- itude imp: in runtime. We compare _1“ this work.we present Door: a general _ﬂ“d versatile
p program statement. Dej-use analysts icentifies pairs ol statements that set the value of a memory The results of our study indicate that object-sensitive analysis impl jons are Categories and Subject Descriptors: D.3.4 [Progr I]: Pro ; D.3.3 [Pro- Doop with Lhotak and Hendren’s PabpLE, which defines the points-to analysis framework that makes feasible the most
location and subsequently use that value. The information computed by such analyses has a wide) 1 P recise context-sensitive analyses reported in the literature.
3 B : . : gr L L Constructs and Features state of the art for context-sensitive analyses. For the exact P Y po
3 variety of uses in compilers and software tools. This work proposes new versions of these analyses likely to scale better and more predictably than the other approaches; that object- K K R N . S e Door implements a range of algorithms, including context
9 7. . o G 1T - L D E M same logical points-to definitions (and, consequently, identi- P! B 8 d 8
that are based on object iti ints-t lysi sensitive analyses are more precise than comparable variations of the other ap- eneral Terms: Languages, Design, Experimentation, Measurement gical points- y a > i iti -si iti iect-sensiti
) P cal precision) Doop is more than 15x faster than PAppLE for insensitive, call-site sensitive, and object-sensitive analyses,
We have impl d two in s of our par d object-sensitive points-to analy- proaches; that specializing the heap abstraction improves precision more than ex- Additional Key Words and Phrases: Interprocedural program analysis, context sensitivity, binary N e . 1 ified modularl iati de b
¥ i i i i f : ision di i ; . . a 1-call-site sensitive analysis of the DaCapo benchmarks, all specified modularly as variations on a common code base.
) :l& On :1 i;t_Of 23 J_‘:_Vﬂ P“?gzal:ls» 0‘:1” e:{p;rut}ents S:_O: ?h;:t th:se T::iyses h,ﬂve ;’ml_ﬂa;ﬂbée E‘OSt tending the length of context strings; and that the profusion of cycles in Java call decision diagrams, Java, points-to analysis, call graph construction, cast safety analysis with lower but still substantial specdups for other important Compared to the prior state of the art, Doop often achieves
C © a context-insensitive points-to analysis for . ava which 1s based on Ancersen § analysis jor &. Qur raphs severely reduces precision of analyses that forsake context sensitivity in : i " dups of an ord itude for several important
0 results also show that object sensitivity significantly improves the precision of side-effect analysis f cll)ic -, Y p 4 vy ACMl Reference Format: . - . . analyses.. Add‘t_“’"all_)'v Door scales to very prem’se analyses a;la]yses P
and call graph construction, compared to (1) context-insensitive analysis, and (2) context-sensitive Y g . Lh.utak, 0. and Hex?dren, L. 200.8. Evaluating the benefits ?f context-sensitive Pomts-m analysis Lbat are l_[npossll?le with PADDLE and.Whaley. etal’s bdqbddb, The n:Aain clements of our approach are the use of the Dat-
. points-to analysis that models context using the invoking call site. These experiments demonstrate ‘ths)I)nsg) argDD-basg'g;n flf:,n;;lzﬁz(g;f?gylgix;f :ﬁ“” f};gm Metho?blf i;ég!;;il;;(fgg;;?? er dlre?lly addrvssmg qpen problems in past Ilter? ture. Finally, alog language for specifying the program analyses, and the
I that object-sensitive anal can achieve sut ia] precision imp: . while at the same 1 Introduction , 53 pages. = 10.1145 . p//doi.acm.org/10. 3 our 1mp15menfatwn is modular and can be.ea.slly configured agorcssive ontimization of the Datalog nrogram. The use of
b time remaining efficient and practical. to .analyses W}lh a wide range of characteristics, largely due Dgagt:]o for pro ram analysis (both Io\i-ll)eveglr[]j 23,29] and
! Does context sensitivity significantly improve precision of interprocedural analysis of to its declarativeness. high-l egv el [é’ 9]% s far ﬁo);n new. Our novel op timization ap-
Y object-oriented programs? It is often suggested that it could, but lack of scalable imple- Categories and Subject Descriptors F.3.2 [Logics and ’ . .
[A preliminary version of this article appeared in Proceedings of the International S ium on Ject-C progr 128 i o act P . - - - -)) s P o p[o8 @ proach, however, accounts for several orders of magnitude of
a Software Testing and Analysis (July), 2002, pp. 1-11 mentations has hindered thorough empirical verification of this intuition. This is a revised and extended version of an article which appeared in Proceedings of the 15th eanings of Programs): Semantics of Programming performance improvement: unoptimized analyses typically
This research was supported in part by National Science Foundation (NSF) grant CCR-9900988. Of the many context sensitive points-to analyses that have been proposed (e.g. [1,4, Isnt;rx:wetrw:;zfs C:nference on Compiler Construction, Lecture Notes in Computer Science, vol. 3923. ;:;ﬁ,'f,f}fﬁ;ﬁ?;ogrﬁ:ﬁ? D.16 [Programming run over 1000 times more slowly. Generally our optimiza-
o Author's addresses: A. Milanova, Department. of Computer Science, Ransselaer Polytachnic Insti- 8,11,17-19,25,28-31]), which improve precision the most? Which are most effective for Anthase addresses: O. Lhotdk, . R. Cheriton School of Computer Science, University of Waterloo, Gemersl Terms_ Algorithnus, L Perf mmsb . “fll - 'T:ipprl‘lmCh . 'hanglmg fering o :ms .
N tute, 110_8th Street, ’I‘n_)y, NY 12180; email: mxlz?nova.x@cs.rp;.edu;. A. Rountev, Department of Com- speciﬁc client analyses, and for speciﬁc code pattems? For which variations are we likely 200 University Avenue Westy Waterloo, ON. N2L 3G1. Canada: L. Hénd:en School of Com: eneral Terms gorithms, Languages, Performance dam. ase, by sl.:ecl ‘ca ly targeting e‘md‘exmg scheme and
o puter Science and Engineering, Ohio State University, 2015 Neil Avenue, Columbus, OH 43210; to find lable impl tations? Before devoti to findi fhicient impl Sci McGill Uni . 3480 ’U R S ’ R '318 M '] C. H3A 2A7 . the of Datalog Fur-
Vo) email: rountev@cse.ohio-state.edu; B. G. Ryder, Department of Computer Science, Rutgers Univer- 0 ,Sca able 1mp ementations? belore devoting r.esomces 0 finding elticien ‘1mp € }():uter d cience, McGill University, niversity Street, Room » Montreal, QC, ’ 1. Introduction thermore, our approach is entirely Datalog based, encoding
» sity, 100 Frelinghuysen Road, Piscataway, NJ 08854; email: ryder@cs.rutgers.edu. mentat.lons of SReC‘ﬁc analylses, we should have empirical answgrs to these queﬁ""‘“- P::r:iszion to make digital or hard copies of part or all of this work for personal or classroom use is Points-to (or pointer) analysis intends to answer the question declaratively the logic required both for call graph construc-
3 Permission to make digital or hard copies of part or all of this work for personal or classroom use is This study aims to provide these answers. Recent advances in the use of Binary De- N 1L P P - P . ! “what objects can a program variable point to?” This ques- tion as well as for handling the full semantic complexity
{ ithout fe . hs i e £ fi . ial .. N . N . granted without fee provided that copies are not made or distributed for profit or direct commercial A) prog R p. al N P P
E:‘ianbed witl O‘lilt hee Pfﬂv}dedl: at copies are not madz or distributed ?;PI‘O t or df“‘ecd‘j CO;“mzma cision Diagrams (BDDs) in program analysis [3, 12,29,31] have made context sensitive advantage and that copies show this notice on the first page or initial screen of a display along tion forms the basis for practically all higher-level program of the Java Iz (e.g., static | 1 n
| advantage and that copies show this notice on the first page or initial screen of a display along analysis efficient enough to perform an empirical study on benchmarks of significant size. with the full citation. Copyrights for components of this work owned by others than ACM must be reference objects, threads, exceptions, refiection, ctc.). This
R with the full citation. Copyrights for components of this work owned by others than ACM must be h d. Abstracti ith credit i itted. Tt therwise, t blish, t N makes our pointer analysis specifications elegant, modular,
\| 7] honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, Using the JEDD system [14], we have unplemented three different families of context- onorec. Abstracling With credit 1s permitiec. %o copy otherwise, to repubiish, Lo post on servers, . but also efficient and easy to tune. Generally, our work is a
) ec. £ ; . " ° ° ” bt - . - S to redistribute to lists, or to use any component of this work in other works requires prior specific Permission to make digital or hard copies of all or part o this work for personal or Y Y,
9 to redistribute to lists, or to use any component of this work in other works requires prior specific sensitive points-to analysis, and we have measured their precision in terms of several L g o o S classroom use is granted without fee provided that copies are not made or distributed strong data point in support of declarative languages: we ar-
4 iagi d/e 2 issi b d from Publicati D ACM., I 1515 . . : . and/or a fee. Per may be r from Publications Dept., ACM, Inc., 2 Penn for profit or commercial advantage and that copies bear this notice and the full citation s P o PP . su .g B
\ permission and/or a fee. Per may be r om ions Dept., , Inc., client analyses. Specifically, we compared the use of call-site strings as the context ab- Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org. on the first page. To copy otherwise, to republish, to post on servers or to redistribute gue that prohibitively much human effort is required for im-
b § Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org. straction, object sensitivity [17,18], and the algorithm proposed by Zhu and Calman [31] © 2008 ACM 1049-331X/2008/09-ART3 $5.00 DOI 10.1145/1391984.1391987 http:/doi.acm.org/ tolists,requiresprior specific permission and/or a fe.) plementing and optimizing complex mutually-recursive def-
' © 2005 ACM 1049-331X/05/0100-0001 $5.00 10.1146/1391984. 1391987 QOPSLA s, etober 2-29, 2005, rando, Hride, USA initions at an operational level of abstraction. On the other
" ACMD fons on Software Engincering and Vol. 14, No- 1, January 2005, Pages 1-41. " This work was supported, in part, by NSERC and an [BM Ph.D. Fellowship. ACMTs ions on Software E: and Methodology, Vol. 18, No. 1, Article 3, Pub. date: September 2008
W
)
b 52 3 2 AE o g 2 2 S g g o “ J g R = > - N == v = i = - S =
e N Ly S a2 N oy o — . = v By —z B AY 2A—P — oy PO = o Rt O PR F B Rt Ome PR T R toa s o g,
] f, Y
\ a
&
\ \ >/
J [
A .
A A
\ ¢
oy
'\‘ ’
" 1
N - - - = o - . o o 4 - . -~ a - N - - -
C e ER o coars o . %\ G Y o S~ 4 —) s WITHE o ~— C s ¥ . P o - comre o o«

| Call-site Sensitivity vs Object Sensitivity

Obj vs CFA

2022

Call-site Sensitivity vs Object Sensitivity

e Object Sensitivity outperformed call-site sensitivity

Parameterized Object Sensitivity for Points-to
Analysis for Java

ANA MILANOVA

Rensselaer Polytechnic Institute
ATANAS ROUNTEV

Ohio State University

and

BARBARA G. RYDER

Rutgers University

The goal of points-to analysis for Java is to determine the set of objects pointed to by a reference
variable or a reference object field. We present object sensitivity, a new form of context sensitivity
for flow-insensitive points-to analysis for Java. The key idea of our approach is to analyze a method
separately for each of the object names that represent run-time objects on which this method may
be invoked. To ensure flexibility and practicality, we propose a parameterization framework that
allows analysis designers to control the tradeoffs bet cost and ision in the object. iti
analysis.

Side-effect analysis determines the memory locations that may be modified by the execution of a
program statement. Def-use analysis identifies pairs of statements that set the value of a memory
location and subsequently use that value. The information computed by such analyses has a wide
variety of uses in compilers and software tools. This work proposes new versions of these analyses
that are based on object itive poi lysi

‘We have impl d two in: iations of our par d object-sensitive points-to analy-
sis. On a set of 23 Java programs, our experiments show that these analyses have comparable cost
to a context-insensitive points-to analysis for Java which is based on Andersen’s analysis for C. Our
results also show that object sensitivity significantly improves the precision of side-effect analysis
and call graph construction, compared to (1) context-insensitive analysis, and (2) context-sensitive
points-to analysis that models context using the invoking call site. These experiments demonstrate

that object-sensitive 1 can achieve sut ial precision imp: , while at the same
time remaining efficient and practical.
A preliminary version of this article appeared in Pr i of the International S: i on

Software Testing and Analysis (July), 2002, pp. 1-11.

This research was supported in part by National Science Foundation (NSF) grant CCR-9900988.
Author’s addresses: A. Milanova, Department of Comp Science, Ri laer Polytechnic Insti-
tute, 110 8th Street, Troy, NY 12180; email: milanova@cs.rpi.edu; A. Rountev, Department of Com-
puter Science and Engineering, Ohio State University, 2015 Neil Avenue, Columbus, OH 43210;
email: rountev@cse.ohio-state.edu; B. G. Ryder, Department of Computer Science, Rutgers Univer-
sity, 100 Frelinghuysen Road, Piscataway, NJ 08854; email: ryder@cs.rutgers.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along

analysis efficient enough to

Context-sensitive points-to analysis: is it worth it?*

Ondfej Lhotik!? and Laurie Hendren?
olhotak@uwaterloo.ca hendren@sable.mcgill.ca

1 School of Computer Science, University of Waterloo, Waterloo, ON, Canada
2 School of Computer Science, McGill University, Montreal, QC, Canada

Abstract. We present the results of an empirical study evaluating the precision
of subset-based points-to analysis with several variations of context sensitivity on
Java benchmarks of significant size. We compare the use of call site strings as the
context abstraction, object sensitivity, and the BDD-based context-sensitive algo-
rithm proposed by Zhu and Calman, and by Whaley and Lam. Our study includes
analyses that context-sensitively specialize only pointer variables, as well as ones
that also specialize the heap abstraction. We measure both characteristics of the
points-to sets themselves, as well as effects on the precision of client analyses. To
guide development of efficient analysis implementations, we measure the number
of contexts, the number of distinct contexts, and the number of distinct points-to
sets that arise with each context sensitivity variation. To evaluate precision, we
measure the size of the call graph in terms of methods and edges, the number of
devirtualizable call sites, and the number of casts statically provable to be safe.
The results of our study indicate that object- itive analysis impl ions are
likely to scale better and more predictably than the other approaches; that object-
sensitive analyses are more precise than comparable variations of the other ap-
proaches; that specializing the heap abstraction improves precision more than ex-
tending the length of context strings; and that the profusion of cycles in Java call
graphs severely reduces precision of analyses that forsake context sensitivity in
cyclic regions.

1 Introduction

Does context sensitivity significantly improve precision of interprocedural analysis of
object-oriented programs? It is often suggested that it could, but lack of scalable imple-
mentations has hindered thorough empirical verification of this intuition.

Of the many context sensitive points-to analyses that have been proposed (e.g. [1,4,
8,11,17-19,25,28-31]), which improve precision the most? Which are most effective for
specific client analyses, and for specific code patterns? For which variations are we likely
to find scalable implementations? Before devoting resources to finding efficient imple-
mentations of specific analyses, we should have empirical answers to these questions.

This study aims to provide these answers. Recent advances in the use of Binary De-
cision Diagrams (BDDs) in program analysis [3,12,29,31] have made context sensitive
perform an empirical study on benchmarks of significant size.

5 3 = o g y -
D E = = a —~
c o - e R g - oars o \ > -V o> e

with

Evaluating the Benefits of Context-Sensitive
Points-to Analysis Using a BDD-Based
Implementation

ONDREJ LHOTAK
University of Waterloo
and

LAURIE HENDREN
McGill University

‘We present PApDLE, a framework of BDD-based context-sensitive points-to and call graph analyses
for Java, as well as client analyses that use their results. PADDLE supports several variations of
context-sensitive analyses, including call site strings and object sensitivity, and context-sensitively
specializes both pointer variables and the heap abstraction. We empirically evaluate the preci-
sion of these context-sensitive analyses on significant Java programs. We find that that object-
sensitive analyses are more precise than comparable variations of the other approaches, and that
specializing the heap abstraction improves precision more than extending the length of context
strings.

Categories and Subject Descriptors: D.3.4 [Progr ing L]: Pro ; D.3.3 [Pro-
ing I]: 1 Constructs and Features

General Terms: Languages, Design, Experimentation, Measurement

Additional Key Words and Phrases: Interprocedural program analysis, context sensitivity, binary
decision diagrams, Java, points-to analysis, call graph construction, cast safety analysis

ACM Reference Format:

Lhotdk, O. and Hendren, L. 2008. Evaluating the benefits of context-sensitive points-to analysis

using a BDD-based implementation. ACM Trans. Softw. Engin. Method. 18, 1, Article 3 (September
2008), 53 pages. DOI = 10.1145/1391984.1391987 http://doi.acm.org/10.1145/1391984.1391987

This is a revised and extended version of an article which appeared in Proceedings of the 15th
International Conference on Compiler Construction, Lecture Notes in Computer Science, vol. 3923.
Springer, 47-64.

Authors’ addresses: O. Lhotdk, D. R. Cheriton School of Computer Science, University of Waterloo,
200 University Avenue West, Waterloo, ON, N2L 3G1, Canada; L. Hendren, School of Com-
puter Science, McGill University, 3480 University Street, Room 318, Montreal, QC, H3A 2A7,
Canada

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
the full citation, Copyrights for components of this work owned by others than ACM must be

WO

Strictly Declarative Specification of Sophisticated Points-to Analyses

Martin Bravenboer

Yannis Smaragdakis

Department of Computer Science
University of Massachusetts, Amherst
Ambherst, MA 01003, USA

martin.bravenboer@acm.org

Abstract

We present the Door framework for points-to analysis of
Java programs. Doop builds on the idea of specifying pointer
analysis algorithms declaratively, using Datalog: a logic-
based language for defining (recursive) relations. We carry
the declarative approach further than past work by describ-
ing the full end-to-end analysis in Datalog and optimizing
aggressively using a novel technique specifically targeting
highly recursive Datalog programs.

As aresult, Doop achieves several benefits, including full

der-of- itude imp: in runtime. We compare
Door with Lhotak and Hendren’s PappLE, which defines the
state of the art for context-sensitive analyses. For the exact
same logical points-to definitions (and, consequently, identi-
cal precision) Doop is more than 15x faster than PapbLE for
a l-call-site sensitive analysis of the DaCapo benchmarks,
with lower but still substantial speedups for other important
analyses. Additionally, Doop scales to very precise analyses
that are impossible with PappLe and Whaley et al.’s bddbddb,
directly addressing open probl in past li Finally,
our implementation is modular and can be easily configured
to analyses with a wide range of characteristics, largely due
to its declarativeness.

Categories and Subject Descriptors F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming
Languages—Program Analysis; D.1.6 [Programming
Techniques]: Logic Programming

General Terms Algorithms, Languages, Performance

1. Introduction

Points-to (or pointer) analysis intends to answer the question
“what objects can a program variable point to?” This ques-
tion forms the basis for practically all higher-level program

yannis@cs.umass.edu

analyses. It is, thus, not surprising that a wealth of research
has been devoted to efficient and precise pointer analysis
techniques. Context-sensitive analyses are the most common
class of precise points-to analyses. Context sensitive analysis
approaches qualify the analysis facts with a context abstrac-
tion, which captures a static notion of the dynamic context
of a method. Typical contexts include abstractions of method
call-sites (for a call-site sensitive analysis—the traditional
meaning of “context-sensitive”) or receiver objects (for an
object-sensitive analysis).

In this work we present Doop: a general and versatile
points-to analysis framework that makes feasible the most
precise context-sensitive analyses reported in the literature.
Door implements a range of algorithms, including context
insensitive, call-site sensitive, and object-sensitive analyses,
all specified modularly as variations on a common code base.
Compared to the prior state of the art, Door often achieves

of an order-of- itude for several important

analyses.

The main elements of our approach are the use of the Dat-
alog language for specifying the program analyses, and the
aggressive optimization of the Datalog program. The use of
Datalog for program analysis (both low-level [13,23,29] and
high-level [6,9]) is far from new. Our novel optimization ap-
proach, however, accounts for several orders of magnitude of
performance improvement: unoptimized analyses typically
run over 1000 times more slowly. Generally our optimiza-
tions fit well the approach of handling program facts as a
database, by specifically targeting the indexing scheme and
the | evaluation of Datalog impl i Fur-
thermore, our approach is entirely Datalog based, encoding
declaratively the logic required both for call graph construc-
tion as well as for handling the full semantic complexity
of the Java I (e.g., static initialization, finalizati
reference objects, threads, exceptions, re

flection, etc.). This

LIS

| Call-site Sensitivity vs Object Sensitivity

2022

Call-site Sensitivity vs Object Sensitivity

* Lectures have taught the superiority of object sensitivity

O b_j ect—Sensitivity - ain = Ob 1 1 41 1 J Lecture Notes:
Object-Sensitivity ject-sensitive pointe Peintor Analys
@ The dominant flavor of context-sensitivity for obje (VS. call-site sensitivity) 15-8190: Program Analysis Pointer Analysis
Ia nguages' jonatha;Iio.r;lalﬂgi‘?rl:it?klx‘(jfl.l(‘:lzl:l cmu. edu
o It uses object abstractions (i.e. allocation sites) as [program M"a.r.]o.va/ Roun.tev, and Ryd?r- Parameteriz Lecture 9 Yomnis Smoragiais “
qualifying a method's local variables with the alloc class S { sensmwty for pomts-to ana/ys:s for Java. AC smaragd@di uoa.gr z
H 1 ObJ ect id (ObJ ect a) { return a; } 1 Motivation for Pointer Analysis George Balatsouras o
receiver ObJeCt Of the methOd Ca“. Ob]eCt 1d2(0bJeCt a) { return ld(a) Eng. MethOdOI.’ 2005. In programs with pointers, program analysis can become more g U";::;Z(gjiﬁ?:; :
class A { void m() { return; } } Class C extends S { ° ConteXt-SenSitive interprocedural pointer ana|y5IS Consider constant-propagation analysis of the following progr3 i ‘
1: z:=1 G
o void funl() { e For context, use stack of receiver objects 2 pim s '
b = new BQ); Object al = new Al(); AN, 'Y X
b. m() s Ob'] ect bl = id2 (al) ; [1-c: ¢ (More neXt Week?) In order to analyze this proérali correctly we must be aw i "
} .. . instruction 3 p points to z. If this information is available we caj ,
The context of m is the allocation site of b. } fur e | hotak and Hendren. Context-sensitive poil flow function as follows ¢
class D extends S { fun 2

void funZ() { idz WOrth It. CC 06 fepl=p:=yl(o) =[z o(y)lc where must-point-to(y :‘
ObjeCt az = new A2() ; id2 1 11 1 1 H When we know exactly what a variable z points to, we say tH 4
Ob]ect b2 = ld2(32) H id: ° fC)bJeCt_SenSltlve pOInter anaIyS|S more preCISe tha must-point—toinformatior}ll,andtwecanperfofmatstrtongupdu)t,e \
} id2 or Java lo = A techmicalty in the rule i cuantiying over all sueh 4
fun . ;oix:ltiutz. IleI;lw istzl'us gssib:e? It?s no:lg,osfible inaCnor]av; ,
L leely to Scale be'[tel' a language with pass-by-reference, for example C++, it is possilf noew .
fun names for the same location are in scope. the essence of rouladge |

. : Of course, it is also possible that we are uncertain to whic} oston — Delft |

Yannis Smaragdakig _— . . ? . /»
Hakjoo Oh AAA616 2019 Fall, Lecture 8 University of Athens distinct locations p points. For example: ’\
_____ = C o {

KOREA o arnegie |
UNIVERSITY ‘ { Loy & = z :
R National and Kapodistrian
1’;,\ . . ‘l.
U N I V E RS I TY 73 Q) Umversnty of Athens Mell()n b
U . " the essence of knowledge]
ni VGI’Slty 3

D P SR S SR 3 2 S S P S B S S AP P PO S e s e S P iy T IR

2010

17

all-site Sensitivity vs Object Sensitivity

* Lectures have taught the superiority of object sen5|t|V|ty

e el i S [t M b s ¢ 8 > - Fer TR EE - At ¢ B
o~ . . A -z o =~ . - o _ . - == a - 5 _ o~ . . . -
o ’ Sl - & S o e Pl

Object-Sensitivity

@ The dominant flavor of context-sensitivity for object-oriented
languages.

: @ It uses object abstractions (i.e. allocation sites) as contexts,
® i qualifying a method's local variables with the allocation site of the
i receiver object of the method call.

class A { void m() { return; } }

¥ ¥ b = new B();
¥ { b.m();
ﬂ The context of m is the allocation site of b.

.
¢

“ "
‘ ¥ Hakjoo Oh AAA616 2019 Fall, Lecture 8 November 18, 2019 27 / 31
% 4 KOREA
3 ‘ UNIVERSITY
i KOREA
\ i
§ | UNIVERSITY

Lo

7
P~ = = = = = o — = — 2 = = 22 K '
J 13 14
] ¥
g
. ,“‘ R
W of .
4 4 <
k = = R - = — = — = = — = — = = v b,
|
1)
(B
/)
— <= —- - — 0 y . B
\\ 7

Call-site Sensitivity vs Object Sensitivity

* Researches focused on improving Object Sensitivity

Researches on

Pick Your (
! J Th

- 4 Yannis Smaragdal

Department of Computer
<N University of Massachu|
Amberst, MA 01003,
h . and Department of Inforr]
V. University of Athens, 15784
yannis@cs.umass.edu—smg}

0 Abstract
N Object-sensitivity has emerged|
: for points-to analysis in object-
tical success, however, object-:
instance, for a context depth
' mentations deviate significant]]
h object-sensitive analysis. The
degrees of freedom, relating tof
at every method call and obje
. for the analysis design space, aif
derstanding of object-sensitivit}
sensitive analyses. The results}
. find that past implementations
0 contexts, to the severe detrimer]
g define a “full-object-sensitive”
< higher precision, and often pe:
text depth. We also i

Abstract

sensitivity are

Context-sensitive points-to analysis is valu
precision with good performance. The stang

Combining both flavors of context-sensitiy
but at an infeasibly high cost. We show

nation of call-site- and object-sensitivity

ysis is highly profitable. Namely, by keepi
only when analyzing selected language fe]
approximate the precision of an analysis t
at all times. In terms of speed, the selecti
kinds of context not only vastly outperforn]
nations but is also faster than a mere object-

result holds for a large array of analyses (§
2-obiect iti H

Hybrid Contj

call-site-sensitivity (kCFA)

with a context-sensiti

of Programs]:
Analysis; D.3
Compilers

tablishing a new set of performance/precisig
Categories and Subject Descriptors F.3.2]

.4 [Programming Lang

General Terms Algorithms, Languages, H

Keywords points-to analysis;

Semantics of Programming]

conte:

Mo proximation of object-sensitivi|
V. ity at substantially reduced cost
makes an unconventional use of
p are not dynamic types of objes
2 stead upper bounds on the dyn:
| Our results expose the influen

Fe of points-to analysis and demo:
with major impact: It decisivell
b a spectrum of analyses that s
S times faster than an analogous
R/ ity (comparable to analyses wit]
precision (comparable to the bd
same context depth).

Categories and Subject Descri
{ of Programs): Semantics of H
Analysis

; D.3.1 [Programming L
3 Theory—Semantics

General Terms Algorithms,

Permission to make digital or hard cop
classroom usc is granted without fee pry
for profit or commercial advantage and
on the first page. To copy otherwise, to
to lists, requires prior specific permissi

y; typ

1. Introduction

Points-to analysis is a static program analy
puting all objects (typically identified by all
gram variable may point to. The area of
its close relative, alias analysis) has been
search and is among the most standardized

that will allow

good precision

PLDI'13,
Copyright © 2013

rithms is on combining fairly precise model
with scalability. The challenge is to pick jut

more, although increasing precision often
totic complexity, this worst-case behavior il
actual practice.

since smaller points-to sets lead to less worl

Permission to make digital or hard copies of all or pa
classroom use is granted without fee provided that copi
for profit or commercial advantage and that copies bear
on the first page. To copy otherwise, to republish, to pol
to lists, requires prior specific permission and/or a fee.
June 16-19, 2013, Seatlle, WA, USA.

1 analyses. The emphasis of

satisfactory precision at a re]

Instead, techniques that are
often also exhibit better avel

Making k-Object-Sensitive Pointer Analysis
More Precise with Still k-Limiting

Tian Tan', Yu

! School of Computer Scid
2 Advanced Innovation Cen|

Abstract. Object-sensitivity]
abstraction for pointer analys|
k-object-sensitive pointer ana
sites (as k context elements)

call, may end up using some
ducing a finer partition of the
method call. In this paper, W]
improving the precision of an;

by still using a k-limiting cony
allocation sites that are redyl
Object Allocation Graph (OA
(e.g., a context-insensitive A}
program and then avoid them)
ysis for the program. BEAN i
precision that is guaranteed t
have implemented BEAN as ai
two state-of-the-art whole-pr:
representative clients (may-ald
nine large Java programs fron
succeeded in making both ana
under each client at only sma]

1 Introduction

Pointer analysis, as an enabling t
client applications, including bug
compiler optimisation [6,33], and}
mensions of pointer analysis precis
For C/C++ programs, flow-sensit|
For object-oriented programs, e.g.
is known to deliver trackable and

There are two general approac!
oriented programs, call-site-sensit
24,29] (among others). A k-CFA a
call by using a sequence of k call
site). In contrast, a k-object-sensit
k labels with each denoting a new|

ACM 978-1-4503-2014-6/13/06...$15.00

all calls to foo as one ca

POPL’11, January 26-28, 2011, Austii

, 10

R
Copyright © 2011 ACM 978-1-4503-0490-0/11/01....§10.00

below, a

” -
1-call-site sensitive analysis (unlike a context-insd

Efficient 4
Modeling the He

Tia
School of Cq

Abstract

Mainstream points-to analysis techniques fof
languages rely predominantly on the alloca
tion to model heap objects. We present M.
heap abstraction that is specifically develf
the needs of an important class of type-d
such as call graph construction, devirtuali
fail casting. By merging equivalent autom)
type-consistent objects that are created b;
site abstraction, MAHJONG enables an allog
points-to analysis to run significantly faster|
nearly the same precision for type-depende]

MAHJONG is simple conceptually, effi
easily on any allocation-site-based points:
demonstrate its effectiveness by discussing
why it is a better alternative of the allocation]
for typ: dent clients and evaluating
12 large real-world Java programs with five
points-to analyses and three widely usedfj
clients. MAHJONG is expected to provide si
for many program analyses where call grapl

CCS Concepts
analysis

e Theory of computatig

Keywords points-to analysis, heap abstrad]

1. Introduction

Pointer Analyses should be designed to
in cost and precision for specific groups
lems. We do not need a different pointel
client problem, but rather we should lool
client problems with similar needs.

— Baj

* These authors contributed equally to this work

Permission to make digital or hard copies of all or part of th
classroom use is granted without fee provided that copies are
for profit or commercial advantage and that copies bear this nol
on the first page. Copyrights for components of this work own}
must be honored. Abstracting with credit is permitted. To copy|
t0 post on servers or to redistribute to lists, requires prior spec}
fee. Request permissions from Permissions@acm.org.

PLDI'17, June 18-23, 2017, Barcelona, Spain

2017 ACM. 978-1-4503-4988-8/17/06...$15.00
hitp://dx.doi.org/10.1145/3062341.3062360

Precision-Guided ConteXx

YUE LI, Aarhus University, Denmark

TIAN TAN, Aarhus University, Denmark
ANDERS MOLLER, Aarhus University,
YANNIS SMARAGDAKIS, University o

Context sensitivity is an essential technique
observed that applying context sensitivity p|
balance between analysis precision and sp
do not provide much insight into what chal
principled approach for identifying precisioy
explain where most of the imprecision arises
an efficient algorithm to recognize these fl
tradeoffs between analysis precision and spq

Our experimental results on standard bend
applies context sensitivity partially, only on
(98.8%) of the precision of a highly-precise ¢
with a context-sensitive heap), with a subst

CCS Concepts: » Theory of computation -
Additional Key Words and Phrases: static an|

ACM Reference Format:

Yue Li, Tian Tan, Anders Mgller, and Yann
Pointer Analysis. Proc. ACM Program. Lang]
org/10.1145/3276511

1 INTRODUCTION

Pointer analysis is a fundamental famil
pointer variables in a program. Such i
inter-procedural control flow in object-o
engineering tools, e.g., for bug detecti
analysis [Arzt et al. 2014; Grech and Sm|
tion [Fink et al. 2008; Pradel et al. 2012],
Sridharan et al. 2007].

For decades, numerous analysis techn)
precise and more efficient, especially fo,
Balatsouras 2015; Sridharan et al. 2013
precision is context sensitivity [Milanoy
Smaragdakis et al. 2011], which allows eal
to separate the static abstractions of diffs

Scalability-First H
Self-Tuning C

Yue Li Tian Tan
Aarhus University Aarhus University
yueli@cs.au.dk tiantan@cs.au.dk
ABSTRACT

Context-sensitivity is important in pointer analysis to ensure hig]

precision, but existing techniques suffer from unpredictable scalal
bility. Many variants of context-sensitivity exist, and it is difficull
to choose one that leads to reasonable analysis time and obtain:
high precision, without running the analysis multiple times.

We present the ScALER framework that addresses this problem|
ScaLeR efficiently estimates the amount of points-to informatior)
that would be needed to analyze each method with different variantg
of context-sensitivity. It then selects an appropriate variant fos
each method so that the total amount of points-to information i
bounded, while utilizing the available space to maximize precisi

Data-Driven Context-Sen

SEHUN JEONG, Korea University, Repy
MINSEOK JEON', Korea University, Refj
SUNGDEOK CHA, Korea University, R
HAKJOO OHT, Korea University, Republ

We present a new data-driven approach to ac|
for Java. While context-sensitivity has great:
other precision-improving techniques, it is dif
most from context-sensitivity and decide ho
designing such rules is a nontrivial and labo;
overcome these challenges, we propose an aut
context-sensitivity from codebases. In our apg}
heuristic rules, in disjunctive form of propertie|
context-sensitivity. We present a greedy algo
We implemented our approach in the Doop f3

Our experimental results demonstrate that ScALER achieves pre|
dictable for all the evaluated p (e.g., speedup
can reach 10x for 2-object- ity), while providing a precisi
that matches or even exceeds that of the best alternative techniques

CCS CONCEPTS
« Theory of

— Program analysis;

KEYWORDS

static analysis, points-to analysis, Java
ACM Reference Format:

ly conventional object-sensitivity, sele
experimental results show that our approach

CCS Concepts: « Theory of computation
chine learning approaches;
Additional Key Words and Phrases: Data-dri

ACM Reference Format:

Sehun Jeong, Minseok Jeon, Sungdeok Cha, an
Analysis. Proc. ACM Program. Lang. 1, OOPSI}
https://doi.org/10.1145/3133924

Yue Li, Tian Tan, Anders Moller, and Yannis dakis. 2018.

First Pointer Analysis with Self-Tuning Cq itivity. In

of the 26th ACM Joint European Software Engineering Conference and Sympo|
sium on the Foundations of Software Engineering (ESEC/FSE '18), Novembet
4-9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA, 12 pages
https://doi.org/10.1145/3236024.3236041

1 INTRODUCTION
Pointer analysis is a family of static analysis techniques that providd
a foundation for many other analyses and software engineering
tasks, such as program slicing [36, 39], reflection analysis [19, 31]|
bug detection [13, 26), security analysis [1, 23], program verifica|
tion [8, 27], and program debugging and comprehension [5, 21]
The goal of pointer analysis is to statically compute a set of object:

(abstracted as their allocation sites) that a program variable ma;

point to during run time. Although stating this goal is simple, it i

Permission to make digital or hard copies of all or part of this work for personal o
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citatios
on the first page. Copyrights for components of this work owned by others than th
author(s) must be honored. Abstracting with eredit is permitted. To copy otherwise, o

1 INTRODUCTION

Points-to analysis is one of the most imgl
memory locations that a pointer variable
for many program verification tasks (e.g.,
of subsequent higher-level program analy]
program understanding tools.

For object-oriented languages, context:
guish method’s local variables and obje

“The first and second authors contributed equally
1Currcsponding author

Authors’ email add S. Jeong, gi
H. Oh, hakjoo_oh@korea.ac.kr.

Permission to make digital or hard copies of all or
provided that copies are not made or distributed fc
the full citation on the first page. Copyrights for ¢

republish, to post on servers o to redistribute tolists prior spe
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE '18, November 4-9, 2018, Lake Buena Vista, FL, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5573-5/18/11...$15.00

Ab: with credit is p d. To copy other]
prior specific permission and/or a fee. Request pery
© 2017 Association for Computing Machinery.
2475-1421/2017/10-ART100
https://doi.org/10.1145/3133924

S - - - https://doi.org/10.1145/3236024.3236041
Authors’ email addresses: yueli@cs.au.dk, tiantan|
———
-d ST - g - gl
— e oy P PRI — - oy - _

A

Lo

Learning Graph-based Heuristic
without Handcrafting Applicatic

MINSEOK JEON, MYUNGHO LEE, and HAK](

We present GRAPHICK, a new technique for automatically

Striking a balance between precision and scalability of

heuristics. For example, because applying context sens
impractical, pointer analysis typically uses a heuristic to ¢
Past research has shown that exploiting the program’s

cost-effective analysis heuristics, promoting the recent t|
graph representations of programs obtained from a pre-al
such heuristics remains challenging, requiring a great dea
aim to reduce this burden by learning graph-based heurist]
application-specific features. To do so, we present a fea
algorithm for learning analysis heuristics within the langu;
used it to learn graph-based heuristics for object sensit
show that our approach is general and can generate high
heuristics are as competitive as the existing state-of-the-aj

CCS Concepts: « Software and its engineering — Autg

Additional Key Words and Phrases: Data-driven static anal
analysis, Context sensitivity, Heap abstraction

ACM Reference Format:

Minseok Jeon, Myungho Lee, and Hakjoo Oh. 2020. Lear
without Handcrafting Application-Specific Features. Pr}
(November 2020), 31 pages. https://doi.org/10.1145/34282

1 INTRODUCTION

Pointer analysis is a fundamental program analysis]
various software engineering tools. The goal of poin
estimate heap objects that pointer variables may rd
essential for virtually all kinds of program analys
et al. 2015; Livshits and Lam 2003; Naik et al. 2006,
et al. 2014; Avots et al. 2005; Grech and Smaragd
program verifiers [Fink et al. 2008], symbolic exed
repair tools [Gao et al. 2015; Hong et al. 2020; Le

*Corresponding author

Precision-Preserving
Analysis with Partial C

JINGBO LU, UNSW Sydney, Australi
JINGLING XUE, UNSW Sydney, Au

Object-sensitivity is widely used as a ¢
sensitively for object-oriented languag
programs, k-object-sensitive pointer aj
values of k, where k < 2 typically. A fq
k-obj to analyze only some methods in
analysis. While already effective, these hj
consequently, are limited in the efficiend
that makes k-obj run significantly fastd
EAGLE is to enable k-obj to analyze a md
some of its selected variables/allocation
by reasoning about context-free-langua
based on a new CFL-reachability form|
comparing it with the prior art in terms|

CCS Concepts: « Theory of computat}

Additional Key Words and Phrases: Poil

ACM Reference Format:

Jingbo Lu and Jingling Xue. 2019. Pre
Partial Context Sensitivity. Proc. ACM}
https://doi.org/10.1145/3360574

1 INTRODUCTION

For object-oriented languages such
precision for pointer analysis [Lhq
insensitive pointer analysis, such as
once, producing one points-to set f|
allocation site in the method. In ¢
multiple times under different call
thereby producing multiple points-|
abstract objects for modeling every

To tame the combinatorial explo.
sequence of k context elements, un|
object-oriented programs: (1) k-calls
of a method by its k-most-recent cal

Making Pointer Analysis More Precise by Unleashing the |5
Power of Selective Context Sensitivity B

TIAN TAN, Nanjing University, China
YUE LI*, Nanjing University, China [4
XIAOXING MA, Nanjing University, China
CHANG XU, Nanjing University, China |

YANNIS SMARAGDAKIS, University of Athens, Greece 4
Traditional context-sensitive pointer analysis is hard to scale for large and complex Java programs. To address
this issue, a series of selective context-sensitivity approaches have been proposed and exhibit promising results. |
In this work, we move one step further towards producing highly-precise pointer analyses for hard-to-analyze ‘ ‘ ‘ v
Java programs by presenting the Unity-Relay framework, which takes selective context sensitivity to the next
level. Briefly, Uni ty-Relay is a one-two punch: given a set of different selective context-sensitivity approaches, R
say S = Sj,...,S,, Unity-Relay first provides a mechanism (called Unity) to combine and maximize the [
precision of all components of S. When Unity fails to scale, Unity-Relay offers a scheme (called Relay) to
pass and accumulate the precision from one approach S; in S to the next, S;;1, leading to an analysis that is
more precise than all approaches in S. /
As a proof-of-concept, we instantiate Unity-Relay into a tool called BATON and extensively evaluate it on k.
a set of hard-to-analyze Java programs, using general precision metrics and popular clients. Compared with 0
the state of the art, BATON achieves the best precision for all metrics and clients for all evaluated programs.
The difference in precision is often dramatic—up to 71% of alias pairs reported by previously-best algorithms [3
are found to be spurious and eliminated.

CCS Concepts: » Theory of computation — Program analysis.
Additional Key Words and Phrases: Pointer Analysis, Alias Analysis, Context Sensitivity, Java
ACM Reference Format:

Tian Tan, Yue Li, Xiaoxing Ma, Chang Xu, and Yannis Smaragdakis. 2021. Making Pointer Analysis More o
Precise by Unleashing the Power of Selective Context Sensitivity. Proc. ACM Program. Lang. 5, OOPSLA, y L
Article 147 (October 2021), 27 pages. https://doi.org/10.1145/3485524 p
1 INTRODUCTION
Pointer analysis is important for an array of real-world applications such as bug detection [Chandra f ',‘

et al. 2009; Naik et al. 2006], security analysis [Arzt et al. 2014; Livshits and Lam 2005], program
verification [Fink et al. 2008; Pradel et al. 2012] and program understanding [Li et al. 2016; Sridharan

Authors’ addresses: Jingbo Lu, UNSW Sydn| *Corresponding author 1
jingling@cse.unsw.edu.au. I /)
b
)
g i - . N 5z 0 = 3 o g = — o
T T io oo — e e I 4 e ol oo e o o 2 W e
<
» dd
- y
" oy
, "W
D - g - g = D s - g = : s - g = D P g : =
o e Em - - - omre o X o -V o S =7 4 . ¥ AN o .V o Eeal 7 4 —0 3 i ¥ AN o -V o e = <SR 2" 5 - - omre - — - y ¥ AIIRLIE N

Call-site Sensitivity vs Object Sensitivity

e Call-site Sensitivity has been

... call-site-sensitivity is less important than others ...
Jeon et al.[2019

A Machine-Learning Algorithm with Disjunctive M
Data-Driven Program Analysis

MINSEOK JEON, SEHUN JEONG*, SUNGDEOK CHA, and HAKJOO OH?,
Republic of Korea

We present a new machine-learning algorithm with disjunctive model for data-driven p:
One major challenge in static program analysis is a substantial amount of manual effort req}
the analysis performance. Recently, data-driven program analysis has emerged to addres}
by automatically adjusting the analysis based on data through a learning algorithm. AlY
approach has proven promising for various program analysis tasks, its effectiveness has Y
to simple-minded learning models and algorithms that are unable to capture sophisticat
disjunctive, program properties. To overcome this shortcoming, this article presents a new

for data-driven program analysis as well as a learning algorithm to find the model parameters|
boolean formulas over atomic features and therefore is able to express nonlinear combinat|
properties. Key technical challenge is efficiently determine a set of good boolean formulg
search would simply be impractical. We present a stepwise and greedy algorithm that g
boolean formulas. We show the and ity of our with two
context-sensitive points-to analysis for Java and flow-sensitive interval analysis for C. Exp
show that our technique signif improves the pe of the state-of-th
including ones hand-crafted by human experts.

CCS Concepts: + Theory of computation — Program analysis; - Computing method
chine learning approaches.

Additional Key Words and Phrases: Data-driven program analysis, Static analysis, Context-
sensitivity

ACM Reference Format:

Minseok Jeon, Sehun Jeong, Sungdeok Cha, and Hakjoo Oh. 2017. A Machine-Learning
Disjunctive Model for Data-Driven Program Analysis. ACM Trans. Program. Lang. Syst|
(December 2017), 42 pages. https:/doi.org/0000001.0000001

1 INTRODUCTION

One major challenge in static program analysis is a substantial amount of manual
for tuning the analysis performance for real-world applications. Practical static analj
variety of heuristics to optimize their performance. For example, context-sensiti
for ing object-oriented as it distinguisk method's local variables
different calling-contexts. However, applyi text: ity to all methods if
does not scale and therefore real-world static analyzers apply context-sensitivity onf
methods determined by some heuristic rules [Smaragdakis et al. 2014]. Anothe]
relational analysis such as ones with Octagons [Miné 2006]. Because it is impracticg
of all variable relationships in the program, static analyzers employ variable-cluste

“The first and second authors contributed equally to this work

Making k-Object-Sensitive Pointer Anal
More Precise with Still k-Limiting

Tian Tan!, Yue Li!, and Jingling Xue'?

! School of Computer Science and Engineering, UNSW Austral
2 Advanced Innovation Center for Imaging Technology, CNU, CH

Abstract. Object-sensitivity is regarded as arguably the best co
abstraction for pointer analysis in object-oriented languages. Howe
k-object-sensitive pointer analysis, which uses a sequence of k alloci
sites (as k context elements) to represent a calling context of a me}
call, may end up using some context elements redundantly withos
ducing a finer partition of the space of (concrete) calling contexts fc
method call. In this paper, we introduce BEAN, a general approac|
improving the precision of any k-object-sensitive analysis, denoted

by still using a k-limiting context abstraction. The novelty is to idd
allocation sites that are redundant context elements in k-obj fro
Object Allocation Graph (OAG), which is built based on a pre-anz
(e.g., a context-insensitive Ander: analysis) performed initially
program and then avoid them in the Sllbhequenl k-object-sensitive
ysis for the program. BEAN is generally more precise than k-obj, wj
precision that is guaranteed to be as good as k-obj in the worst cas

have i d BEAN as an ope tool and applied it to
two state-of-the-art whole-program pointer analyses in Doop Fo
clients (: lias and may-fail-cast) evaluated on a

nine large Java programs from the DaCapo benchmark suite, BEA}
succeeded in making both analyses more precise for all these benchn]
under each client at only small increases in analysis cost.

1 Introduction

Pointer analysis, as an enabling technology, plays a key role in a wi
client applications, including bug detection [3, 25, 35, 34], security anal
compiler optimisation [6,33], and program understanding [12]. Tw
‘mensions of pointer analysis precision are flow-sensitivity and context
For C/C++ programs, flow-sensitivity is needed by many clients [11
For object-oriented programs, e.g., Java programs, however, context]
is known to deliver trackable and useful precision [17,19-21, 28-30],
There are two general approaches to achieving context-sensitivity|
oriented programs, call-site-sensitivity (k-CFA) [27] and object-seng
24,29] (among others). A k-CFA analysis represents a calling context
call by using a sequence of k call sites (i.e., k labels with each den

Scalability-First Pointer Ang
Self-Tuning Context-Sen

Anders
Aarhus Uni

Pick Your Contexts Well: Understanding Object-SensitiI

The Making of a Precise and Scalable Pointer Analysis

Yannis Smaragdakis Martin Bravenboer

Department of Computer Science,
University of Massachusetts,
Ambherst, MA 01003, USA
and Department of Informatics,
University of Athens, 15784, Greece

LogicBlox Inc
Two Midtown Plaza
Atlanta, GA 30309, USA
martin.bravenboer@acm.org

Ondej Lhotdl

David R. Cheriton Sciy
Computer Scienc|
Iniversity of Water
‘Waterloo, ON N2L 3G1,|

annis@cs.umass.ed uoagr

Yue Li Tian Tan
Aarhus University Aarhus University
yueli@cs.au.dk au.dk

ABSTRACT

Context-sensitivity is important in pointer analysis to ensure high
precision, but existing techniques suffer from unpredictable scala-
bility. Many variants of context-sensitivity exist, and it is difficult
to choose one that leads to reasonable analysis time and obtains
high precision, without running the analysis multiple times.

We present the ScALER framework that addresses this problem.
Scaer :fﬁ:lcmly estimates the amount of ponts-10 information
that variants
of contm—semnwny It then selects an appropriate variant for
each method so that the total amount of points-to information is
bounded, while utilizing the available space to maximize precision.

Our experimental results demonstrate that SCALER achieves pre-
dictable scalability for all the evaluated programs (e.g., speedups
can reach 10x for 2-object-sensitivity), while providing a precision
that matches or even exceeds that of the best alternative techniques,

CCS CONCEPTS

+ Theory of computation — Program analysis;

KEYWORDS

static analysis, points-to analysis, Java

ACM Reference Format:

Yue Li, Tian Tan, Anders Moller, and Yannis Smaragdakis. 2018. Scalability-
First Pointer Analysis with Self-Tuning Context-Sensitivity. In Proceedings
of the 26th ACM Joint European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE '18), November
4-9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA, 12 pages.
https//doi.org/10.1145/3236024. 3236041

1 INTRODUCTION

isa family of stati provide
a foundation for many other analyses and software engineering
tasks, such as program slicing [36, 39), reflection analysis [19, 1],
bug detection [13, 26], security analysis [1, 23], program verifica-
tion [8, 27], and program debugging and comprehension [5, 21].
‘The goal of pointer analysis is to statically compute a st of objects
(abstracted as their allocation sites) that a program variable may
point to during run time. Although stating this goal is simple, it is

Permision o make digitlor hard copie ofall o part of his work o personal or

site). In contrast, a k-object-sensitive analysis uses k object all
k labels with each denoting a new statement) as context elements.

T Corresponding author

or distributed

for profitor
onhe st page Lopynghli forcomponets o this work owned by othersthan the
. To copy otherwise, or

wrer)
‘and/or afee. Request permissions from permissions@acm.org.
ESECHSE ' November -3 2018, Lake uena Vit L, USA

timeout (>3

Figure 1: Com|
sensitivity, 2-t
ses. The y-axi
and all trunca]

challenging to
scalability [12,
ued to develop
16,18, 22, 24, 25
One of the ke]
is context sensi
analyzed differ
Context sensitiv|
context informal
and type-sensit
former is strictly
37). However, w]
gain in precisio
in the sense that]
metrics may ha
Figure 1 shof
grams’ under
the most precis
(2type) [32], an{
« 20bj is not
while it can
o program size]
(12718 meth|
ever, 2type
latter;

held b s licensed to ACM.

Abstract 1. Introduction

Object-sensitivity has emerged as an excellent context abstraction
for points-to analysis in object-or nhdlnnguagn Despite s prac-
tical su i ty i poorly understood. For
instance, for a context depth of S or higher, past scalable imple-
mentations deviate significantly from the original definition of an
object-sensitive analysis. The reason is that the analysis has many
degrees of freedom, relating to which context elements are picked
at every method call and object creation. We offer a clean model
for the analysis design space, and discuss a formal and informal un-
derstanding of obj sitivity and of how o create good object-
sensitive analyses. lts are surprising in their extent. We
fi that past implementations have made a sub-optimal choice of

Points-to analysis (or pointer analysis in

sists of computing a static abstraction of
to during program run-time. The analysis

mechanism:
pointer d

defne & “Full b

igher precision, and often pul'armanL for the exact same con-
text depth. We as an explicit ap-
proximation of object-sensitivity that preserves hxgh context qual- acl
ity at reduced cost. A type 10 analy
makes an unconventional use of types s context: the context types
are not dynamic types of objects involved in the analysis, but in-
stead upper bounds on the dynamic types of their allocator objects.
Our results expose the influence of context choice on the quality

act with various language features.

d usefully high pre

obj actio
information (e g cts
10”) over all possible executions that v
while separating all information for dif

(18, 19] and object-sensitivity [13).

precision (comparable to the best object-sensitive analysis with the

same context depth) Sensitivity has been such that, in current

analyses have Almoa\ completely supplanted tradit
oriented languag
sensitivity

sitive/kCFA an:
is concerned with. undmmdmg object
malizing it conveniently, and exploring
even more scalable and precise analyses

What is object-sensitivity at a high

Categories and Subject Descriptors F32 Logics and A\lumm[:\
of Programs): Semantics of Programming Languages—Progras
Analysis

: D3.1 [Programming Languages): Formal Definitions and
Theory—Semantics

est way to describe the concept is by analogy and cf
better-known call-site sensitivity. A call-site sensitiv

General Terms Algorithms, Languages, Performance

the method) as context elements. That is,
Permission to make digital or hard copics of all or part of this work for personal or separates information on local variables
classroom use s granted without fce provided that copics arc not made or distributed
for profit or commercial advantage and that copics bear this notice and the ful itation
on the first page. To copy otherwise, to republish, to post on servers or o redistribute.
1o lists, requires prior specific pemision andor s fec.
POPL'I1, January 26-28, 2011, Austin, Texas, U
Copyight © B01T ACM 970145050950 1107 51000

information on heap objects per call

below, a 1-call-si

nsitive anal

most fundamental static program analyses. Points-to|

expression (or just a variable, without loss of general

cally every other program analysis and is closely inte}
such as call-graph construction, since U
rmine the target of dynamically resolved
object-oriented dynamically dispatched method calls|
lambda applications. By nature, the entire challeng
analysis is to pick judicious approximations. Intracta)
hind any attempt to track program control- or data-
Furthermore, the global character and complicated
analysis make it hard to determine how different anal

ini
functionallanguages, context-senstiviy s @ general
hi ang

consists of qualifying local program variables, and p
s s, with context information: the anal
jects this method argum

kinds of context-sensitivity have been explored: call-o

the introduction of object-sen:
al. [13], there has been accumulating eviden
it is a superior context abstraction for obj
yielding high precision relative to cost. The

our context)
all the data

forms the b

For object]

Cont

sult in the o
t conte:

ivity b
3,7,

torien]
e s
practice, ol

H

level? Perh)

per call-stack (i.c., sequence of k call-sites) of meth
that led to the current method call. Similarly, the anal

that led to the object’s allocation. For instance, in the
(unlike a contd

in OO terms
&, meth

K of methol

ignored

George Kastrinis

Department of Informatics
University of Athens
{gkastrinis, smaragd} Odi.uoa gr

Abstract

Context-sensitive points-to analysis is valuable for achieving high
precision with good performance. The standard flaors of contexi-
sensitivity are (ke
Combining both flavors of context-sensitivity increases precision
but at an infeasibly high cost. We show that a selective combi-
nation of call-site- and object-sensitivity for Java points-to anal-
ysis is highly profitable. Namely, by keeping a combined context
only when analyzing selected language features, we can closely
approximate the precision of an analysis that keeps both contexts
at all times. In terms of speed, the selective combination of both
kinds of context not only vastly outperforms non-selective combi-
nations but is also faster than a mere object-sensitive analysis. This
result holds for a lage armay of analyses (e, 1-objectsensiive,
witha ve heap, es-
mbhshmg anew set of performance/precision sweet spots.

Categories and Subject Descriptors F:3.2 |Logics and Meanings

Yannis Smaragdakis

Hybrid Context-Sensitivity for Points-To AII

One of the major tools for expl
cision/performance tradeoff has bee
sensitivity consists of qualifying loc]
context information: the analysis uni
same context value, while separating
ent contexts. This approach tries to cof
naturally results in any static analysis
from different dynamic program path
sensitivity have been explored in the
22, 23] and object-sensitiviy [18, 19

A call-site-sensitive/kCFA analys
labels of instructions that may call thel
‘That is, the analysis separates inform)
method arguments) per call-stack (i.¢
method invocations that led to the c;
the analysis separates information on|
method invocations that led to the obj
in the code example below, a I-call-
analysis) will di

of Programs]: Semantics of
Analysis; D34 (Programming Languages}: Processors—
Compilers

General Terms ~ Algorithms, Languages, Performance

Keywords points-to analysis; context-sensitivity; object-
sensitivity; type-sensitivity

1. Introduction

Points-to analysis is a static program analysis that consists of com-
puting all objects (typically identified by allocation site) that a pro-
gram variable may point to. The area of points-to analysis (and
its close relative, alias analysis) has been the focus of intense re-
search and is among the most standardized and well-understood of
inter-procedural analyses. The emphasis of points-to analysis algo-
rithms is on combining fairly precise modeling of pointer behavior
with scalability. The challenge is to pick judicious approximations
that will allow satisfactory precision at a reasonable cost. Further-
more, although increasing precision often leads to higher asymp-
totic complexity, this worst-case behavior is rarely encountered in
actual practice. Instead, techniques that are effective at maintaining
good precision often also exhibit better average-case performance,
since smaller points-to sets lead to less work.

Permission to make digital or hard copies of all or past of this work for personal or
classroom use s granted without fee provided that copies are not made or distributed

on the firs page. To copy otherwise, (0 tepublish, 10 post on servers of 10 redistrbute
o lists, requires prior specific permission and/or a fee.

June 16-19, 2013, Seatte, WA,
Copyright © 2013 ACM 97814503

method £o0 on lincs 7 and 8. This me
£o0 separately for two cases: that of it§
to anything obj1 may point o, and
obj2 may point to.

class € {
void foo(Object o) { ... }
)

class Client {
void bar(C c1, € c2) { ...
c1.foo(obj1);

<2.100(abj2);
b
3

In contrast, object-sensitivity uses obj
of instructions containing a new staf
(Hence, a better name for “object-
“allocation-site sensitivity”.) That i,
an object, the analysis separates the]
the allocation site of the receiver obj
the method is called), as well as of
context. Thus, in the above example,
will analyze £oo separately dependin;
objects that c1 and c2 may point to. It
fragment neither whether c1 and 2
nor to how many objects: the allocatf
may be remote and unrelated to the
itis not possible to compare the pr
and a call-site-sensitive analysis in pi
not even clear whether the object sef
all calls to foo as one case, as two,

Precision-Guided Context Sensitivity for Pointe

YUE LI, Aarhus University, Denmark

TIAN TAN, Aarhus University, Denmark

ANDERS MOLLER, Aarhus University, Denmark
YANNIS SMARAGDAKIS, University of Athens, Greece

Context sensitivity is an essential technique for ensuring high precision in Java poin|
observed that applying context sensitivity partially, only on a select subset of the m
balance between analysis precision and speed. However, existing techniques are b
do not provide much insight into what characterizes this method subset. In this w|
principled approach for identifying precision-critical methods, based on general pat
explain where most of the imp ion arises in context-i itive pointer analysis.
an efficient algorithm to recognize these flow patterns in a given program and exp)
tradeoffs between analysis precision and speed.

Our experimental results on standard benchmark and real-world programs show th:
applies context sensitivity partially, only on the identified precision-critical methods,
(98.8%) of the precision of a highly-precise conventional context-sensitive pointer an;
with a context-sensitive heap), with a substantial speedup (on average 3.4X, and up

CCS Concepts: « Theory of

p — Program analysis;

Additional Key Words and Phrases: static analysis, points-to analysis, Java

ACM Reference Format:

Yue Li, Tian Tan, Anders Moller, and Yannis Smaragdakis. 2018. Precision-Guided
Pointer Analysis. Proc. ACM Program. Lang. 2, OOPSLA, Article 141 (November 201,
org/10.1145/3276511

1 INTRODUCTION

Pointer analysis is a fundamental family of static anal that esti 1]

Introspective Analysis: Context-Sensitivity, Across the Board

Yannis Smaragdakis

Abstract

Context-sensitivity is the primary approach for adding more preci-
sion to a points-to analysis, while hopefully also maintaining scal-
ability. An oft-reported problem with context-sensitive analyses,
however, is that they are bi-modal: cither the analysis is precise
enough that it manipulates only manageable sets of data, and thus
scales impressively well, o the analysis gets qumkly derailed at the
first sign of and becomes more
expensive than would be expected given the program's size. There
is currently no approach that makes precise context-sensitive analy-
ses (of any flavor: call-site-, object-, or type-sensitive) scale across
the board at a level to that of a context-i a
ysis. To address this issue, we propose introspective analysis: a
technique for uniformly scaling context-sensitive analysis by elim-
inating its performance-detrimental behavior, at a small precision
. Introspective analysis consists of a common adaptivity
pattern: “first perform a context-insensitive analysis, then use the
results to selectively refine (i.c., analyze context-sensitively) pro-
gram elements that will not cause explosion in the running time
or space. The technical challenge is to appropriately identify such
program elements. We show that a simple but principled approach
can be remarkably effective, achieving scalability (often with dra-
for previously completely
for deep context-sensitive analyses.

Categories and Subject Descriptors 3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
Analysis; D34 [Programming Languages]: Processors—
Compilers

General Terms Algorithms, Languages, Performance

Keywords points-to analy:
sensitivity; type-sensitivity

context-sensitivity; object-

pointer variables in a program. Such information is essential for reasonin
inter-procedural control flow in object-oriented programs, and it is used in a
engineering tools, e.g., for bug detection [Chandra et al. 2009; Naik et al.
analysis [Arzt et al. 2014; Grech and Smaragdakis 2017; Livshits and Lam 20|
tion [Fink et al. 2008; Pradel et al. 2012], and program debugging and undersf
Sridharan et al. 2007].

For decades, analysis iques have been developed to make
precise and more efficient, especially for object-oriented languages [Hind 2
Balatsouras 2015; Sridharan et al. 2013]. One of the most successful idea]
precision is context sensitivity [Milanova et al. 2002, 2005; Sharir and Pnue

1. i

Points-to analysis is probably the most common whole-program
static analysis, and often serves as a substrate for a variety of high-
level program analysis tasks. Points-to analysis computes the set of
objects (abstracted as their allocation sites) that a program variable
‘may point to during runtime. The promise, as well as the challenge,

Permission to make digital or hard copies of al or part of this work for personal or
classtoom us is granted without fee provided that copics are not made or distributed
d the full citation

on the first page. Copyrights for components of this work owned by others than the
Abstractin or

blish,

George Kastrinis
Department of Informatics
University of Athens
{smaragd,gkastrinis,gbalats}Qdi.uoa.gr

George Balatsouras

of points-to analysis is to yield usefully precise information without
sacrificing scalability: the analysis inputs are large and the analysis
algorithms are typically quadratic or cubic, but try to maintain
near-linear behavior in practice, by exploiting program properties
and maintaining precision. Indeed precision and performance often
go hand-in-hand in a good points-to analysis algorithm: better
algorithms are often found to be both more precise and faster,
because smaller points-to sets lead to less work [14].

Context-sensitivity is a common way of pursuing precision and
scalability in points-to analysis. It consists of qualifying local vari-
ables and objects with context information: the analysis unifies in-
formation (e.g., “what objects this method argument can point t0”)
over all possible executions that map to the same context value,
while separating executions that map to different contexts. In this
vy, context-sensiivity attempis to avoid precision loss from merg-

ing the behavior of different dynamic program paths. Context-
sensitivity comes in many flavors, depending on the kind of context
i ion, such as call ity 22, 23], obj itivif
19, 20], and type-sensitivity [24].

An oft-remarked fact about context-sensitivity, however, is that
even the best algorithms have a common failure mode when they
cannot maintain precision. Past literature reports that “the perfor-
mance of a [...] deep-context analysis is bimodal” [24]; “context-
sensitive analyses have been associated with very large numbers of
contexts” [15]; “algorithms completely hit a wall after a few iter-
ations, with the number of tuples exploding exponentially” [16].
Recent published results [12] fail to run a 2-object-sensitive analy-
sis in under 90mins for 2 of 10 DaCapo benchmarks, while 2 more
benchmarks take more than 1,000sec, although most other bench-
marks of similar or larger size get analyzed in under 200sec.

Thus, when context-sensitivity works, it works formidably, in
terms of both precision and performance. When it fails, however,
it fails miserably, quickly exploding in complexity. In contrast,
context-insensitive analyses uniformly scale well, for the same in-
puts. Figure 1 vividly demonstrates this phenomenon for the Da-
Capo benchmarks, analyzed with the Doop framework [2] under a
context-insensitive (insens) analysis and a 2-object-sensitive anal-
ysis with a context-sensitive heap (20bjH). (The chart truncates the
analysis time of the longest-running benchmarks. Two of them,
hsgldb and jython, timed out after 90mins on a 24GB machine,
and would not terminate even for much longer timeouts.) As can
be seen, context-insensitive analyses vary relatively little in per-
formance, while context-sensitivity often causes running time (and
‘memory use) to explode.

Faced with this unpredictability of context-sensitivity, a com-
mon reaction is to avoid it, favoring context-insensitive analy-

andor a fee. Request permissions from permissions @acm.org.
PLDI'L4, June 9-11, 2014, Edinburgh, United Kingd

Copyrig i hld b h ownerauthr). Pulicaio ighs liensed 10 ACM.
ACM 978.1-4503-2784-8/14/06,

Ripilddo org 0 114572594391 2594330

ses, and, missing significant precision benefits for
well-behaved programs. Even worse, for some applications, es-
chewing expensive context-sensitivity is not an option—a context-
insensitive analysis is just not good enough. Reports from indus-
try [4] and academic researchers [3] alike reiterate that precise

These areal o . . d
\ Cﬁ,’: i iﬂi:;: " eclipse) of " DaCapo benchmarks [3]. I Smaragdakis et al. 2011], which allows each program method to be analyzed urj
. to sep the static abstractions of different dynamic instantiations of the
' Authors’ email addresses: yueli@cs.au.dk, ti au.dk, au.dk, i.uoa.gr. K
v '
A~ = g A = g 2 ~a i g 3 g i - - o - a0 5 g i @ G g < - 2 R g g e = g 2 A= -
S - = o D N D e e P S NP - o L R AR 5L = o g = = 5 B P SN PR el - . (. TR
> . - ’ € = o Y Do o ~ = mds Do e - ? - 3 , ” = g 2 > - = g > E ” e =
)
v
' 1
\ 0
D Y /4
D B g = a = B B
- . R g o - omre e an o -V o S — . X T 3 P — . 2 g AR .Y o e 7 o e omr o0 e B y g

Call-site Sensitivity vs Object Sensitivity

e Call-site Sensitivity has been

A Machine-Learning Alg)
Data-Driven Program Al

d]

MINSEOK JEON, SEHUN JEONG"
Republic of Korea

We present a new machine-learning algds

for data-driven program analysis as well as d
boolean formulas over atomic features and|
properties. Key technical challenge is eft
search would simply be impractical. We'
boolean formulas. We show the effectivei
context-sensitive points-to analysis for Jayg
show that our automated technique signifi
including ones hand-crafted by human exp i
(]

CCS Concepts: - Theory of computatioy
chine learning approaches.

- Additional Key Words and Phrases: Data-di}
'y sensitivity e N

Y o) ACM Reference Format: S o o =
Minseok Jeon, Sehun Jeong, Sungdeok Cha, and Hakjoo Oh. 2017. A Machine- Learmng
Disjunctive Model for Data-Driven Program Analysis. ACM Trans. Program. Lang. Syst|
! (December 2017), 42 pages. https://doi.org/0000001.0000001

1 INTRODUCTION
One major challenge in static program analysis is a substantial amount of manual
for tuning the analysis performance for real-world applications. Practical static analj
Y variety of heuristics to optimize their performance. For example, context-sensiti

A for ing object-oriented as it distinguisk method’s local variables
o'} different calling-contexts. However, applyi text itivity to all methods if
ol does not scale and therefore real-world static analyzers apply context-sensitivity onf

methods determined by some heuristic rules [Smaragdakis et al. 2014]. Anothe]
relational analysis such as ones with Octagons [Miné 2006]. Because it is impracticg
of all variable relationships in the program, static analyzers employ variable-clustd

“The first and second authors contributed equally to this work

)
(

oductione 3 -

Pointer analysis, as an enabling technology, plays a key role in a wi
client applications, including bug detection [3, 25, 35, 34], security ana
compiler optimisation [6,33], and program understanding [12]. Tw
mensions of pointer analysis precision are flow-sensitivity and context
For C/C++ programs, flow-sensitivity is needed by many clients [11
For object-oriented programs, e.g., Java programs, however, context]
is known to deliver trackable and uacful precision [17 19-21, 28 30]

There are two general
oriented programs, call-site-: scnblhvny (k-CFA) [27] and object-senf
24,29] (among others). A k-CFA analysis represents a calling context
call by using a sequence of k call sites (i.e., k labels with each den

v)
< Rk I BT urting |
of the 26th ACM Joint European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE '13), November
4-9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA, 12 pages.
hitps¢/doi org/10.1145/3236024.3236041

1 INTRODUCTION

isa family of provide
a foundation for many other analyses and software engineering
tasks, such as program slicing [36, 39), reflection analysis [19, 1],
bug detection [13, 26], security analysis [1, 23], program verifica-
tion [8, 27], and program debugging and comprehension [5, 21).
‘The goal of pointer analysis is to statically compute a st of objects
(abstracted as their allocation sites) that a program variable may
point to during run time. Although stating this goal is simple, it is

Permision o make digitlor hard copie ofall o part of his work o personal or

site). In contrast, a k-object-sensitive analysis uses k object all
k labels with each denoting a new statement) as context elements.

‘ T Corresponding author

or distributed

for profitor
onhe st page Lopynghli forcomponents of this work owned by othrs than the
. To copy otherwise, or

wrer)
‘and/or afee. Request permissions from permissions@acm.org.
ESECHSE ' November -3 2018, Lake uena Vit L, USA

OO semeny
analyzed differ
Context sensitiv]
context informal
and type-sensit
former is strictl;
37). However, w]
gain in precisio
in the sense thatl] &/ Program:
‘metrics may hay Analysis

Figure 1 sho
grams’ under
the most precis
(2type) [32], an{

« 20bj is not

ity (comparable to analyses with muc

same context depth)

Categories and Sub]cu Descriptors
s Sem of

Theory-—Semantics

LR g
with major impact: It decisively advances the state-of
a spectrum of analyses that simultancously enjoy speed (several
1 ster than an analogous object-sensitive mly

F3.2 [Logics and A\{((mmp
Programming Languages—Progra

General Terms Algorithms, Languages, Performance

held b s licensed to ACM.
M5B 430 5375 Sa/es $1500
hitps:/doi org/10.1145/3236024.3236041

while it can f] Permission to make digital or hard copics of allor part ofthis work for personal or Separates information on local variables (e.g., meth
clsroom s s e it e providd t copes renet made odisnbvied e callstack i.c. sequence of call-ste) of e

o programsizel] G probin d the full citation
(12718 meth] o te it puee oo y otherwisc, o republish, oo e o e et that led to the current method call. Similarly, the anal
o e T informaton on heap abjects, por cll-sack ofmthg
e type POPL1I, Janua 2011, Austin, Texas, that led to the object’s allocation. For instance, in the
atter; Copyright ® Ty A T Ason, nwmm!m 51000 below, a 1-call-si sitive analysis (unlike a cont

"These are all

Iabil~

essc
precision (comparablefo he best bjoct seasitive snalysis i the

3.1 [Programming Languages): Formal Definitions and

[n: w] Snd objec y
Eve the introduction of object-sensitvity b

ontext abstraction for object-orien

yielding high precision relative to cost. The succ

Sensitivity has been such that, in current practice, o

analyses have almost completely supplanted tradit
sitive/kCFA analys:

malizing it conveniently, and exploring design choice{

even more scalable and precise analyses than current

What is object-sensitivity at a high level? Perd

est way to describe the concept is by analogy and cf

bettr-known call-site senstivity. A call-sit sensitivd
uses method call-site labels of

cs ol
the method) as context clements. That is, in OO term

eclipse) of o DaCapo benchmarks [3].

g e g

Points-to analysis is a static program analysis that consists of com-

puting all objects (typically identified by allocation site) that a pro-
gram variable may point to. The area of points-to analysis (and
its close relative, alias analysis) has been the focus of intense re-
search and is among the most standardized and well-understood of
inter-procedural analyses. The emphasis of points-to analysis algo-
rithms is on combining fairly precise modeling of pointer behavior
with scalability. The challenge is to pick judicious approximations
that will allow satisfactory precision at a reasonable cost. Further-
more, although increasing precision often leads to higher asymp-
totic complexity, this worst-case behavior is rarely encountered in
actual practice. Instead, techniques that are effective at maintaining
good precision often also exhibit better average-case performance,
since smaller points-to sets lead to less work.

Permission to make digital o hard copies of all or pat of this work for personal or
classroom use i grated wilbout fc providedtat copi r no made ordsibuted
for
on the first page. To copy otherwise, (0 epublish, 1 post on servers o o redistibute
10 lists, requires pror specifi permission andlor 4 fe.

June 16-19. 2013, Seattle, WA.
Copyright © 2013 ACM 978.1.4503-

‘P vo1dBar ¢ ¥, c'c2f ¢

7 cl.foo(obj1);

s c2.foo(obj2);
o 3
ud

In contrast, object-sensitivity uses obj
of instructions containing a new staf
(Hence, a better name for “object-
“allocation-site sensitivity”.) That i,
an object, the analysis separates the]
the allocation site of the receiver obj
the method is called), as well as o
context. Thus, in the above example,
will analyze £oo separately dependin;
objects that c1 and c2 may point to. It
fragment neither whether c1 and c2 rf
nor to how many objects: the allocatf
may be remote and unrelated to the
itis not possible to compare the pr
and a call-site-sensitive analysis in pi
not even clear whether the object sef
all calls to foo as one case, as two,

ignored

=7 s B s g =T . L — e s > 5 PBCT .. . S D ye
S . » Y - B\ 2 = . N - B . = » N
. =y N N L~ 3 - N ~ = ~ -3 ~ = ~ -3 -

{1 ... call-site-sensitivity is less importan

t tha others ...” |

et al. [2019]]

One major challenge in static program analfl" >
the analysis performance. Recently, data .

by automatically adjusting the analysis b -

oprosch hasprove promisin for vri D -

to simple-minded learning models and affig

disjunctive, program properties. To overcoil a

PER 127, Staders WA
Pointer Analysis. Proc. ACM Program. Lang 2, OOPSLA Article 141 (Nove_mber 201
org/10.1145/3276511

1 INTRODUCTION
Pointer analysis is a fundamental family of static analyses that esti 1]

Compilers

General Terms Algorithms, Languages, Performance

Keywords points-to analys
sensitivity; type-sensitivity

context-sensitivity; object-

pointer variables in a program. Such information is essential for reasonin
inter-procedural control flow in object-oriented programs, and it is used in a
engineering tools, e.g., for bug detection [Chandra et al. 2009; Naik et al.
analysis [Arzt et al. 2014; Grech and Smaragdakis 2017; Livshits and Lam 20|
tion [Fink et al. 2008; Pradel et al. 2012], and program debugging and undersf
Sridharan et al. 2007].

For decades, analysis iques have been developed to make
precise and more efficient, especially for object-oriented languages [Hind 2
Balatsouras 2015; Sridharan et al. 2013]. One of the most successful idea]
precision is context sensitivity [Milanova et al. 2002, 2005; Sharir and Pnue
Smaragdakis et al. 2011], which allows each program method to be analyzed urj

: 528 0 i

1. i

Points-to analysis is probably the most common whole-program
static analysis, and often serves as a substrate for a variety of high-
level program analysis tasks. Points-to analysis computes the set of
objects (abstracted as their allocation sites) that a program variable
‘may point to during runtime. The promise, as well as the challenge,

Permission to make digital or hard copies of al or part of this work for personal or
classroom use is granted without fce provided that copies are not made or distributcd
 the full citation

on the first page. Copyrights for components of this work owned by others than the
Abstractin Lor

blish,

ST or 0 BonoMriTRy, I ALY
"~ benchmarks take more than 1,000sec, although most other bench-

marks of similar or larger size get analyzed in under 200sec.

Thus, when context-sensitivity works, it works formidably, in
terms of both precision and performance. When it fails, however,
it fails miserably, quickly exploding in complexity. In contrast,
context-insensitive analyses uniformly scale well, for the same in-
puts. Figure 1 vividly demonstrates this phenomenon for the Da-
Capo benchmarks, analyzed with the Doop framework [2] under a
context-insensitive (insens) analysis and a 2-object-sensitive anal-
ysis with a context-sensitive heap (20bjH). (The chart truncates the
analysis time of the longest-running benchmarks. Two of them,
hsgldb and jython, timed out after 90mins on a 24GB machine,
and would not terminate even for much longer timeouts.) As can

be seen, context-insensitive analyses vary relatively litle in per-
formance, while context-sensitivity often causes running time (and
memory use) to explo

Faced with this unpredictability of context-sensitivity, a com-
mon reaction is to avoid it, favoring context-insensitive analy-

andlor a fee. Request permissions from permissions @acm.org.
PLDI'4, June 9-11, 2014, Edinburgh, United Kingdom.
Copyright is held by Sl
ACM 978-1-4503-2784-8/14/106. . S15.

hup:/idx.doi.org/10.1 sodst 0

sed 10 ACM.

ses, and, missing significant precision benefits for
well-behaved programs. Even worse, for some applications, es-
chewing expensive context-sensitivity is not an option—a context-
insensitive analysis is just not good enough. Reports from indus-
try [4] and academic researchers [3] alike reiterate that precise

to sep the static abstractions of different dynamic instantiations of the
Authors’ email addresses: yueli@cs.au.dk, ti audk audk, iuoa.gr.
e e o o e s : " SR
< = - = g or & E ” \ e = 5
D
v
' 1
b Y 14
N E = - = a —~ B B —
- > el - = WL B TS7 uJ -~ < v o = .. i =

Call-site Sensitivity vs Object Sensitivity

Currently, call-site sensitivity is known as a bad context

22

all-site Sensitivity vs Object Sensitivity

o a3 - By B S P ey - Y Ry Lo PSRN o~ - - 2 gO e 5 - <o = = 7 e PO — -y g~ > Naw v £ - Y) _ _posha -) .
> ‘ - = A = i - - = - a v >

. \ =~ " _ A 5 4o S \ =~ R _ N = N \ - o=~ . . A - - _ =_~ .

A technique context tunneling is proposed

I - . .= - i it e g - B . Py . ik i Sy - a Y - oo o - B 5
\ D =l 2 . = - = _ e Bg- §'X > N . e Bg-
Cloy - =7 & = - 3% = & = =) - i —— 72 - - - .

= . - . - . — « ~_ ~ . N . g \

~_ ~ . . E G SO . . 5

v 4 Precise and Scalable Points-to Analysis via Data-Driven 2
) Context Tunneling R

p MINSEOK JEON, Korea University, Republic of Korea - cix n g s a8 £ e , N N . o L s s I o s . Py . Somo o n e o . o " _ o s oy e s . . . ol s o i
\ q SEHUN JEONG, Korea University, Republic of Korea) . = y - v b . iansindas v . . e ek y —— A ’ R T T N R Yo . . - - L - } g) . |
) HAKJOO OH?, Korea University, Republic of Korea % 5 b

We present context tunneling, a new approach for making k-limited context-sensitive points-to analysis
D) precise and scalable. As context-sensitivity holds the key to the development of precise and scalable points-to ") S

; analysis, a variety of techniques for context-sensitivity have been proposed. However, existing approaches p 3 g
by such as k-call-site-sensitivity or k-object-sensitivity have a significant weakness that they unconditionally
update the context of a method at every call-site, allowing important context elements to be overwritten] !
by more recent, but not necessarily more important, context elements. In this paper, we show that this is a
J g key limiting factor of existing context-sensitive analyses, and demonstrate that remarkable increase in both D

b precision and scalability can be gained by maintaining important context elements only. Our approach, called b | B

e context tunneling, updates contexts selectively and decides when to propagate the same context without 3 % !
¢ modification. P b b
9 We attain context tunneling via a data-driven approach. The effectiveness of context tunneling is very) ,“: '}
P, ¢ sensitive to the choice of important context elements. Even worse, precision is not monotonically increasing g 1

N with respect to the ordering of the choices. As a result, manually coming up with a good heuristic rule for o
4 context tunneling is extremely challenging and likely fails to maximize its potential. We address this challenge 3
by developing a specialized data-driven algorithm, which is able to automatically search for high-quality B~ &
o‘ heuristics over the non-monotonic space of context tunneling. R X 2
. We implemented our approach in the Doop framework and applied it to four major flavors of context- e
vV 8 sensitivity: call-site-sensitivity, object-sensitivity, type-sensitivity, and hybrid context-sensitivity. In all cases,
v 1-context-sensitive analysis with context tunneling far outperformed deeper context-sensitivity with k = 2 in

_ o [J [[o [[L
! both precision and scalability. ’4 {
CCS Concepts: » Theory of computation — Program analysis; - Computing methodologies — Ma- 1 I)
‘ chine learning approaches; ¥ 1

"
!

Additional Key Words and Phrases: Points-to analysis, Context-sensitive analysis, Data-driven program
analysis ,
ACM Reference Format: !
R Minseok Jeon, Sehun Jeong, and Hakjoo Oh. 2018. Precise and Scalable Points-to Analysis via Data-Driven -)
Context Tunneling. Proc. ACM Program. Lang. 2, OOPSLA, Article 140 (November 2018), 30 pages. https:)|) q
\ //doi.org/10.1145/3276510 \) 4 g

\

R Y *Corresponding author LW " " R o —~ R " - . . " - S . o o il o - y = N S o o . o - o o o - S - . . - o o - . - _ . 4

J g Authors’ addresses: Mi k Jeon, mi j ackr, Department of Computer Science and Engineering, Korea
X University, 145, Anam-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea; Sehun Jeong, gifaranga@korea.ac kr, Department N
of Computer Science and Engineering, Korea University, 145, Anam-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea; 4
' Hakjoo Oh, hakjoo_oh@korea.ac.kr, Department of Computer Science and Engineering, Korea University, 145, Anam-ro,)
e Sungbuk-gu, Seoul, 02841, Republic of Korea. ‘

' Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
N provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and /
= the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. ‘
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires i
prior specific permission and/or a fee. Request permissions from permissi org. D
© 2018 Association for Computing Machinery. \:

I 2475-1421/2018/11-ART140 / 1
https://doi.org/10.1145/3276510

{ Jeon et al. [2018] :

— X B - - oo Bl O g e > - - - e -

Call-site Sensitivity vs Object Sensitivity

 Context tunneling can remove the limitation of call-site sensitivity

class C{
return V; ?
id(v)f /
: return idO(v);}]
%nain(){ I\O\ — m
cl = new C();//Cl 4

c2 = new C();//C2 . .
a = (A) cl.idl (new A())//query| | -CFA with context tunnellng

= (B) c2.idl(new B());//query2 (T: {4})

5\9995'9.‘.“."-'*“!\.’.—.9

—

24

http://c1.id
http://c2.id

Call-site Sensitivity vs Object Sensitivity

Tunneling abstraction: th context tunneling
Determlnes where to apply context tunnellng {T={4})

25

http://c1.id
http://c2.id

Call-site Sensitivity vs Object Sensitivity

4
—_
m
4

| -CFA with context tunneling

(=)

Unlmportant caII-5|tes that should not be used as context elements

http://c1.id
http://c2.id

Call-site Sensitivity vs Object Sensitivity

. Apply context tunnellng
Inherlt caIIer method’s context

“1-CFA Wlth contexttunn'ellng
(T=14})

27

http://c1.id
http://c2.id

Call-site Sensitivity vs Object Sensitivity

 Context tunneling can remove the limitation of call-site sensitivity

¥
B
- i
g/ B

| -CFA with context tunneling

\With tunneling, |-CFA separates the nested method calls|

http://c1.id
http://c2.id

Call-site Sensitivity vs Object Sensitivity

e Object sensitivity still suffers from its limitation

0: class C{

- id(v){ {6,7,8) -T n

2: return v} maln Cl Call-graph of 1-Obj with
3: [*] tunneling T

4: main(){

>: ¢l =new C();//CI [*]

6: a=(A)cl.id(newA(); Ak :

/: b= (B) cl.id(new B()); I-Obj + 'I_'u;mellng

8: ¢ =(B) cl.id(new C()); (T=1)

9:}

29

http://c1.id
http://c1.id
http://c1.id

Call-site Sensitivity vs Object Sensitivity

e Object sensitivity still suffers from its limitation

Unable to separate the
three method calls with the

main(){ i two contexts

cl = new C();//CI

a = (A) cl.id(new A()); OV :
b = (B) cl.id(new B(). |-ODbj + Tunneling

¢ = (B) cl.id(new C()): (T=1)
}

30

http://c1.id
http://c1.id
http://c1.id

Call-site Sensitivity vs Object Sensitivity
e Object sensitivity still suffers from its limitation

6,78} -T Id
Tl . ﬂ
K K
[*] \ ¥ [*] [/]
[*]
| -ODb; +TunneI|ng

(T = | CFA

Call-site sensitivity easily separates the three method calls

http://c1.id
http://c1.id
http://c1.id

Call-site Sensitivity vs Object Sensitivity

Observation
| When context tunneling is included
e Limitation of call-site sensitivity is removed

* Limitation of object sensitivity is not removed

32

http://c1.id
http://c1.id
http://c1.id

Call-site Sensitivity vs Object Sensitivity

= > < 2 S I S = < I S o= <~ > \C S o= < Y ToraT Ty A S == ~ > A S Y S O e S o T \© s ~ o o= < ® g -
~
v
)

., If context tunneling is included,
\ call-site sensitivity is more precise than object sensitivity /

~ s o - N - g ~ - N = 5 = ~ - N - P = : < ~ - N I35 < - ~ - N - ~ - T A B

http://c1.id
http://c1.id
http://c1.id

Our Technique : Obj2CFA

e Obj2CFA transforms a given object sensitivity into a more precise CFA
xalan

2500

2000

=

Ul

o

o
i

=

o

o

o
T

~ Scalable

analysis time (s)

|lobjH+T
| callH+SL Ob‘
(ours) pmb—"
800 550 660 650 760 750 300
Halarms

Precise
34

500F

Our Technique : Obj2CFA

e Obj2CFA transforms a given object sensitivity into a more precise CFA

~ Scalable

analysis time (s)

2500

xalan

2000

=

Ul

o

o
i

=

o

o

o
T

500F

| ob

[] o b B
e ¥
A} y ;‘

MRz o e e e k
s A -
\

20bjH

. 4 7 = o
e s i /,/ .
P & - ¢ _ o ik w5
o 73 e ST S R
° & 4
H +T §
5 2
. ’l‘ “

Given state-of-the art |-object |

. | sensitivity with tunneling |

lobjH+T is even more |
precise than 2objH |

550

600 650

Precise
35

700

n - 2 - LN —
U OUU

Halarms

Our Technique : Obj2CFA

e Obj2CFA transforms a given object sensitivity into a more precise CFA
xalan

2500

2000

Transformed call-site sensmwty via OijCFA

analysis_£i

500} | objH+T
(TcallH+SL } ob\lc‘FA
| (ours) !
i ;_ﬁ'rf¢,f, 600 650 760 750 800
tHalarms

reqse

o Scalable

Our Technique : Obj2CFA

e Obj2CFA transforms a given object sensitivity into a more precise CFA
xalan

2500

| I callH+SL is far more precise than |objH+T |

1000}

: | gbjH+T

| callH+SL: N

(ours) . :
a

o 600 650 e 700 750 800
Halarms

Precise
37

O |
500 55

Our Technique : Obj2CFA

e Obj2CFA transforms a given object sensitivity into a more precise CFA
xalan

2500

l ,.‘., PO AR BT a2 @ s en B a2 SRR CETS AL WO RS B .y en B ooz SRR BT A WO ST B e P VI DR TR B e aes T VI DR e i o) S y G b ST P v G dog bosne SR LT 5 A ROy ST B s v L L e —ic i ee o o ST S AR L e =9
v) = Za - , —y BS - ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ 3 &
M

|| callH+SL is more scalable than |objH+T}

analysis time (s)
L
o
S

500F

_____Scalable

38

Detail of Obj2CFA

Our Technique : Obj2CFA

e ObJ2CFA consists of simulation and simulation-guided

700

600/ | C&”H"‘S

500

400

300

200

~__Scalable

100}

B H+SL

O | | |
560 580 600 620 640 660 680 700

Our Technique : Obj2CFA

e Obj2CFA consists of simulation and simulation-guided

——{ Find an expensive but more precise CFA

500

400

300

200

_.Scalable

100

O | | | | | |
560 580 600 620 640 660 680 700

Precise

Our Technique : Obj2CFA

e ObJ2CFA consists of simulation and simulation-guided

700

600/ | C&”H"‘S

500

400

300

200

_.Scalable

Improve scalability |

100}

B iH+SL

O | | |
560 580 600 620 640 660 680 700

Technique |: Simulation

 Running example to illustrate Simulation
|: class C{

2: id(v){return v;}

3: idl(v){return id(v);}

4: foo(){

5: Aa=(A) this.id(new A());}//query
6: Bb = (B) this.id(new B());}//query?2
7.}

8: main(){

9: ¢l =new C();//C]

10: ¢2 =new C();//C2

1 1: ¢3 =new C();//C3

12: Aa=(A)cl.idl(newA());//query3

13: B b= (B) c2.idl(new B());//query4

14: c3.foo();

| 5: } 43

Technique |: Simulation

 Running example to illustrate Simulation

|: class C{

2: id(v){return v; _

3 |d I (v){retu rn |d(v)} memm ety | imitation of conventional |-CFA
4: foo

5: Aa=(A) this.id(new A());}//query »r

6: B b = (B) this.id(new B());}/query2 | 3

7:) [12]

8: main(){ mam

9: ¢l =new C();//C]

: = ; d|
10: ¢2 =new C();//C2 [|3]
| c3 = new C(); //C3

| 2: (A) cl |d|(newA()) //query3
| 3: B b = (B) c2 |d I (new B()) //query4
14: c3Foo();

15: } 44

Technique |: Simulation

 Running example to illustrate Simulation

class C{

id(v){return v;}

id | (v){return id(v);

 foo(){ ‘
;‘? Aa= (A) th|s |d(new A()) }//queryl
J

: main(){ foo | 2,6 id
. ¢l = new C(); //CI c31 |~ | [c3
: ¢2 = new C();//C2

c3 = new C();//C3
| 2: = (A) cl.idl(new A());//query3
B (B) c2.idl(new B());//query4

Limitation of object sensitivity

:c_>‘°°°>'.°.‘.u."-'=.°r’!\.’.—.

.39_9

15:} 5

Technique |: Simulation

e Given object sensitivity is conventional |-object sensitivity (e.g., T = Q&)
|: class C{

id(v){return v;} 3
id | (v){return id(v);} 12 _>
foo(){ A
A a = (A) this.id(new A());}//query | . |3 : 3 -
B b = (B) this.id(new B());}//query2 ﬂ #“ﬁn
\ ["] [D2] [D2]
: main(){ 1 4
. ¢l = new C();//C| f°°
10: 2 = new C();//C2 @ [D3]

1 1: ¢3 =new C();//C3

12: Aa=(A)cl.idl(newA());//query3 : —

13: Bb = (B) c2.idl (new B()):/query4 lobjH+T (T = ©)
14: c3.foo();

| 5: } 46

NV ONooUL AW

Technique |: Simulation

e Simulation takes a call-graph and produce a tunneling abstraction for CFA

Simulation

— {}

' Tunnellng abstractlon for I CFA
| objH+T (T = @) e

47

Technique |: Simulation

e Simulation takes a call-graph and produce a tunneling abstraction for CFA

A
main | | 3 |d| |d y —
—» Slmulatlon T = {3}
h‘
foo

| objH+T (T = @)

48

Technique |: Simulation

e Simulation takes a call-graph and produce a tunneling abstraction for CFA

'3 Slmulatlon T’ =13}
foo
(I1 u 12)

| objH+T (T QD)

Need tunnellng to simulate the glven object sen5|t|V|ty

Technique |: Simulation

e Simulation takes a call-graph and produce a tunneling abstraction for CFA

Slmulatlon

1y
D S Do O B A A %
; " 4
1 :,
3 b R
4 N b n
) | {
) 2 . s |
§ B o "
) R [“
k F a8
| FE]
o) JF 9
L NS o B e R B e ST -BAS o e s o Sl ateain) _ x
O I I‘-'- A
',‘ ~ -~ - 3 ~ - 3 = < ~ - S ~ - S ~ - 2 = = == o / = = < o - ~ - o - < = -~ g - i \
f
3 ,

| Tunneling should be avoided for improving precision

T ={3}

— O o o ° .\
2 m & Intuition of Simulation |

[*] [D2] ? Suppose the call-graph is produced from

foo | 1-CFA + T’ and infer the T

IcaIIH+T = WhatisT? |

oy - . - =
S log g

Intuition Behind Simulation (/; U [,)

* If tunneling is applied to i, two properties inevitably appear at

| We track the two properties to find the T’ |

52

Intuition Behind Simulation (/; U [,)

* |f tunneling is applled to i, two propertles inevitably appear at |

Tunnellng s applled

goo
[ctx |] [ctx I

Property of context tunneled caII-5|tes

. Property |: caller and callee methods have the same context

53

Intuition Behind Simulation (/; U [,)

* |f tunneling is applled to i, two propertles inevitably appear at |

Tunnellng s applled

foo | i [goo
fctx|] | [eox 1]

foo |
goo
— (Ueo2)

Property of context tunneled mvocatlons
. Property 2: different caller contexts |mply dlfferent callee contexts

54

Intuition Behind Simulation (/; U [,)

e Suppose given call-graph is produced from |callH+T" and infer what T" is

e /;:caller and callee methods have the same context

1,={3,5,6}

e Y -\ 2. S L 3 ..~,, ‘, s a2y G o g
lcallH+ T’ === WhatisT’? |
L« —saly i
cd == WhatisT"? |

sesunand -

Intuition Behind Simulation (/; U [,)

e Suppose given call-graph is produced from |callH+T" and infer what T" is

ﬂ e /;:caller and callee methods have the same context
—
2 =059
main |3
[*] & _' e /,:different caller ctx imply different callee ctx

foo 12_{3}
[D3] [D3]

e Y e 2. S L 3 ..~,' T s a2y G o g
lcallH+ T’ ==== WhatisT"? |
L 'Vi?{'_. B) ’
cd ==, WhatisT? |

semnand -

Intuition Behind Simulation (/; U [,)

e Suppose given call-graph is produced from |callH+T" and infer what T" is

E e /,:caller and callee methods have the same context
—
" 1,={3,5,6)
main |3
[*] & _' e /,:different caller ctx imply different callee ctx

foo 12_{3}
[D3] [D3]

T=L UL =056

P BanE Hea ZeToga Qoo Bl . 520 g G2\ o LA -
d w2 Whatis ! |
o - o
| :

sesunand -

Intuition Behind Simulation (/; U [,)

e Suppose given call-graph is produced from |callH+T" and infer what T" is

3 id | 3 id
(B (@)
— 7 -
main | I3 [id| _3> id main | |3 [idl _3> id
e s
\a \a
14 foo 5_’6> i 14 foo 5_’6’ id
[D3] [14]
| objH+T (T = @) | callH+T’ (T’ = {3,5,6))

58

Intuition Behind Simulation 1 U1

Exactly the same analyses

| - |d| |C|
EE | B
main |3 id | _» id — main |3 id | _» id
LEHE = ELEPE
14 foo 5_’6> i 14 foo 5_’6’ id
[D3] [D3] [14] [14]
| objH+T (T = Q) | callH+T’ (T = {3,5,6))

59

Intuition Behind Simulation (/; U [,)

. ~
main | | 3 id | id
[*] [D2] [D2]
foo

| objH+T (T = Q) | callH+T’ (T’ = {3,5,6})

\' Necessity of /; |

60

Intuition Behind Simulation (/;)

e /[; :Tunneling should be avoided for improving precision

main |3 id | id
[*] [D2] [D2]
foo 5 6 'd
D3 D3

* /;:given object sensitivity produced only one context

lobjH+T (T = &) I, = {5,6,12,13,14}

o1

Intuition Behind Simulation

 The inferred tunneling abstraction T’ is a singleton set {3}

B |
I,={3,5,6)
[*] [D2] (I, U I\ = {3)
(T’ — ¥, — '
ES 6“ L=y | T AT

| objH+T (T = &) I, = {5,6,12,13,14}

62

Technique |: Simulation

e With T’, CFA becomes more precise than the given object sensitivity

.} Simulation .}

03

| objH+T (T = @)

dI id

o [F)(E

main I3 id | id
[*] [13] [13]
Bhe

[5]

\

| callH+T (T = {3})

Our Technique : Obj2CFA

e Obj2CFA consists of simulation and simulation-guided

700

_______}Find an expensive but more precise CFA

600

500

400

300

200

100

O | | | | | |
5600 580 600 620 64 640 660 680 700

Our Technique : Obj2CFA

e Obj2CFA consists of simulation and simulation-guided

xalan

700

600

| callH+S

| Limitation
| Simulation is expensive!]

200

100

B | callH+SL

O | | | |
5600 580 600 620 65 640 660 680 700

Our Technique : Obj2CFA

e ObJ2CFA consists of simulation and simulation-guided

xalan

700

600

| callH+S

500

400

300

200

{ Scalability upper bound|

B | callH+SL

O | | | |
560 580 600 620 66 640 660 680 700

Our Technique : Obj2CFA

e Obj2CFA consists of simulation and simulation-guided

xalan

700

| callH+S
600} .

500

] Goal of learning:
"} Remove the overhead of simulation

400}
300
200

100

B | callH+SL

O | | | |
5600 580 600 620 67 640 660 680 700

R > 0tz s Y ‘;/l e - T8 sma TR T e el o " e wey S o A ‘ S ‘:, = 3 g e a7 g e BT b= o ES0d3 I s el e ' = g __ M Bin b RS- _ o d v ¢ M~ - e
- <= \ - - _ el B\ ~ - - _ e Ny S | =~ L . - Z _ n ey < L=~ Bk . . DS < =~ AN . - o _ o =~ o) . . s < =~ S -

3 M et A e i B DS TN 2033 i e g 9 TR s edl Nl L g B
X LD Dy -
- = - - 2= S o N A 5=
i

Given training programs and simulated tunneling abstractions,
learning aims to find a model that produces similar tunneling
abstractions without running the given object sensitivity

- 4 TS - = - . 4 AT = = - Of ~ o = . il = = . < N S O i =2\ N/ A 3 = = ~
- NN P~ B ey S ui L. S B S O N TP s B D P D D S R N T3) S S Ry 2 I L 3 bonsS
|
’J \
‘
600 ' :
W
\ [l
g
|
»
B v
() '
o Sk S erD Tl) S e Ao A NS)08 aa o SRR E, 29 .
7 - ~ a -
o i
o
4

500

] Goal of learning: |
™} Remove the overhead of simulation

400}
300
200

100

B | callH+SL

O | | | |
560 580 600 620 68 640 660 680 700

OOiir Techniaiie - OO CEA

{ The learned model will produce tunneling abstractions without |
running object sensitivity

Details in paper

O | | | | | |
5600 580 600 620 640 660 680 700

Evaluation

Setting

* Doop

* Pointer analysis framework for |ava

71

* Doo

[5

o«

[}

'

p

4 \

v

| Negative res

Setting

SR EE

ults on CFA have been repeatedly reported on Doop

Strictly Declarative Specification of Sophisticated Points-tg

Martin Bravenboer

Department of Computer Science
University of Massachusetts, Amherst
Amberst, MA 01003, USA

martin.bravenboer@acm.org

Abstract

‘We present the Doop framework for points-to analysis of
Java programs. Doop builds on the idea of specifying pointer
analysis algorithms declaratively, using Datalog: a logic-
based language for defining (recursive) relations. We carry
the declarative approach further than past work by describ-
ing the full end-to-end analysis in Datalog and optimizing
aggressively using a novel technique specifically targeting
highly recursive Datalog programs.

As a result, Doop achieves several benefits, including full
order-of-magnitude improvements in runtime. We compare
Door with Lhotak and Hendren’s PappLe, which defines the
state of the art for context-sensitive analyses. For the exact
same logical points-to definitions (and, consequently, identi-
cal precision) Doop is more than 15x faster than PappLE for
a l-call-site sensitive analysis of the DaCapo benchmarks,
with lower but still substantial speedups for other important
analyses. Additionally, Doop scales to very precise analyses
that are impossible with PAbpLE and Whaley et al.’s bddbddb,
directly addressing open problems in past literature. Finally,

Yannis Smaragdakis

yannis@cs.umass.edu

analyses. It is, thus, not surprising that a
has been devoted to efficient and precis
techni . Context- itive analyses are
class of precise points-to analyses. Contex|
approaches qualify the analysis facts with|
tion, which captures a static notion of th
of a method. Typical contexts include abst
call-sites (for a call-site sensitive analys]
meaning of “context-sensitive”) or receiy
object-sensitive analysis).

In this work we present Doop: a gen
points-to analysis framework that makes
precise context-sensitive analyses reporte|
Doop implements a range of algorithms,
insensitive, call-site sensitive, and object-:
all specified modularly as variations onac
Compared to the prior state of the art, Ds
of an order-of-magnitude for

analyses.
The main elements of our approach are
alog 1 ge for specifying the program

our implementation is modular and can be easily configured
to analyses with a wide range of characteristics, largely due
to its declarativeness.

Categories and Subject Descriptors F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming
Languages—Program Analysis; D.1.6 [Programming
Techniques): Logic Prc i

General Terms Algorithms, Languages, Performance

1. Introduction

Points-to (or pointer) analysis intends to answer the question
“what objects can a program variable point to?” This ques-
tion forms the basis for practically all higher-level program

Permission to make digital or hard copics of all or part of this work for personal or
classroom usc is granted without fee provided that copics are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA.

Copyright © 2009 ACM 978-1-60558-734-9/09/10. . .$5.00

aggressive optimization of the Datalog pr,
Datalog for program analysis (both low-le
high-level [6,9]) is far from new. Our novq
proach, however, accounts for several orde]
performance improvement: unoptimized

run over 1000 times more slowly. Gener}
tions fit well the approach of handling p
database, by specifically targeting the ind]
the incremental evaluation of Datalog impl
thermore, our approach is entirely Datalo
declaratively the logic required both for ¢

tion as well as for handling the full sen
of the Java language (e.g., static initializ]
reference objects, threads, exceptions, reff
makes our pointer analysis specifi
but also efficient and easy to tune. Gener:
strong data point in support of declarative
gue that prohibitively much human effort

plementing and optimizing complex mutu
initions at an operational level of abstrac

|
Pick Your Contexts Well: Understanding d

The Making of a Precise and Scalable Pointer

Yannis Smaragdakis

Department of Computer Science,
University of Massachusetts,
Amberst, MA 01003, USA
and Department of Informatics,
University of Athens, 15784, Greece
yannis@cs.umass.edu—smaragd@di.uoa.gr

Abstract

Object-sensitivity has emerged as an excellent context abstraction
for points-to analysis in object-oriented languages. Despite its prac-
tical success, however, object-sensitivity is poorly understood. For
instance, for a context depth of 2 or higher, past scalable imple-
mentations deviate significantly from the original definition of an
object-sensitive analysis. The reason is that the analysis has many
degrees of freedom, relating to which context elements are picked
at every method call and object creation. We offer a clean model
for the analysis design space, and discuss a formal and informal un-
derstanding of object-sensitivity and of how to create good object-
sensitive analyses. The results are surprising in their extent. We
find that past implementations have made a sub-optimal choice of
contexts, to the severe detriment of precision and performance. We
define a “full-object-sensitive” analysis that results in significantly
higher precision, and often performance, for the exact same con-
text depth. We also introduce “type-sensitivity” as an explicit ap-
proximation of object-sensitivity that preserves high context qual-
ity at substantially reduced cost. A type-sensitive points-to analysis
makes an unconventional use of types as context: the context types
are not dynamic types of objects involved in the analysis, but in-
stead upper bounds on the dynamic types of their allocator objects.
Our results expose the influence of context choice on the quality
of points-to analysis and demonstrate type-sensitivity to be an idea
with major impact: It decisively ad the state-of-the-art with
a spectrum of analyses that simultaneously enjoy speed (several
times faster than an analog bject itive analysis), scalabil
ity (comparable to analyses with much less context-sensitivity), and
precision (comparable to the best object-sensitive analysis with the
same context depth).

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs): Semantics of Programming Languages—Program
Analysis

: 'D.3.1 [Programming L
Theory—Semantics

]: Formal Definiti and

General Terms Algorithms, Languages, Performance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies arc not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’11, January 26-28, 2011, Austin, Texas, USA.

Copyright © 2011 ACM 978-1-4503-0490-0/11/01. .. $10.00

Martin Bravenboer

LogicBlox Inc.
Two Midtown Plaza
Atlanta, GA 30309, USA

martin.bravenboer@acm.org

1. Introduction

Points-to analysis (or poin|
most fundamental static p:
sists of computing a static
expression (or just a varial
to during program run-timg
cally every other program
mechanisms such as call-
pointer determine the targ
object-oriented dynamicall
lambda applications. By
analysis is to pick judici

Hybrid Context-Sensitivity for Points-To Al

George Kastrinis

Department of Informatics
University of Athens
{gkastrinis,smaragd }@di.uoa.gr

Abstract

Context-sensitive points-to analysis is valuable for achieving high
precision with good performance. The standard flavors of context-
sensitivity are call-site-sensitivity (kCFA) and object-sensitivity.
Combining both flavors of context-sensitivity increases precision
but at an infeasibly high cost. We show that a selective combi-
nation of call-site- and object itivity for Java points-to anal-
ysis is highly profitable. Namely, by keeping a combined context
only when analyzing selected language features, we can closely
approximate the precision of an analysis that keeps both contexts
at all times. In terms of speed, the selective combination of both
kinds of context not only vastly outperforms non-selective combi-
nations but is also faster than a mere object-sensitive analysis. This
result holds for a large array of analyses (e.g., 1-object-sensitive,
2-object-sensitive with a context itive heap, typ itive) es-
tablishing a new set of performance/precision sweet spots.

hind any attempt to track
Furthermore, the global cf
analysis make it hard to dg
interact with various lang
functional languages, con
achieves tractable and use}
consists of qualifying local
object abstractions, with c
information (e.g., “what
to”) over all possible exe
while separating all infory]
kinds of context-sensitivity
[18, 19] and object- itif
Ever since the introduc]
al. [13], there has been acq
it is a superior context at§
yielding high precision 1|
sensitivity has been such
analyses have almost corf
sensitive/kCFA analyses f§
is concerned with unders
izing it iently, af

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs): Semantics of Programming Languages—Program
Analysis; D.3.4 [Prog i L]: P

Compilers

General Terms Algorithms, Languages, Performance

Keywords points-to analysis;
sensitivity; type-sensitivity

context-sensitivity; object-

1. Introduction

Points-to analysis is a static program analysis that consists of com-
puting all objects (typically identified by allocation site) that a pro-
gram variable may point to. The area of points-to analysis (and
its close relative, alias analysis) has been the focus of intense re-
search and is among the most dardized and well-understood of
inter-procedural analyses. The emphasis of points-to analysis algo-
rithms is on bining fairly precise modeling of pointer behavior
with scalability. The challenge is to pick judicious approximations
that will allow satisf: y precision at a ble cost. Further-
more, although increasing precision often leads to higher asymp-
totic lexity, this worst-case behavior is rarely encountered in

even more scalable and pry
What is object-sensiti:
est way to describe the ¢
better-known call-site sen:
sis uses method call-sites
the method) as context elef
separates information on
per call-stack (i.e., sequen]
that led to the current metHj
information on heap objex
that led to the object’s allof
below, a 1-call-site sensiti

2009
(OOPSLA)

201 |
(POPL)

actual practice. Instead, techniques that are effective at maintaining
good precision often also exhibit better average-case performance,
since smaller points-to sets lead to less work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI'13, June 16-19, 2013, Scattle, WA, USA.

Copyright © 2013 ACM 978-1-4503-2014-6/13/06... $15.00

Yannis Smaragdakis

One of the major tools for expl
cision/performance tradeoff has bee:
sensitivity consists of qualifying lod
context information: the analysis uni
same context value, while separatingl|
ent contexts. This approach tries to cof
naturally results in any static analysi|
from different dynamic program path
sensitivity have been explored in the
(22, 23] and object-sensitivity [18, 19

A call-site-sensitive/kCFA analy§
labels of instructions that may call thq
That is, the analysis separates inforn]
method arguments) per call-stack (i.
method invocations that led to the ¢
the analysis separates information on}
method invocations that led to the ob)
in the code example below, a 1-call
a context-insensitive analysis) will djf
method foo on lines 7 and 9. This mg
foo separately for two cases: that of i
to anything obj1 may point to, and
obj2 may point to.

class C {
void foo(Object o) { ... }
}

class Client {
void bar(C ¢1, C c2) { ...
cl.foo(obj1);

c2.00(obj2) ;
}

In contrast, object-sensitivity uses ob
of instructions containing a new st
(Hence, a better name for “object-
“allocation-site sensitivity”.) That is|
an object, the analysis separates thd
the allocation site of the receiver ob,
the method is called), as well as d
context. Thus, in the above example|
will analyze foo separately dependin
objects that c1 and c2 may point to. It
fragment neither whether c1 and ¢2

nor to how many objects: the alloca
may be remote and unrelated to the|
it is not possible to compare the pr
and a call-site-sensitive analysis in p
not even clear whether the object sq
all calls to foo as one case, as two,

Introspective Analysis: Context-Sensitivity, Across th

Yannis Smaragdakis

Department of Informatics
University of Athens
{smaragd, gkastrinis,gbalats } @di.uoa.gr

Abstract

Context-sensitivity is the primary approach for adding more preci-
sion to a points-to analysis, while hopefully also maintaining scal-

George Kastrinis

George Balatsouras

of points-to analysis is to yield usefully preci|

sacrificing scalability: the analysis inputs ar

algorithms are typically quadratic or cubi
ar-1i

ability. An oft-reported problem with context-sensitive analyses,
however, is that they are bi-modal: either the analysis is precise
enough that it manipulates only manageable sets of data, and thus
scales impressively well, or the analysis gets quickly derailed at the
first sign of imprecision and b s orders-of- itude more
expensive than would be expected given the program’s size. There
is currently no approach that makes precise context-sensitive analy-
ses (of any flavor: call-site-, object-, or type-sensitive) scale across
the board at a level comparable to that of a context-insensitive anal-
ysis. To address this issue, we propose introspective analysis: a
technique for uniformly scaling context-sensitive analysis by elim-
inating its performance-detrimental behavior, at a small precision

p I ive analysis sists of a adaptivity
pattern: first perform a context-insensitive analysis, then use the
results to selectively refine (i.e., analyze context-sensitively) pro-
gram elements that will not cause explosion in the running time
or space. The technical challenge is to appropriately identify such
program elements. We show that a simple but principled approach
can be remarkably effective, achieving scalability (often with dra-
matic speedup) for benchmarks previously pletely out-of- h
for deep context-sensitive analyses.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs): S ics of Progr ing [Program
Analysis; D.3.4 [Programming Languages]: Processors—
Compilers

General Terms Algorithms, Languages, Performance

Keywords points-to analysis;
sensitivity; type-sensitivity

context-sensitivity; object-

1. Introduction

Points-to analysis is probably the most common whole-program
static analysis, and often serves as a substrate for a variety of high-
level program analysis tasks. Points-to analysis computes the set of
objects (abstracted as their allocation sites) that a program variable
may point to during runtime. The promise, as well as the challenge,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request issions from org.

PLDI'I4, June 9-11,2014, Edinburgh, United Kingdom..

Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2784-8/14/06. .. $15.00.
http://dx.doi.org/10.1145/2594291.2594320

behavior in practice, by exploiti
and maintaining precision. Indeed precision
go hand-in-hand in a good points-to anal|
algorithms are often found to be both mq
because smaller points-to sets lead to less wi

Context-sensitivity is a common way of
scalability in points-to analysis. It consists 0|
ables and objects with context information:
formation (e.g., “what objects this method af
over all possible executions that map to th|
while separating executions that map to dif}
way, context-sensitivity attempts to avoid pre}
ing the behavior of different dynamic prq
sensitivity comes in many flavors, depending]
information, such as call-site-sensitivity [22.
[19, 20], and type-sensitivity [24].

An oft-remarked fact about context-sens:
even the best algorithms have a common fa}
cannot maintain precision. Past literature re]
mance of a [...] deep-context analysis is bir]
sensitive analyses have been associated with|
contexts” [15]; “algorithms completely hit
ations, with the number of tuples explodin
Recent published results [12] fail to run a 2-|
sis in under 90mins for 2 of 10 DaCapo ben
benchmarks take more than 1,000sec, altho
marks of similar or larger size get analyzed

Thus, when context-sensitivity works, i
terms of both precision and performance. W
it fails miserably, quickly exploding in cqf
context-insensitive analyses uniformly scale
puts. Figure 1 vividly demonstrates this phe
Capo benchmarks, analyzed with the Doop
context-insensitive (insens) analysis and a 2§
ysis with a context-sensitive heap (20bjH). (
analysis time of the longest-running benchj
hsgldb and jython, timed out after 90mins
and would not terminate even for much lon
be seen, context-insensitive analyses vary
formance, while context-sensitivity often car
memory use) to explode.

Faced with this unpredictability of cont
mon reaction is to avoid it, favoring con
ses, and, ly, missing signifi
well-behaved programs. Even worse, for
chewing expensive context-sensitivity is not|
insensitive analysis is just not good enough
try [4] and academic researchers [3] alike

Making k-Object-Sensitive Pointer Analys|
More Precise with Still k-Limiting

Tian Tan!, Yue Li!, and Jingling Xue!2

! School of Computer Science and Engineering, UNSW Australia
2 Advanced Innovation Center for Imaging Technology, CNU, China

Abstract. Object-sensitivity is regarded as arguably the best context]
abstraction for pointer analysis in object-oriented languages. However, a
k-object-sensitive pointer analysis, which uses a sequence of k allocation]
sites (as k context elements) to represent a calling context of a method|
call, may end up using some context elements redundantly without in-|
ducing a finer partition of the space of (concrete) calling contexts for thel
method call. In this paper, we introduce BEAN, a general approach for
improving the precision of any k-object-sensitive analysis, denoted k-obj,
by still using a k-limiting context abstraction. The novelty is to identify]
allocation sites that are redundant context elements in k-obj from an|
Object Allocation Graph (OAG), which is built based on a pre-analysis|
(e.g., a context-insensitive Andersen’s analysis) performed initially on al
program and then avoid them in the subsequent k-object-sensitive anal
ysis for the program. BEAN is generally more precise than k-obj, with
precision that is guaranteed to be as good as k-obj in the worst case. We
have implemented BEAN as an open-source tool and applied it to refine
two state-of-the-art whole-program pointer analyses in Doop. For two
representative clients (may-alias and may-fail-cast) evaluated on a set of
nine large Java programs from the DaCapo benchmark suite, BEAN hag
succeeded in making both analyses more precise for all these benchmarks
under each client at only small increases in analysis cost.

1 Introduction

Pointer analysis, as an enabling technology, plays a key role in a wide rg
client applications, including bug detection [3, 25, 35, 34], security analysis
compiler optimisation [6,33], and program understanding [12]. Two ma|
mensions of pointer analysis precision are flow-sensitivity and context-sens]
For C/C++ programs, flow-sensitivity is needed by many clients [11, 16,
For object-oriented programs, e.g., Java programs, however, context-sens
is known to deliver trackable and useful precision [17,19-21,28-30], in g
There are two general approaches to achieving context-sensitivity for
oriented programs, call-site-sensitivity (k-CFA) [27] and object-sensitivi
24, 29] (among others). A k-CFA analysis represents a calling context of a
call by using a sequence of k call sites (i.e., k labels with each denoting
site). In contrast, a k-object-sensitive analysis uses k object allocation sitd
k labels with each denoting a new statement) as context elements.

2013
(PLDI)

2014

72

P PO) — “ PTG ooy

-

(PLDI)

2016
(SAS)

Data-Driven Context-Sensitivity for Points-to Analysis

SEHUN JEONG, Korea University, Republic of Korea
MINSEOK JEON®, Korea University, Republic of Korea
SUNGDEOK CHA, Korea University, Republic of Korea
HAKJOO OHT, Korea University, Republic of Korea

We present a new data-driven approach to achieve highly cost-effective context-sensitive points-to analysis
for Java. While context-sensitivity has greater impact on the analysis precision and performance than any
other precision-improving techniques, it is difficult to accurately identify the methods that would benefit the
most from context-sensitivity and decide how much context-sensitivity should be used for them. Manually
designing such rules is a nontrivial and laborious task that often delivers suboptimal results in practice. To
overcome these challenges, we propose an automated and data-driven approach that learns to effectively apply
context-sensitivity from codebases. In our approach, points-to analysis is equipped with a parameterized and
heuristic rules, in disjunctive form of properties on program elements, that decide when and how much to apply
context-sensitivity. We present a greedy algorithm that efficiently learns the parameter of the heuristic rules.
We implemented our approach in the Doop framework and evaluated using three types of context-sensitive
analyses: conventional object-sensitivity, selective hybrid object-sensitivity, and type-sensitivity. In all cases,
experimental results show that our approach significantly outperforms existing techniques.

CCS Concepts: » Theory of computation — Program analysis; - Computing methodologies — Ma-
chine learning approaches;

Additional Key Words and Phrases: Data-driven program analysis, Points-to analysis, Context-sensitivity

ACM Reference Format:

Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh. 2017. Data-Driven Context-Sensitivity for Points-to
Analysis. Proc. ACM Program. Lang. 1, OOPSLA, Article 100 (October 2017), 27 pages.
https://doi.org/10.1145/3133924

1 INTRODUCTION

Points-to analysis is one of the most important static program analyses. It approximates various
memory locations that a pointer variable may point to at runtime. While useful as a stand-alone tool
for many program verification tasks (e.g., detecting null-pointer dereferences), it is a key ingredient
of subsequent higher-level program analyses such as static bug-finders, security auditing tools, and
program understanding tools.

For object-oriented languages, context-sensitive points-to analysis is important as it must distin-
guish method’s local variables and objects in different calling-contexts. For languages like Java,

*The first and second authors contributed equally to this work
fCorresponding author

1 i 1
D =) D

Authors’ email addresses: S. Jeong, gifarang ackr; S. Cha, scha@k ackr;
H. Oh, hakjoo_oh@korea.ac.kr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissi org.

© 2017 Association for Computing Machinery.

ac.kr; M. Jeon,

2475-1421/2017/10-ART100
https://doi.org/10.1145/3133924

Setting

e Research Question: which one is better?

Call-site sensitivity vs Object sensitivity

Context tunneling is included

Call-site Sensitivity vs Object Sensitivity

e |callH+SL (ours) is more precise and scalable than the existing object sensitivities

700

_Scalable ==

_ a na|)’ Sis ‘timeh(s)

o
o

100

600

500

o
o
|

o
o
|

| callH+SL
- (ours)

pmd

3obj2H
_

O |
700 7120

760 780
Halarms

Precise

_Scalable ==

analysis time (s)

4

8000

7000

6000}

ol
o
o
o

N
o
(@)
o

- | callH+SL
(ours)

| : timeout (> 10,800);

30bjH : timeout (> 10,800);

jython

20bjH : timeout (> 10,800)]

| callH
“

800 900

1000

1100 1200 1300 1400
Halarms

" Precise

Call-site Sensitivity vs Object Sensitivity

e |callH+SL (ours) isfmore precise]

_pmd

than the existing object sensitivities

700

. 3obj2H
_ I

500

S time
N
o
o

w
o
o

_Scalable
ysi

anal
N
o
=

| callH+SL
100, _(oUrs) | objH+T
[B

O | | | | | | |
700 7120 740 760 780 800 820 840 860
Halarms

Precise 75

Call-site Sensitivity vs Object Sensitivity
* IcallH+SL (ours) isfmore precise]

_pmd

than the existing object sensitivities

700

o 3obj2H
| _

500 o S a -

State of-the-art |-object ;
sen5|t|V|ty with tunnellng

O 4
O~_

_.Scalable

analysis time | s)

| callH+SL V
100k (OUI"S) ' ' |

0 l ' o — 1
700 720 740 760 780 800 820 840 ° 260
#alarms

Prease 76

Call-site Sensitivity vs Object Sensitivity

e |callH+SL (ours) isfmore precise]

700

_.Scalable

_pmd

{ 600}

| callH+SL
- (ours)

s v y S '\V - D
TSNSy .
.]

3obj2H

than the existing object sensitivities

- B e L5 =o - ~ - y ~ ~ - ! - ~ - ~ ~ ~ ~ ~ ~ ! y
Y

Obj2CFA _ obit+!

20bjH -

O |
700 7120

740

760 780

800

820

840 °

860

Halarms

Precise

’r’

; Transformed |-CFA with tunneling via Obj2CFA from |objH+T '

Call-site Sensitivity vs Object Sensitivity

e |callH+SL (ours) isimor

S time

Scalable

anal

(s)

ysi

Ao~ -

Ao

N

o

o
|

W

o

o
|

N

o

o
|

| callH+SL
100k (OU rS)

Ll

30bj2H

]

> 4

| objH+T

-

/

-

recise

iy

20bjH

720

740

760 78

Halarms

Precise

800

820

840

than the existing object sensitivities

Precision upper bound o
recent researches on object sensitivity

Making Pointer Analysis More Precise by Unleashing the
Power of Selective Context Sensitivity

TIAN TAN, Nanjing University, China

YUE LI*, Nanjing University, China

XIAOXING MA, Nanjing University, China

CHANG XU, Nanjing University, China

YANNIS SMARAGDAKIS, University of Athens, Greece

Traditional context-sensitive pointer analysis is hard to scale for large and complex Java programs. To address
this issue, a series of selective context-sensitivity approaches have been proposed and exhibit promising results.
In this work, we move one step further towards producing highly-precise pointer analyses for hard-to-analyze
Java programs by presenting the Unity-Relay framework, which takes selective context sensitivity to the next
level. Briefly, Unity-Relay is a one-two punch: given a set of different selective context-sensitivity approaches,
say $ = S1,...,5n, Unity-Relay first provides a mechanism (called Unity) to combine and maximize the
precision of all components of S. When Unity fails to scale, Unity-Relay offers a scheme (called Relay) to
pass and accumulate the precision from one approach S; in S to the next, S;+1, leading to an analysis that is
more precise than all approaches in S.

As a proof-of-concept, we instantiate Unity-Relay into a tool called BATON and extensively evaluate it on
a set of hard-to-analyze Java programs, using general precision metrics and popular clients. Compared with
the state of the art, BATON achieves the best precision for all metrics and clients for all evaluated programs.
The difference in precision is often dramatic—up to 71% of alias pairs reported by previously-best algorithms
are found to be spurious and eliminated.

CCS Concepts: « Theory of computation — Program analysis.
Additional Key Words and Phrases: Pointer Analysis, Alias Analysis, Context Sensitivity, Java

ACM Reference Format:

Tian Tan, Yue Li, Xiaoxing Ma, Chang Xu, and Yannis Smaragdakis. 2021. Making Pointer Analysis More
Precise by Unleashing the Power of Selective Context Sensitivity. Proc. ACM Program. Lang. 5, OOPSLA,
Article 147 (October 2021), 27 pages. https://doi.org/10.1145/3485524

1 INTRODUCTION

Pointer analysis is important for an array of real-world applications such as bug detection [Chandra
et al. 2009; Naik et al. 2006], security analysis [Arzt et al. 2014; Livshits and Lam 2005], program
verification [Fink et al. 2008; Pradel et al. 2012] and program understanding [Li et al. 2016; Sridharan

*Corresponding author

Authors’ addresses: Tian Tan, State Key Laboratory for Novel Software Tect , Nanjing University, China, ti
nju.edu.cn; Yue Li, State Key Lab y for Novel Soft Technology, Nanjing University, China, yueli@nju.edu.cn;
Xiaoxing Ma, State Key Laboratory for Novel Software Technology, Nanjing University, China, xxm@nju.edu.cn; Chang Xu,
State Key Laboratory for Novel Software Technology, Nanjing University, China, ct ju.edu.cn; Yannis S: daki
Department of Informatics and Telecommunications, University of Athens, Greece, yannis@smaragd.org.

OOPLSA 2021

Precision-Preserving Yet Fast Object-Sensitive Pointer
Analysis with Partial Context Sensitivity

JINGBO LU, UNSW Sydney, Australia
JINGLING XUE, UNSW Sydney, Australia

Object-sensitivity is widely used as a context abstraction for computing the points-to information context-
sensitively for object-oriented languages like Java. Due to the combinatorial explosion of contexts in large
programs, k-object-sensitive pointer analysis (under k-limiting), denoted k-obj, is scalable only for small
values of k, where k < 2 typically. A few recent solutions attempt to improve its efficiency by instructing
k-obj to analyze only some methods in the program context-sensitively, determined heuristically by a pre-
analysis. While already effective, these heuristics-based pre-analyses do not provide precision guarantees, and
consequently, are limited in the efficiency gains achieved. We introduce a radically different approach, EAGLE,
that makes k-obj run significantly faster than the prior art while maintaining its precision. The novelty of

EAGLE is to enable k-obj to analyze a method with partial context- itivity, i.e., context: ly for only
some of its selected variables/allocation sites. EAGLE makes these selections during a lightweight pre-analysis
by ing about context-free-1 (CFL) hability at the level of variables/objects in the program,

based on a new CFL-reachability formulation of k-obj. We demonstrate the advances made by EAGLE by
comparing it with the prior art in terms of a set of popular Java benchmarks and applications.

— Program analysi

CCS Concepts: « Theory of
Additional Key Words and Phrases: Pointer Analysis, Object Sensitivity, CFL Reachability

ACM Reference Format:

Jingbo Lu and Jingling Xue. 2019. Precision-Preserving Yet Fast Object-Sensitive Pointer Analysis with

Partial Context Sensitivity. Proc. ACM Program. Lang. 3, OOPSLA, Article 148 (October 2019), 29 pages.
https://doi.org/10.1145/3360574

1 INTRODUCTION

For object-oriented languages such as Java, context-sensitivity is known to provide highly useful
precision for pointer analysis [Lhotak and Hendren 2008; Smaragdakis et al. 2011]. A context-
insensitive pointer analysis, such as Andersen’s analysis [Andersen 1994], analyzes a method only
once, producing one points-to set for every variable and one abstract object for modeling every
allocation site in the method. In contrast, its context-sensitive counterpart analyzes a method

Itiple times under diff calling that abstract its different run-time invocations,
thereby producing multiple points-to sets for every variable (with one per context) and multiple
abstract objects for modeling every allocation site (with one per context) in the method.

To tame the combi ial expl of calling , a context is usually represented by a
sequence of k context elements, under k-limiting. There are two representative abstractions for
object-oriented programs: (1) k-callsite-sensitivity [Shivers 1991], which distinguishes the contexts
of a method by its k-most-recent callsites, and (2) k-object-sensitivity [Milanova et al. 2005], which

Authors’ addresses: Jingbo Lu, UNSW Sydney, Australia, jlu@cse.unsw.edu.au; Jingling Xue, UNSW Sydney, Australia,
jingling@cse.unsw.edu.au.

©

This work is licensed under a Creative Commons Attribution-N
© 2019 Copyright held by the owner/author(s).
2475-1421/2019/10-ART148

hnps //doi. org/10.1145/3360574

ial-ShareAlike 4.0 i License.

OOPLSA 2019

Call-site Sensitivity vs Object Sensitivity

e |callH+SL (ours) is more

(scalable}than the existing object sensitivities
| = jython
| Known as a troublesome benchmark | TobjH+T : timeout (> 10,800)

in terms of scalability | 20bjH : timeout (> 10,800)
e 3objH : timeout (> 10,800)]

ol
o
o
o

4000r | cal[H+SL
(ours)

analysis time (s)

. Scalable

| callH
1000} . s

800 900 1000 1100 1200 1300 1400
Halarms

70 ~ Precise

Call-site Sensitivity vs Object Sensitivity

e |callH+SL (ours) is more

(scalable]than the existing object sensitivities
jython

| 20bjH : timeout (> 10,800))
3objH : timeout (> 10,800)]

8000

7000

6000}

10
i Y 5000}

a9t | callH+SL

| lcallH+SL successfully analyzed jython |, (.ours)

. fas o oo - Lo o o > s A P A O e S R TP B A O T S AP A UM ST

o 2000} |
' | callH
1000} . |

O [| | | | |]
800 900 1000 1100 1200 1300 1400

Halarms
80 Precise

Call-site Sensitivity vs Object Sensitivity

. IcaIIH+SL (ours) is more

o NeceSS|ty of Iearnlng

* |callH+S is unable to analyze jython

Scala_ble

' 100}

700

600}

500

400

300f

200}

| callH+S
i

B aH+SL

|objH+T

620 640

660

680

700

S S—

N X
0
A R - .. . N " . - o . N - o ~ - &
o e ¥ - = ~ - . P - = ~ = p = - B
a N TR
\ & -4
s 4
1
o)
3
N
2 i g gt 0 i - e i 0 i g 4 ar T g i 2 g * - arm i g Sl o =~
- a A Pl B i & e o A Y S Ny - 3 R e P APPSR S PR

,: 0

(scalable]than the existing object sensitivities

jython

ol

RS - > ~ e
o

,,0_

a Of

hol
bol

..}' ol

hg} | callH+SL

(ours)

20ij . timeout (> 10 800)
| 3objH : timeout (> 10,800);

| callH
“

! 800

900

1000 1100 1200 1300 1400
#alarms

" Precise

Summary

 Currently, CFA is known as a bad context

* However, if context tunneling is included,
CFA is not a bad context anymore

e VWe need to reconsider CFA from now on

Thank you

82

ummary

N

9 »,
d 2 . " . 2 2

HE

3)

» i ;

1 ... call-site-sensitivity is less important than others ...” ||
: 1 - Jeon et al. [2019]} g

b
)
. 1 g
| v 4
¥ Making &-Object-Semuitive Pointer Anal Pick Your Contexts Well: Usnderstanding Object-Seasiti] . . 1 " : Context-Seasitl Board 3
X More Precise with Stll b Limiting B) . Hybrid Comtext-Semitivity for Points-To Adf P Asalysis: C Across the ; R
] mg of 3 Procse et Scalatie Pomser Asalyws
i p— Vams Venataghad . Cwnge Sarvme | ey Pebare U
A Machine Learning Algorithe with Disjunctive W - T’ Ve 1t B Scalability-First Peinter Ang - - — i
9 Data Driven Program Analysis - R p——— Self-Tuning Context-Sent : - —— — Precision-Guided Context Sensitivity for Pointd ¢
" A b G 0 g g - :
MIASEOR RON. SUMUN JEONG SUNCDEON O s MAK OO On ¥
B A 4
b) g
{ 3 13
N
w
g f d
.
g L f
))
1 Iracecmon :
3 ‘
D', \
o &
I 4 K
14l 2911, which allewn sach peogram mwthed 1 b anstyasd of
| ¢ v sboiractions of deberens dyram of the d
{ e e e | 13
| o
. I
; 4 :
- g = = g = o

. Com oo o oo ——
» - .= _ A ol e - _ — c
- it R A '---'~',-"'—.' SECAN >4 A FEe®
U
= 8
- A
. g
' b
..
d
K
N
\

]
-
))

s Lok

Scalable

o o=~ L T

e (©)

s tim
w
.

700

600}

500f

analysi

N
(=]
o

100

. % . Sa> Llem € <3

ce 9

eve

) B g
> L .- O 4%

Ed

I

T e

<.~ T &

if co

Summary

cw 9

5'.

ntext tunneling |
CFA is not a bad context anymore §

| callH+SL
| (ours)

| objH+T

20bjH -

760

780

of alarms

800

820

840

860

Precise

7

Scalable

T T S

.....

d e T o - . - . &
<« o

S P

jython
8000
lobjH+T : timeout (> 10,800)

a000(| callH+SL

20bjH : timeout (> 10,800)
3objH : timeout (> 10,800)

(ours)

| callH
1

1000 1100 1200 1300 1400

of alarms

900

Precise

S R~ o
= o g
=R S &q

L@l srecy Dol s Omc o g to gho S i st ShR 9.
')
N) - ¢
1"3
" /
) .

R .
N

> <, .»’»’ X0 0 -. Vo & ST :-" abs

. - > .- =~ L B g

. Return of CFA: Call-Site Sensitivity Can Be Superior to I S S-S NI BN S ons it o bk b NS A e
Object Sensitivity Even for Object-Oriented Programs

MINSEOK JEON and HAKJOO OH?’, Korea University, Republic of Korea

In this paper, we challenge the commonly-accepted wisdom in static analysis that object sensitivity is superior
to call-site sensitivity for object-oriented programs. In static analysis of object-oriented programs, object
sensitivity has been established as the dominant flavor of context sensitivity thanks to its outstanding precision. #
On the other hand, call-site sensitivity has been regarded as unsuitable and its use in practice has been 1
Y constantly discouraged for object-oriented programs. In this paper, however, we claim that call-site sensitivity -
- is generally a superior context abstraction because it is practically possible to transform object sensitivity into

' more precise call-site sensitivity. Our key insight is that the previously known superiority of object sensitivity
holds only in the traditional k-limited setting, where the analysis is enforced to keep the most recent k context
elements. However, it no longer holds in a recently-proposed, more general setting with context tunneling.
With context tunneling, where the analysis is free to choose an arbitrary k-length subsequence of context
strings, we show that call-site sensitivity can simulate object sensitivity almost completely, but not vice versa.
To support the claim, we present a technique, called OBj2Cra, for transforming arbitrary context-tunneled
object sensitivity into more precise, context-tunneled call-site-sensitivity. We implemented Osj2CrA in Doop
and used it to derive a new call-site-sensitive analysis from a state-of-the-art object-sensitive pointer analysis.
Experimental results confirm that the resulting call-site sensitivity outperforms object sensitivity in precision
r '{ and scalability for real-world Java programs. Remarkably, our results show that even 1-call-site sensitivity can
be more precise than the conventional 3-object-sensitive analysis.

1 INTRODUCTION

“Since its introduction, object sensitivity has emerged as the dominant flavor of context
sensitivity for object-oriented languages.”

A —Smaragdakis and Balatsouras [2015]

b\ Context sensitivity is critically important for static program analysis of object-oriented programs.
A context-sensitive analysis associates local variables and heap objects with context information
of method calls, computing analysis results separately for different contexts. This way, context
sensitivity prevents analysis information from being merged along different call chains. For object-

k anocation-sie ol 1 cCeT oD} AT aothe cone ormooT NIGETT R -J ~"
{ sensitive analysis [Milanova et al. 2002, 2005; Smaragdakis et al. 2011] maintains a sequence of ’

{ T o P A T WIS e M A P o
'

Q. A 4

4 _ "_ aarkr ° TN - ¥ ook - 5 L - 3 5 e ; T 5 T - T 5 T -
. S - 4% B A o - ': "_) QQ = ‘-‘<_ = & A S _', w_—v - o ¥z an > D : 23 o I o T LD <A ‘ R .5 - WO > o~ 'o‘ “_-; - 2. I ' K7 - e TR , -‘, oW -t WA, E % - = 'A ';-
L
2
N
T O\ VT SISO, 5L 0' < So 3 08 '-’» s £ e (VA STEEO AR -' =~ ~o 8 L0 '-'» s £ Ve OISO, 5L ., J o 8 10N ’-' s £ Ve = P8 e Ty OB VL o & 108 "-' 0L T8 Us OISO - = 0- < =X~
- _ 2 : - i L=~ B s . - i |- B s . - i o=~ T . = . |- e s PP

hank you

85

