
PL4XGL: A Programming Language Approach to Explainable
Graph Learning

MINSEOK JEON, Korea University, Republic of Korea
JIHYEOK PARK, Korea University, Republic of Korea
HAKJOO OH, Korea University, Republic of Korea

In this article, we present a new, language-based approach to explainable graph learning. Though graph neural

networks (GNNs) have shown impressive performance in various graph learning tasks, they have severe

limitations in explainability, hindering their use in decision-critical applications. To address these limitations,

several GNN explanation techniques have been proposed using a post-hoc explanation approach providing

subgraphs as explanations for classification results. Unfortunately, however, they have two fundamental

drawbacks in terms of 1) additional explanation costs and 2) the correctness of the explanations. This paper

aims to address these problems by developing a new graph-learning method based on programming language

techniques. Our key idea is two-fold: 1) designing a graph description language (GDL) to explain the classifi-

cation results and 2) developing a new GDL-based interpretable classification model instead of GNN-based

models. Our graph-learning model, called PL4XGL, consists of a set of candidate GDL programs with labels

and quality scores. For a given graph component, it searches the best GDL program describing the component

and provides the corresponding label as the classification result and the program as the explanation. In our

approach, learning from data is formulated as a program-synthesis problem, and we present top-down and

bottom-up algorithms for synthesizing GDL programs from training data. Evaluation using widely-used

datasets demonstrates that PL4XGL produces high-quality explanations that outperform those produced by

the state-of-the-art GNN explanation technique, SubgraphX. We also show that PL4XGL achieves competitive

classification accuracy comparable to popular GNN models.

CCS Concepts: • Software and its engineering→ Domain specific languages.

Additional Key Words and Phrases: Graph Learning, Domain-Specific Language, Program Synthesis

ACM Reference Format:

Minseok Jeon, Jihyeok Park, andHakjoo Oh. 2024. PL4XGL: A Programming Language Approach to Explainable

Graph Learning. Proc. ACM Program. Lang. 8, PLDI, Article 234 (June 2024), 26 pages. https://doi.org/10.1145/

3656464

1 INTRODUCTION

Learning on graphs has a wide variety of applications. Many significant real-world problems in
diverse domains can be formulated as graph learning problems: healthcare [Zitnik et al. 2018], drug
discovery [Li et al. 2022; Liu et al. 2022; Sun et al. 2019; Xiong et al. 2021], fraud detection [Rao
et al. 2021], and program repair [Dinella et al. 2020]. In such decision-critical applications, users
highly demand reliable explanations that elucidate the reasons for the classifications beyond

Authors’ addresses: Minseok Jeon, Department of Computer Science and Engineering, Korea University, Republic of Korea,

minseok_jeon@korea.ac.kr; Jihyeok Park, Department of Computer Science and Engineering, Korea University, Republic

of Korea, jihyeok_park@korea.ac.kr; Hakjoo Oh, Department of Computer Science and Engineering, Korea University,

Republic of Korea, hakjoo_oh@korea.ac.kr.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART234

https://doi.org/10.1145/3656464

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3656464
https://doi.org/10.1145/3656464
https://doi.org/10.1145/3656464
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3656464&domain=pdf&date_stamp=2024-06-20

234:2 Minseok Jeon, Jihyeok Park, and Hakjoo Oh

GNN-based

Hardly Explainable

Classification Model

Post-Hoc

Explanation Model

Parameter

Optimization

Inference

Training Data

<latexit sha1_base64="VQuTFYFsB5DntgtLCg9qXtqIUTo=">AAACGnicbVC7TsMwFHV4lvIqMLJYVEhMVYJ4jRUsjEXqS2qjynHc1qrjRPYNUojyGWwI/oUNsbLwK0w4bQbaciRLR+fcl48XCa7Btr+tldW19Y3N0lZ5e2d3b79ycNjWYawoa9FQhKrrEc0El6wFHATrRoqRwBOs403ucr/zyJTmoWxCEjE3ICPJh5wSMFKvHxAYUyLSZjaoVO2aPQVeJk5BqqhAY1D56fshjQMmgQqidc+xI3BTooBTwbJyP9YsInRCRqxnqCQB0246PTnDp0bx8TBU5knAU/VvR0oCrZPAM5X5iXrRy8V/PQ0BUYnyF/bD8MZNuYxiYJLO1g9jgSHEeSrY54pREIkhhCpufoDpmChCwWQ3Nx/45Ckrm7CcxWiWSfu85lzVLh8uqvXbIrYSOkYn6Aw56BrV0T1qoBaiKETP6BW9WS/Wu/Vhfc5KV6yi5wjNwfr6BU7Iooo=</latexit>

T

Featured Graphs

(Inputs)

<latexit sha1_base64="QON7ppKOZVXcUAiMjg0TIGhdq6Y=">AAACGXicbVC7TsMwFHXKq5RXgZElokJiqhLEa6xggLFI9CHaqHIcp7XqOJF9gxSi/AUbgn9hQ6xM/AoTTpuBthzJ0tE59+XjRpwpsKxvo7S0vLK6Vl6vbGxube9Ud/faKowloS0S8lB2XawoZ4K2gAGn3UhSHLicdtzxde53HqlULBT3kETUCfBQMJ8RDFp66AcYRq6b3mSDas2qWxOYi8QuSA0VaA6qP30vJHFABRCOlerZVgROiiUwwmlW6ceKRpiM8ZD2NBU4oMpJJxdn5pFWPNMPpX4CzIn6tyPFgVJJ4OrK/EI17+Xiv56CAMtEenP7wb90UiaiGKgg0/V+zE0IzTwU02OSEuCJJphIpn9gkhGWmICObmY+sPFTVtFh2fPRLJL2Sd0+r5/dndYaV0VsZXSADtExstEFaqBb1EQtRJBAz+gVvRkvxrvxYXxOS0tG0bOPZmB8/QJbM6IH</latexit>

G
Labels

(Results)

<latexit sha1_base64="J97s52oJgXr3KGT+wnX5K31kyBc=">AAACGXicbVC7TsMwFHXKq5RXgZElokJiqhLEa6xgYWAoEn2INqocx2mtOk5k3yCFKH/BhuBf2BArE7/ChNNmoC1HsnR0zn35uBFnCizr2ygtLa+srpXXKxubW9s71d29tgpjSWiLhDyUXRcrypmgLWDAaTeSFAcupx13fJ37nUcqFQvFPSQRdQI8FMxnBIOWHvoBhpHrprfZoFqz6tYE5iKxC1JDBZqD6k/fC0kcUAGEY6V6thWBk2IJjHCaVfqxohEmYzykPU0FDqhy0snFmXmkFc/0Q6mfAHOi/u1IcaBUEri6Mr9QzXu5+K+nIMAykd7cfvAvnZSJKAYqyHS9H3MTQjMPxfSYpAR4ogkmkukfmGSEJSago5uZD2z8lFV0WPZ8NIukfVK3z+tnd6e1xlURWxkdoEN0jGx0gRroBjVRCxEk0DN6RW/Gi/FufBif09KSUfTsoxkYX79jlKIM</latexit>

L
Subgraphs

(Explanations)

<latexit sha1_base64="QON7ppKOZVXcUAiMjg0TIGhdq6Y=">AAACGXicbVC7TsMwFHXKq5RXgZElokJiqhLEa6xggLFI9CHaqHIcp7XqOJF9gxSi/AUbgn9hQ6xM/AoTTpuBthzJ0tE59+XjRpwpsKxvo7S0vLK6Vl6vbGxube9Ud/faKowloS0S8lB2XawoZ4K2gAGn3UhSHLicdtzxde53HqlULBT3kETUCfBQMJ8RDFp66AcYRq6b3mSDas2qWxOYi8QuSA0VaA6qP30vJHFABRCOlerZVgROiiUwwmlW6ceKRpiM8ZD2NBU4oMpJJxdn5pFWPNMPpX4CzIn6tyPFgVJJ4OrK/EI17+Xiv56CAMtEenP7wb90UiaiGKgg0/V+zE0IzTwU02OSEuCJJphIpn9gkhGWmICObmY+sPFTVtFh2fPRLJL2Sd0+r5/dndYaV0VsZXSADtExstEFaqBb1EQtRJBAz+gVvRkvxrvxYXxOS0tG0bOPZmB8/QJbM6IH</latexit>

G

<latexit sha1_base64="VQuTFYFsB5DntgtLCg9qXtqIUTo=">AAACGnicbVC7TsMwFHV4lvIqMLJYVEhMVYJ4jRUsjEXqS2qjynHc1qrjRPYNUojyGWwI/oUNsbLwK0w4bQbaciRLR+fcl48XCa7Btr+tldW19Y3N0lZ5e2d3b79ycNjWYawoa9FQhKrrEc0El6wFHATrRoqRwBOs403ucr/zyJTmoWxCEjE3ICPJh5wSMFKvHxAYUyLSZjaoVO2aPQVeJk5BqqhAY1D56fshjQMmgQqidc+xI3BTooBTwbJyP9YsInRCRqxnqCQB0246PTnDp0bx8TBU5knAU/VvR0oCrZPAM5X5iXrRy8V/PQ0BUYnyF/bD8MZNuYxiYJLO1g9jgSHEeSrY54pREIkhhCpufoDpmChCwWQ3Nx/45Ckrm7CcxWiWSfu85lzVLh8uqvXbIrYSOkYn6Aw56BrV0T1qoBaiKETP6BW9WS/Wu/Vhfc5KV6yi5wjNwfr6BU7Iooo=</latexit>

<latexit sha1_base64="QON7ppKOZVXcUAiMjg0TIGhdq6Y=">AAACGXicbVC7TsMwFHXKq5RXgZElokJiqhLEa6xggLFI9CHaqHIcp7XqOJF9gxSi/AUbgn9hQ6xM/AoTTpuBthzJ0tE59+XjRpwpsKxvo7S0vLK6Vl6vbGxube9Ud/faKowloS0S8lB2XawoZ4K2gAGn3UhSHLicdtzxde53HqlULBT3kETUCfBQMJ8RDFp66AcYRq6b3mSDas2qWxOYi8QuSA0VaA6qP30vJHFABRCOlerZVgROiiUwwmlW6ceKRpiM8ZD2NBU4oMpJJxdn5pFWPNMPpX4CzIn6tyPFgVJJ4OrK/EI17+Xiv56CAMtEenP7wb90UiaiGKgg0/V+zE0IzTwU02OSEuCJJphIpn9gkhGWmICObmY+sPFTVtFh2fPRLJL2Sd0+r5/dndYaV0VsZXSADtExstEFaqBb1EQtRJBAz+gVvRkvxrvxYXxOS0tG0bOPZmB8/QJbM6IH</latexit>

<latexit sha1_base64="J97s52oJgXr3KGT+wnX5K31kyBc=">AAACGXicbVC7TsMwFHXKq5RXgZElokJiqhLEa6xgYWAoEn2INqocx2mtOk5k3yCFKH/BhuBf2BArE7/ChNNmoC1HsnR0zn35uBFnCizr2ygtLa+srpXXKxubW9s71d29tgpjSWiLhDyUXRcrypmgLWDAaTeSFAcupx13fJ37nUcqFQvFPSQRdQI8FMxnBIOWHvoBhpHrprfZoFqz6tYE5iKxC1JDBZqD6k/fC0kcUAGEY6V6thWBk2IJjHCaVfqxohEmYzykPU0FDqhy0snFmXmkFc/0Q6mfAHOi/u1IcaBUEri6Mr9QzXu5+K+nIMAykd7cfvAvnZSJKAYqyHS9H3MTQjMPxfSYpAR4ogkmkukfmGSEJSago5uZD2z8lFV0WPZ8NIukfVK3z+tnd6e1xlURWxkdoEN0jGx0gRroBjVRCxEk0DN6RW/Gi/FufBif09KSUfTsoxkYX79jlKIM</latexit>

<latexit sha1_base64="FDqgvNC2Tb5MSSy8kk7LcRCtwio=">AAACGXicbVC7TsMwFHV4lvIqMLJYVEhMVYJ4jRUsjEWiD9FGleO4rVXHiewbpBDlL9gQ/AsbYmXiV5hw2gy05UiWjs65Lx8vElyDbX9bS8srq2vrpY3y5tb2zm5lb7+lw1hR1qShCFXHI5oJLlkTOAjWiRQjgSdY2xvf5H77kSnNQ3kPScTcgAwlH3BKwEgPvYDAyPPSRtavVO2aPQFeJE5BqqhAo1/56fkhjQMmgQqiddexI3BTooBTwbJyL9YsInRMhqxrqCQB0246uTjDx0bx8SBU5knAE/VvR0oCrZPAM5X5hXrey8V/PQ0BUYny5/bD4MpNuYxiYJJO1w9igSHEeSjY54pREIkhhCpufoDpiChCwUQ3Mx/4+Ckrm7Cc+WgWSeu05lzUzu/OqvXrIrYSOkRH6AQ56BLV0S1qoCaiSKJn9IrerBfr3fqwPqelS1bRc4BmYH39AmpIohA=</latexit>

<latexit sha1_base64="NL/PrB9t8fAGxWFUP5MlcDkMr20=">AAACYHicbZHLSgMxFIbT8Vbrpa3udBMsQgUpM+INuim6cSFYwV6gM5RMmrahmQvJGaEO81g+jLgTfQlXZtouevFA4M93cnJy/rih4ApM8yNjrK1vbG5lt3M7u3v7+ULxoKmCSFLWoIEIZNslignuswZwEKwdSkY8V7CWO7pP861XJhUP/BcYh8zxyMDnfU4JaNQtPNkegSElIq4nZWxX7SqeENeNHxOc7oB7TOE5Xl/iHfMcW8609qxbKJkVcxJ4VVgzUUKzqHcLv3YvoJHHfKCCKNWxzBCcmEjgVLAkZ0eKhYSOyIB1tPSJ7urEk8ETfKpJD/cDqZcPeELnK2LiKTX2XH0yfbxazqXw35wCj8ix7C31h/6tE3M/jID5dNq+HwkMAU69xT0uGQUx1oJQyfUEmA6JJBT0DyzcD3z0luS0WdayNauieVGxritXz5el2t3Mtiw6RieojCx0g2roAdVRA1H0jj7RN/rJfBlZI28Up0eNzKzmEC2EcfQHkWO2bQ==</latexit>

(a) Existing approach: a post-hoc explanation of graph neural networks (GNNs) with subgraphs.

GDL-based Interpretable Classification Model

Program

Synthesis

<latexit sha1_base64="VQuTFYFsB5DntgtLCg9qXtqIUTo=">AAACGnicbVC7TsMwFHV4lvIqMLJYVEhMVYJ4jRUsjEXqS2qjynHc1qrjRPYNUojyGWwI/oUNsbLwK0w4bQbaciRLR+fcl48XCa7Btr+tldW19Y3N0lZ5e2d3b79ycNjWYawoa9FQhKrrEc0El6wFHATrRoqRwBOs403ucr/zyJTmoWxCEjE3ICPJh5wSMFKvHxAYUyLSZjaoVO2aPQVeJk5BqqhAY1D56fshjQMmgQqidc+xI3BTooBTwbJyP9YsInRCRqxnqCQB0246PTnDp0bx8TBU5knAU/VvR0oCrZPAM5X5iXrRy8V/PQ0BUYnyF/bD8MZNuYxiYJLO1g9jgSHEeSrY54pREIkhhCpufoDpmChCwWQ3Nx/45Ckrm7CcxWiWSfu85lzVLh8uqvXbIrYSOkYn6Aw56BrV0T1qoBaiKETP6BW9WS/Wu/Vhfc5KV6yi5wjNwfr6BU7Iooo=</latexit>

<latexit sha1_base64="QON7ppKOZVXcUAiMjg0TIGhdq6Y=">AAACGXicbVC7TsMwFHXKq5RXgZElokJiqhLEa6xggLFI9CHaqHIcp7XqOJF9gxSi/AUbgn9hQ6xM/AoTTpuBthzJ0tE59+XjRpwpsKxvo7S0vLK6Vl6vbGxube9Ud/faKowloS0S8lB2XawoZ4K2gAGn3UhSHLicdtzxde53HqlULBT3kETUCfBQMJ8RDFp66AcYRq6b3mSDas2qWxOYi8QuSA0VaA6qP30vJHFABRCOlerZVgROiiUwwmlW6ceKRpiM8ZD2NBU4oMpJJxdn5pFWPNMPpX4CzIn6tyPFgVJJ4OrK/EI17+Xiv56CAMtEenP7wb90UiaiGKgg0/V+zE0IzTwU02OSEuCJJphIpn9gkhGWmICObmY+sPFTVtFh2fPRLJL2Sd0+r5/dndYaV0VsZXSADtExstEFaqBb1EQtRJBAz+gVvRkvxrvxYXxOS0tG0bOPZmB8/QJbM6IH</latexit>

<latexit sha1_base64="J97s52oJgXr3KGT+wnX5K31kyBc=">AAACGXicbVC7TsMwFHXKq5RXgZElokJiqhLEa6xgYWAoEn2INqocx2mtOk5k3yCFKH/BhuBf2BArE7/ChNNmoC1HsnR0zn35uBFnCizr2ygtLa+srpXXKxubW9s71d29tgpjSWiLhDyUXRcrypmgLWDAaTeSFAcupx13fJ37nUcqFQvFPSQRdQI8FMxnBIOWHvoBhpHrprfZoFqz6tYE5iKxC1JDBZqD6k/fC0kcUAGEY6V6thWBk2IJjHCaVfqxohEmYzykPU0FDqhy0snFmXmkFc/0Q6mfAHOi/u1IcaBUEri6Mr9QzXu5+K+nIMAykd7cfvAvnZSJKAYqyHS9H3MTQjMPxfSYpAR4ogkmkukfmGSEJSago5uZD2z8lFV0WPZ8NIukfVK3z+tnd6e1xlURWxkdoEN0jGx0gRroBjVRCxEk0DN6RW/Gi/FufBif09KSUfTsoxkYX79jlKIM</latexit>

<latexit sha1_base64="QON7ppKOZVXcUAiMjg0TIGhdq6Y=">AAACGXicbVC7TsMwFHXKq5RXgZElokJiqhLEa6xggLFI9CHaqHIcp7XqOJF9gxSi/AUbgn9hQ6xM/AoTTpuBthzJ0tE59+XjRpwpsKxvo7S0vLK6Vl6vbGxube9Ud/faKowloS0S8lB2XawoZ4K2gAGn3UhSHLicdtzxde53HqlULBT3kETUCfBQMJ8RDFp66AcYRq6b3mSDas2qWxOYi8QuSA0VaA6qP30vJHFABRCOlerZVgROiiUwwmlW6ceKRpiM8ZD2NBU4oMpJJxdn5pFWPNMPpX4CzIn6tyPFgVJJ4OrK/EI17+Xiv56CAMtEenP7wb90UiaiGKgg0/V+zE0IzTwU02OSEuCJJphIpn9gkhGWmICObmY+sPFTVtFh2fPRLJL2Sd0+r5/dndYaV0VsZXSADtExstEFaqBb1EQtRJBAz+gVvRkvxrvxYXxOS0tG0bOPZmB8/QJbM6IH</latexit>

Training Data

<latexit sha1_base64="VQuTFYFsB5DntgtLCg9qXtqIUTo=">AAACGnicbVC7TsMwFHV4lvIqMLJYVEhMVYJ4jRUsjEXqS2qjynHc1qrjRPYNUojyGWwI/oUNsbLwK0w4bQbaciRLR+fcl48XCa7Btr+tldW19Y3N0lZ5e2d3b79ycNjWYawoa9FQhKrrEc0El6wFHATrRoqRwBOs403ucr/zyJTmoWxCEjE3ICPJh5wSMFKvHxAYUyLSZjaoVO2aPQVeJk5BqqhAY1D56fshjQMmgQqidc+xI3BTooBTwbJyP9YsInRCRqxnqCQB0246PTnDp0bx8TBU5knAU/VvR0oCrZPAM5X5iXrRy8V/PQ0BUYnyF/bD8MZNuYxiYJLO1g9jgSHEeSrY54pREIkhhCpufoDpmChCwWQ3Nx/45Ckrm7CcxWiWSfu85lzVLh8uqvXbIrYSOkYn6Aw56BrV0T1qoBaiKETP6BW9WS/Wu/Vhfc5KV6yi5wjNwfr6BU7Iooo=</latexit>

T

Featured Graphs

(Inputs)

<latexit sha1_base64="QON7ppKOZVXcUAiMjg0TIGhdq6Y=">AAACGXicbVC7TsMwFHXKq5RXgZElokJiqhLEa6xggLFI9CHaqHIcp7XqOJF9gxSi/AUbgn9hQ6xM/AoTTpuBthzJ0tE59+XjRpwpsKxvo7S0vLK6Vl6vbGxube9Ud/faKowloS0S8lB2XawoZ4K2gAGn3UhSHLicdtzxde53HqlULBT3kETUCfBQMJ8RDFp66AcYRq6b3mSDas2qWxOYi8QuSA0VaA6qP30vJHFABRCOlerZVgROiiUwwmlW6ceKRpiM8ZD2NBU4oMpJJxdn5pFWPNMPpX4CzIn6tyPFgVJJ4OrK/EI17+Xiv56CAMtEenP7wb90UiaiGKgg0/V+zE0IzTwU02OSEuCJJphIpn9gkhGWmICObmY+sPFTVtFh2fPRLJL2Sd0+r5/dndYaV0VsZXSADtExstEFaqBb1EQtRJBAz+gVvRkvxrvxYXxOS0tG0bOPZmB8/QJbM6IH</latexit>

G

Labels

(Results)

<latexit sha1_base64="J97s52oJgXr3KGT+wnX5K31kyBc=">AAACGXicbVC7TsMwFHXKq5RXgZElokJiqhLEa6xgYWAoEn2INqocx2mtOk5k3yCFKH/BhuBf2BArE7/ChNNmoC1HsnR0zn35uBFnCizr2ygtLa+srpXXKxubW9s71d29tgpjSWiLhDyUXRcrypmgLWDAaTeSFAcupx13fJ37nUcqFQvFPSQRdQI8FMxnBIOWHvoBhpHrprfZoFqz6tYE5iKxC1JDBZqD6k/fC0kcUAGEY6V6thWBk2IJjHCaVfqxohEmYzykPU0FDqhy0snFmXmkFc/0Q6mfAHOi/u1IcaBUEri6Mr9QzXu5+K+nIMAykd7cfvAvnZSJKAYqyHS9H3MTQjMPxfSYpAR4ogkmkukfmGSEJSago5uZD2z8lFV0WPZ8NIukfVK3z+tnd6e1xlURWxkdoEN0jGx0gRroBjVRCxEk0DN6RW/Gi/FufBif09KSUfTsoxkYX79jlKIM</latexit>

L

GDL Programs

(Explanations)

<latexit sha1_base64="FDqgvNC2Tb5MSSy8kk7LcRCtwio=">AAACGXicbVC7TsMwFHV4lvIqMLJYVEhMVYJ4jRUsjEWiD9FGleO4rVXHiewbpBDlL9gQ/AsbYmXiV5hw2gy05UiWjs65Lx8vElyDbX9bS8srq2vrpY3y5tb2zm5lb7+lw1hR1qShCFXHI5oJLlkTOAjWiRQjgSdY2xvf5H77kSnNQ3kPScTcgAwlH3BKwEgPvYDAyPPSRtavVO2aPQFeJE5BqqhAo1/56fkhjQMmgQqiddexI3BTooBTwbJyL9YsInRMhqxrqCQB0246uTjDx0bx8SBU5knAE/VvR0oCrZPAM5X5hXrey8V/PQ0BUYny5/bD4MpNuYxiYJJO1w9igSHEeSjY54pREIkhhCpufoDpiChCwUQ3Mx/4+Ckrm7Cc+WgWSeu05lzUzu/OqvXrIrYSOkRH6AQ56BLV0S1qoCaiSKJn9IrerBfr3fqwPqelS1bRc4BmYH39AmpIohA=</latexit>

P

Labels

(Results)

GDL Programs

(Explanations)

Score

(Quality)

<latexit sha1_base64="NL/PrB9t8fAGxWFUP5MlcDkMr20=">AAACYHicbZHLSgMxFIbT8Vbrpa3udBMsQgUpM+INuim6cSFYwV6gM5RMmrahmQvJGaEO81g+jLgTfQlXZtouevFA4M93cnJy/rih4ApM8yNjrK1vbG5lt3M7u3v7+ULxoKmCSFLWoIEIZNslignuswZwEKwdSkY8V7CWO7pP861XJhUP/BcYh8zxyMDnfU4JaNQtPNkegSElIq4nZWxX7SqeENeNHxOc7oB7TOE5Xl/iHfMcW8609qxbKJkVcxJ4VVgzUUKzqHcLv3YvoJHHfKCCKNWxzBCcmEjgVLAkZ0eKhYSOyIB1tPSJ7urEk8ETfKpJD/cDqZcPeELnK2LiKTX2XH0yfbxazqXw35wCj8ix7C31h/6tE3M/jID5dNq+HwkMAU69xT0uGQUx1oJQyfUEmA6JJBT0DyzcD3z0luS0WdayNauieVGxritXz5el2t3Mtiw6RieojCx0g2roAdVRA1H0jj7RN/rJfBlZI28Up0eNzKzmEC2EcfQHkWO2bQ==</latexit>

P(L × P × [0, 1])

(b) Our approach: a graph description language (GDL)-based interpretable models.

Fig. 1. Two approaches for explainable graph learning.

accurate classification results. Therefore, developing an interpretable model or explainable artificial
intelligence (XAI) [Gunning and Aha 2019] approach for graph learning problems is crucial.

Existing Approaches. Since graph neural networks (GNNs) are mainstream approaches to graph
learning, most existing approaches to explainable graph learning have been focused on how to
provide explanations of their classification results [Kakkad et al. 2023; Yuan et al. 2022]. GNNs
are deep-learning-based models that have achieved remarkable performance in various graph
learning problems. Despite their significant success, the predictions of GNNs are hardly explainable
because of their deep and complex neural networks with millions of learning parameters optimized
by training data. Thus, the current trend for explainable GNNs is to develop a separate post-
hoc explanation model that provides explanations after their predictions. In a classification task,
for example, the models produce explanations illustrating why the GNN made the classification
results, as depicted in Figure 1a. While explanations can be defined in various forms, most existing
techniques utilize subgraphs to explain the critical components of a given graph related to the
classification results.

Limitations of Existing Approaches. However, the existing post-hoc explanation techniques with
subgraphs for GNNs have two fundamental limitations: 1) additional cost and 2) correctness of
explanations. First, they necessitate an additional cost to provide explanations after classification.
Most existing techniques treat GNNs as black boxes and provide instance-wise explanations by
searching for subgraphs highly correlated with the classification results in a given graph. Thus,
this process is costly because the search space of subgraphs is exponential in the number of edges
in a graph. Second, they cannot guarantee the correctness of explanations for the classification
results. The explanation model separately learns the explanations from the original classification
model and causes a semantic gap between the two models. It means that the explanations may not
reflect the actual reasons why the classification model classifies a given graph into a specific label.
These two limitations are challenging to be addressed as long as we rely on black-box models.

Our Approach. To address the limitations, we propose PL4XGL, a new programming language
approach for inherently explainable graph learning for classification tasks. Figure 1b illustrates the
overview of our approach. Our key idea is two-fold: 1) designing a graph description language

(GDL) to explain the classification results and 2) developing a new GDL-based interpretable

classification model instead of GNN-based models.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.

PL4XGL: A Programming Language Approach to Explainable Graph Learning 234:3

First, we design a graph description language, called GDL, as a declarative programming language
inwhich a program describes a set of nodes, edges, or graphs. A program in GDL consists of node and
edge descriptions and a target symbol. Node descriptions present symbolic nodes using variables
and constraints on the variables, and edge descriptions present symbolic edges using pairs of
variables and their constraints. Then, target symbol describes which components are targeted
by the program. We utilize GDL programs as explanations for the classification results of graph
learning problems (instead of subgraphs).

Then, we develop PL4XGL, a newGDL-based interpretable classificationmodel that provides both
classification results and explanations simultaneously. In our approach, a learned model consists of
a set of candidate GDL programs with their labels and quality scores. In the classification process,
PL4XGL searches for the best program that can describe the given graph data among its constituent
GDL programs; PL4XGL classifies the graph data into the label that corresponds to the selected
program. Simultaneously, the selected program is provided as an explanation for the classification
(i.e., no additional explanation cost). Besides, the provided explanation (i.e., program) is guaranteed
to be correct because PL4XGL made the classification based on the provided explanation.

In our approach, learning a model is formulated as program synthesis [Alur et al. 2018; Gulwani
et al. 2017] problem for candidate GDL programs with their labels and quality scores. To generate
high-quality (e.g., precise and general) GDL programs, we adapt two synthesis algorithms, namely
top-down [Feser et al. 2015; Frankle et al. 2016; Gulwani 2011] and bottom-up [Alur et al. 2017;
Miltner et al. 2022; Udupa et al. 2013] methods, for our graph description language. Our top-down
synthesis algorithm is designed to discover important feature values by exploring programs from
simple to complex. Conversely, the bottom-up algorithm searches programs from complex to simple,
and excels at capturing key graph structures.
We evaluate explainability of PL4XGL compared to the existing state-of-the-art GNN expla-

nation technique SubgraphX [Yuan et al. 2021] in terms of 1) additional cost and 2) correctness
of explanations. We use widely-used datasets [Park et al. 2022; Yuan et al. 2022] consisting of
twelve synthetic and real-world datasets. Compared to GNN with SubgraphX, the classification
& explanation step of PL4XGL is at least 35 times faster. To compare explainability, we utilize
two widely used metrics, namely fidelity and sparsity [Yuan et al. 2022]. These serve as proxy
metrics for measuring the correctness and conciseness of explanations, respectively. The experiment
results show that PL4XGL always provides the optimal score for the fidelity metric (guaranteed
by a theorem), while SubgraphX does not. Also, the experiment results on sparsity demonstrate
that PL4XGL provides concise explanations. Finally, PL4XGL also accurately classifies graph data.
Compared to six representative GNNs, PL4XGL shows competitive accuracy for the graph and node
classification datasets. Especially, PL4XGL shows the best accuracy for three real-world molecular
datasets, which are decision-critical datasets related to drug discovery.

Contributions. Our contributions are summarized as follows:

• We design a graph description language, called GDL, as a declarative programming language
in which a program describes a set of nodes, edges, or graphs.
• We propose PL4XGL, a GDL-based interpretable classification model for explainable graph
learning. We formulate learning our model as a program synthesis problem and present
top-down and bottom-up synthesis algorithms.
• We experimentally demonstrate that PL4XGL is faster and provides more correct explanations
compared to the existing state-of-the-art GNN explanation technique. PL4XGL also shows
competitive classification accuracy compared to popular GNNs. Our implementation and
datasets are publicly available1.

1https://github.com/kupl/PL4XGL

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.

https://github.com/kupl/PL4XGL

234:4 Minseok Jeon, Jihyeok Park, and Hakjoo Oh

⟨1.2⟩ ⟨0.2⟩

⟨0.8⟩ ⟨0.4⟩

E1 E2

E3 E4

(a) Featured graph �1

M1 =





(;1, %1, 0.9)
(;2, %2, 0.8)
(;1, %3, 0.0)





(b) GDL-based modelM1

E1 : (;1, %1, 0.9)
E2 : (;2, %2, 0.8)
E3 : (;2, %2, 0.8)
E4 : (;1, %1, 0.9)

(c) Classifications with explanations

node x <[0.0, 0.5]>

node y

edge (x, y)

target node y

(d) GDL program %1

node x

node y <[0.2, 0.7]>

edge (x, y)

target node x

(e) GDL program %2

node x

target node x

(f) GDL program %3

Fig. 2. A running example: a GDL-based modelM1 for node classification.

Scope. The focus of PL4XGL is on classification tasks. For example, regression tasks on graph
data [Feng et al. 2023] are beyond the scope of this paper. Currently, our approach PL4XGL supports
node, edge, and graph classification tasks.

2 INFORMAL OVERVIEW

In this section, we illustrate our approach using a simple node classification example.

Featured Graph. Figure 2a depicts a featured graph�1 consisting of four nodes {E1, E2, E3, E4} and
three edges {(E2, E1), (E2, E4), (E3, E4)}. The gray-colored nodes (E1 and E4) belong to label ;1, while
the white-colored nodes (E2 and E3) belong to label ;2. Each node is associated with a 1-dimensional
feature vector; ⟨1.2⟩, ⟨0.2⟩, ⟨0.8⟩, and ⟨0.4⟩ for E1, E2, E3, and E4, respectively.

How Our Model Works. Figure 2b shows our GDL-based modelM1 for node classification. It
consists of three GDL programs: %1, %2, and %3, described in Figures 2d, 2e, and 2f, respectively. The
modelM1 utilizes programs %1 and %3 to classify nodes into label ;1 and program %2 for label ;2.
The three GDL programs are scored based on their quality, where the scores indicate their precision
in describing the nodes corresponding to the labels in the training data. The detailed definition of
the score is described in Section 4. If a node is described by multiple GDL programs, the model
classifies the node with the best scored program and provides the program as an explanation.
A GDL program describes which graph components (node, edge, or graphs) are classified into

the corresponding label. It consists of variables, describing symbolic nodes with constraints, pairs
of variables, describing symbolic edges, and a target symbol. In addition, we can interpret a GDL
program in a natural language. For example, the GDL program %1 describes:

%1: “All nodes having a predecessor whose feature value is between 0.0 and 0.5”

because 1) the target symbolic node is y, 2) the description of the symbolic edge (x, y) describes
the existence of a predecessor x, and 3) the constraint of the variable x describes the possible feature
values of the predecessor. Similarly, another GDL program %2 describes:

%2: “All nodes having a successor whose feature value is between 0.2 and 0.7”

The GDL program %3 is the most general one, which describes all nodes in the graph.
Our model accurately classifies all the nodes in the example graph and simultaneously provides

correct explanations. Figure 2c shows the classification result with corresponding programs as
explanations of why the model classifies each node into the label. The model classifies the nodes E1
and E4 into the label ;1 as %1 is the best program describing them. Meanwhile, the nodes E2 and E3

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.

PL4XGL: A Programming Language Approach to Explainable Graph Learning 234:5

⟨0.2⟩

E1

⟨0.5⟩

E2

⟨0.7⟩

E3

⟨0.8⟩

E4

⟨9⟩

⟨−5⟩
⟨6⟩

⟨−8⟩

(a) A featured graph �2

node x <[, 0.3]>

node y <[0.5, 1.0]>

node z

edge (x, y)

edge (y, z) <[5,]>

target node y

(b) A GDL program %4

⟨[−∞, 0.3]⟩

x

⟨[0.5, 1.0]⟩

y

z

⟨[5,∞]⟩

(c) A graphical representation of %4

Fig. 3. A running example of GDL

are classified into the label ;2 because of the program %2. The used programs are simultaneously
provided as explanations. The explanations are guaranteed to be correct because our model actually
classified the nodes with the provided explanations. Existing GNNs, however, do not provide
such correct explanations for their predictions; various GNN explanation techniques have been
developed to explain their predictions. The produced explanations, however, are not guaranteed to
be correct. That is, the provided explanations may not reflect the actual reason for the predictions.

Expressiveness of GDL. Intuitively, a GDL program is a set of subgraphs. For example, the first
GDL program %1 can be seen as a set of subgraphs describing node patterns as follows:

{ ⟨1.2⟩ ⟨0.2⟩ , ⟨0.4⟩ ⟨0.2⟩ , ⟨0.0⟩ ⟨0.0⟩ , ⟨0.0⟩ ⟨0.5⟩ , . . . }.

The first subgraph ⟨1.2⟩ ⟨0.2⟩ describes a node pattern that the node and a predecessor have
the feature values 1.2 and 0.2, respectively. The node E1 in Figure 2a is described by the subgraph.

The second subgraph ⟨0.4⟩ ⟨0.2⟩ , which describes E4 in Figure 2a, illustrates a node pattern
where the node and a predecessor have the feature values 0.4 and 0.2, respectively.

3 GRAPH DESCRIPTION LANGUAGE (GDL)

This section formally defines our graph description language (GDL), which is a declarative program-
ming language for describing target nodes, edges, or graphs themselves in featured graphs.

3.1 Featured Graphs

A featured graph� = (+ , �, F+ , F�) ∈ G is a graph defined with feature vectors for nodes and edges:

• + = {E1, E2, . . . , E=} is a set of = nodes.
• � = {41, 42, . . . , 4<} ⊆ + ×+ is a set of< edges.
• F+ ⊆ R

=×3 is a node feature matrix for 3-dimensional node feature vectors.
• F� ⊆ R

<×2 is an edge feature matrix for 2-dimensional edge feature vectors.

The 8-th row of F+ or F� corresponds to the feature vector of the 8-th node E8 or edge 48 , respectively.
We use f�E and f�

(E,E′)
to denote the feature vector of a node E ∈ + and an edge (E, E ′) ∈ �, respectively,

in a featured graph � .

Example. Figure 3a depicts a featured graph �2 with 1-dimensional node and edge features:

�2 =

(
+ = { E1, E2, E3, E4}, � = { (E1, E2), (E2, E3), (E2, E4), (E4, E3)},
F+ = ⟨ ⟨0.2⟩, ⟨0.5⟩, ⟨0.7⟩, ⟨0.8⟩⟩, F� = ⟨ ⟨9⟩, ⟨−5⟩, ⟨6⟩, ⟨−8⟩⟩

)

In this example, f�2
E2 = ⟨0.5⟩ denotes the feature vector of the node E2 in the featured graph �2, and

f
�2

(E2,E4)
= ⟨6⟩ denotes the feature vector of the edge (E2, E4) in the featured graph �2.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.

234:6 Minseok Jeon, Jihyeok Park, and Hakjoo Oh

Programs % ::= X target C ∈ P = D
∗ × T

Descriptions X ::= X+ | X� ∈ D = D+ ⊎ D�

Node Descriptions X+ ::= node G <q>? ∈ D+ = X × Φ3

Edge Descriptions X� ::= edge (G,G) <q>? ∈ D� = X × X × Φ2

Target Symbols C ::= node G | edge (G,G) | graph ∈ T = X ⊎ (X × X) ⊎ {n}
Intervals q ::= [=?,=?] ∈ Φ = (R ⊎ {−∞}) × (R ⊎ {∞})
Real Numbers = ::= 0.2 | 0.7 | 6 |-8 . . . ∈ R

Variables G ::= x | y | z | . . . ∈ X

Fig. 4. The syntax of GDL.

⟦<q1, . . . ,q:>⟧ : P(R:) = { f | f = ⟨51, . . . , 5:⟩ ∧ ∀8 . q8 = [0, 1] ⇒ 0 ≤ 58 ≤ 1}

⟦node G <q>⟧ : P(G × H) = { (�,[) | E = [(G) ∧ f�E ∈ ⟦<q>⟧}

⟦edge (G,~) <q>⟧ : P(G × H) = { (�,[) | 4 ∈ � ∧ 4 = ([(G), [(~)) ∧ f�4 ∈ ⟦<q>⟧}
⟦X1X2 . . . X:⟧ : P(G × H) = { (�,[) | ∀8 . (�,[) ∈ ⟦X8⟧}

⟦X target node G⟧ : P(+) = { E | ∃(�,[) ∈ ⟦X⟧. E = [(G)}

⟦X target edge (G,~)⟧ : P(�) = { 4 | ∃(�,[) ∈ ⟦X⟧. 4 = ([(G), [(~))}

⟦X target graph⟧ : P(G) = { � | ∃(�,[) ∈ ⟦X⟧}

Fig. 5. The semantics of GDL where � = (+ , �, F+ , F�) ∈ G is a given featured graph.

3.2 Syntax of GDL

Figure 4 formally defines the syntax of GDL. We use the notation� to denote a sequence of elements
in �, and the notation �? to denote an optional element in �. A GDL program % ∈ P consists of a

sequence of descriptions X ∈ D and a target symbol C ∈ T. A description X is either a node description
X+ ∈ D+ or an edge description X� ∈ D� . A node description node G <q1, . . . ,q3> introduces a new
variable G ∈ X for a symbolic node whose 3-dimensional feature vector is bounded by the interval
vector <q1, . . . , q3>. An edge description edge (G,~) <q1, . . . ,q2> describes a symbolic edge from
a symbolic node G to a symbolic node ~ whose 2-dimensional feature vector is bounded by the
interval vector <q1, . . . , q2>. If no bound is specified in an interval, the default lower (or upper)
bound is −∞ (or∞). Finally, a target symbol C ∈ T is either 1) a symbolic node node G , 2) a symbolic
edge edge (G,~), or 3) a graph graph itself.

Example. Figure 3b shows a GDL program %4 that describes nodes by target symbol node y in
featured graphs with 1-dimensional node and edge features. The program introduces three symbolic
nodes with variables x, y, and z with the interval vectors ⟨[−∞, 0.3]⟩, ⟨[0.5, 1.0]⟩, and ⟨[−∞,∞]⟩,
respectively. Similarly, it contains two edge descriptions for symbolic edges (x, y) and (y, z), and
the corresponding edge features are interval vectors ⟨[−∞,∞]⟩ and ⟨[5,∞]⟩, respectively. Finally,
the targets of the program are nodes described by the variable y. Figure 3c shows a graphical
representation of the program %4. Each node and edge in the graph represents a node and edge
description in the program, respectively, and the target symbolic node is highlighted in red. For
brevity, we omit the default interval vector ⟨[−∞,∞]⟩ in the graphical representation.

3.3 Semantics of GDL

Now,we define the semantics of GDL.We first define the semantics of interval vectors and node/edge
descriptions using valuations of symbolic nodes. Then, we define the semantics of GDL programs.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.

PL4XGL: A Programming Language Approach to Explainable Graph Learning 234:7

Interval Vectors. For a :-dimensional interval vector <q> = <q1, . . . ,q:> ∈ Φ
: , its semantics

⟦<q>⟧ : P(R:) is defined as a set of :-dimensional feature vectors where each dimension is
bounded by the corresponding interval.

Descriptions. The semantics ⟦X⟧ : P(G × H) of a description X ∈ D is defined as a set of pairs
of a featured graphs and valuations that satisfy the description X . A valuation [∈ H = X→ + is
a mapping from each variable denoting symbolic nodes in GDL program into a distinct concrete
node in the featured graph (i.e., G, G ′ ∈ X.G ≠ G ′ =⇒ [(G) ≠ [(G ′)). In other words, a valuation [
assigns a distinct concrete node [(G) ∈ + to each variable G ∈ X, and represents a subgraph � |[of
� consisting of the following nodes and edges:

• + |[= {[(G) | G ∈ X}, and
• � |[= {([(G), [(~)) | ([(G), [(~)) ∈ � ∧ (G,~) ∈ X × X}.

Among possible valuations, the description X allows only a pair (�,[) of a featured graph and a

valuation that satisfies its interval vector. The pair (�,[) satisfies a node description X+ = node G <q>

if and only if the feature vector of the concrete node [(G) is bounded by the interval vector <q>.

Similarly, it satisfies an edge description X� = edge (G,~) <q> if and only if the feature vector of

the concrete edge ([(G), [(~)) exists in � and is bounded by the interval vector <q>. The semantics

⟦X⟧ : P(G × H) of a sequence of node/edge descriptions X ∈ D∗ is defined as a set of pairs of

featured graph and valuation that satisfy all descriptions in X .

GDL Programs. The type of semantics ⟦%⟧ of a GDL program % varies depending on its targets:
1) nodes, 2) edges, and 3) graphs. First, a program defined with a target variable describes a set

of featured graphs with nodes. Its semantics ⟦X target node G⟧ : P(+) collects nodes that can be

assigned to the target symbolic node G by any valuation [satisfying all the descriptions X . Similarly,

⟦X target edge (G,~)⟧ : P(�) collects edges that can be assigned to the target symbolic edge

(G,~) by any valuation [satisfying all the descriptions X . If the target symbol is graph, the program

semantics ⟦X target graph⟧ : P(G) describes a set of graphs containing at least one subgraph � |[

by a valuation [satisfying all the descriptions X .

Example. Figure 3a depicts a featured graph �2, and Figure 3b shows a GDL program %4:

%4 = ⟨[−∞, 0.3]⟩

x

⟨[0.5, 1.0]⟩

y z
⟨[5,∞]⟩

.

Now, consider the following valuation [: X→ + :

[= { x→ E1, y→ E2, z→ E4 }.

Then, it represents the following subgraph �2 |[of the featured graph �2:

�2 |[= ⟨0.2⟩

[(x) = E1

⟨0.5⟩

[(y) = E2

⟨0.8⟩

[(z) = E4
⟨9⟩ ⟨6⟩

and satisfies all the node/edge descriptions X in %4 (i.e., (�2, [) ∈ ⟦X⟧). For example, the valuation [
satisfies the node description node y <[0.5, 1.0]> because the concrete node assigned by [for y

is E2 and f
�2
E2 = ⟨0.5⟩ is bounded by the interval vector ⟨[0.5, 1.0]⟩. It also satisfies the edge

description edge (y, z) <[5,]> because the concrete nodes assigned by [for y and z are E2
and E4, respectively, and f

�2

(E2,E4)
= ⟨6⟩ is bounded by the interval vector ⟨[5,∞]⟩. Since the target

symbol of the program %4 is a symbolic node node y, the node [(y) = E2 is in its sementics ⟦%4⟧
(i.e., E2 ∈ ⟦%4⟧). That is, the program %4 describes the node E2 under the valuation [.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.

234:8 Minseok Jeon, Jihyeok Park, and Hakjoo Oh

3.4 Generality Order between GDL Programs

We define a partial order (⊑) between GDL programs in terms of the generality of their semantics:

% ⊑ % ′ ⇐⇒ ⟦%⟧ ⊆ ⟦% ′⟧.

Intuitively, % ⊑ % ′ means that % ′ is more general than % because % ′ can describe all the graph % can
describe. In addition, we use the notation % ⊏ % ′ to denote that % ′ is strictly more general than % :

% ⊏ % ′ ⇐⇒ (% ⊑ % ′) ∧ (⟦%⟧ ≠ ⟦% ′⟧) .

Several mutation operations on GDL programs might increase or decrease the generality of GDL

programs. For example, %5 = ⟨[−∞, 0.3]⟩

x

⟨[0.5, 1.0]⟩

y

is a program mutated from %4 in Figure 3b
by removing the variable z and its related descriptions. Then, %5 is strictly more general than %4
(i.e., %4 ⊏ %5). Our program synthesis algorithm (Section 5) utilizes the order to search high-quality
GDL programs.

4 PL4XGL: A GDL-BASED EXPLAINABLE CLASSIFICATION MODEL

Now, we define our GDL-based explainable classification model PL4XGL.

4.1 Classification Tasks on Featured Graphs

A classification task C→ L on featured graphs is defined as a problem of classifying each graph
component 2 ∈ C in featured graph to a label ; ∈ L. We consider three types of classification tasks
on featured graphs with different graph components: 1) nodes, 2) edges, and 3) graphs:

• Node Classification: (G ×+) → L
• Edge Classification: (G × �) → L
• Graph Classification: G→ L

A node or edge classification task is defined as a problem of classifying each node E ∈ + or each
edge 4 ∈ � of a given featured graph � ∈ G to a label ; ∈ L, respectively. A graph classification
task is defined as a problem of classifying a given featured graph � ∈ G itself to a label ; ∈ L.

4.2 Explainable Classification Model

A GDL-based explainable classification modelM ∈ M is defined as a set of candidate GDL programs
with their labels and quality scores:

M ∈ M = P(L × P × [0, 1])

where each candidate (;, %,k) ∈ M consists of:

• a label ; ∈ L as the classification result,
• a GDL program % ∈ P as the explanation of the result, and
• a real numberk ∈ [0, 1] as the quality score of the pair (;, %).

The quality score k reflects the precision of the program % for the classification result ; , and we
will explain how to compute it in Section 5. For a classification task C → L on featured graphs,
the Search : (M × C) → (L × P × [0, 1]) function takes a modelM and returns the best candidate
(;, %,k) ∈ M that can describe the given graph component 2 ∈ C:

Search(M, 2) = argmax
(;,%,k) ∈M

{
k if 2 ∈ ⟦%⟧
−1 otherwise

.

In other words, it returns not only the classification result ; but also the selected GDL program % as
its explanation and the quality scorek of the pair of classification and explanation. To handle the
case when there is no possible candidate GDL program describing 2 , we make a modelM contain

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.

PL4XGL: A Programming Language Approach to Explainable Graph Learning 234:9

the most general GDL program %⊤
2 with a label ; ′ and the lowest quality score (i.e.,k = 0.0) (i.e.,

(%⊤, ;
′, 0.0) ∈ M). Then, any component 2 can be described by at least one program in the model.

5 LEARNING GDL-BASED MODEL USING PROGRAM SYNTHESIS

Now, we present our learning algorithm. The core idea of our learning algorithm for GDL-based
models is to iteratively synthesize better candidate GDL programs from the training data.

Training Data. A set of training data T ∈ T = P(C × L) is a set of pairs of a graph component
2 ∈ C and a label ; ∈ L. It means that the expected classification result of the graph component 2 is
the label ; . We utilize the notation T(;) = {2 | (2, ;) ∈ T} to denote the set of graph components in
the training data T that are expected to be classified into the label ; .

Quality Score. A quality scorek ∈ [0, 1] is a real number between 0 and 1 that reflects the precision
of a candidate GDL program % for the classification result ; according to the training data T. The
Score : T→ L × P→ [0, 1] function computes the quality scorek :

k = Score(T)(;, %) =
|⟦%⟧ ∩ T(;) |

|⟦%⟧| + n

where a hyperparameter n is a small positive real number and added to avoid the overfitting problem
or handle noisy data. While the quality scorek computed by the Score function basically reflects
the precision for each candidate in the modelM, it becomes higher when the precision is computed
by a larger number of graph components. We chose the hyperparameter n in {0.1, 1.0, 10.0} that
maximized the classification accuracy on the validation set in our evaluation.

Learning Objective. The learning objective of our algorithm is to find a GDL-based modelM that
satisfies the following three properties using program synthesis over the training data T:

(1) Coverage: at least one non-trivial (i.e., not the most general) candidate GDL program % in
the modelM covers each graph component 2 in the training data T:

∀; ∈ L. ∀2 ∈ T(;). ∃(;, %, _) ∈ M . (% ≠ %⊤) ∧ (2 ∈ ⟦%⟧) .

(2) Precision: the modelM maximizes the average quality scorek that reflects the precision of
each pair of a candidate GDL and a label in the modelM:

∑
{k | (;, %,k) ∈ M}

|M|
.

(3) Generality: the model M consists of as much general candidate programs as possible;
%1 ⊏ %2 means %2 is strictly more general than %1, as defined in Section 3.4:

% ⊏ % ′ ⇐⇒ (% ⊑ % ′) ∧ (⟦%⟧ ≠ ⟦% ′⟧) .
5.1 Algorithm Outline

Algorithm 1 presents our learning algorithm. It takes a set of training data T : P(L × C) as input
and returns learned GDL-based modelM. The Learn procedure at lines 1–7 describes the overall
learning algorithm. First, it initializes the modelM as an empty set (line 2). At lines 3–6, the
procedure synthesizes a GDL program from each (2, ;) ∈ T. After synthesizing a program % for
the graph component 2 and the label ; (line 4), it computes its quality scorek (line 5) and adds the
candidate (;, %,k) to the modelM (line 6). Finally, if no more training data exists, the procedure
returns the learned modelM (line 7). Note that the iterations at lines 3–6 are independent of each
other; each GDL program can be synthesized in parallel.

2%⊤ = node x target node x for node classification, %⊤ = node x node y edge (x,y) target edge (x, y)

for edge classification, and %⊤ = target graph for graph classification.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.

234:10 Minseok Jeon, Jihyeok Park, and Hakjoo Oh

Algorithm 1 Learning algorithm

Require: A set of training data T : P(L × C)
Ensure: A GDL-based modelM ∈ M
1: procedure Learn(T)
2: M ← ∅
3: for each (2, ;) ∈ T do

4: % ← Synthesize(T, 2, ;)
5: k ← Score(T)(;, %)
6: M ←M ∪ {(;, %,k)}
7: returnM

8: procedure Synthesize(T, 2, ;)
9: % ← Initialize(2)
10: updated← true
11: while updated do

12: %1 ← Mutate(%)
13: %2 ← FilterBetter(T, 2, ;) (%, %1)
14: if %2 = ∅ then updated← false

15: else % ← Select(%2)
16: return %

The Synthesize procedure at lines 8–16 presents a generic template for the synthesis algorithm,
and the Initialize : C → P and Mutate : P → P(P) functions are instantiated differently in the
top-down and bottom-up algorithms. It first initializes the candidate GDL program % using the
Initialize function with a given graph component 2 (line 9) and the updated flag as true (line 10). At
lines 11–15, it iteratively updates the candidate GDL program % until no more updates are possible.

The procedure first mutates % into a set of all possible mutated programs %1 using the Mutate

function (line 12). Then, it collects only the better programs %2 in %1 than the current best program
% using the FilterBetter : (T × C × L) → (P × P(P)) → P(P) function (line 13):

FilterBetter(T, 2, ;) (%, %1) = {%
′ ∈ %1 | (1 2 ∈ ⟦% ′⟧) ∧ (2 (k < k ′) ∨ (3 k = k ′ ∧ % ⊏ % ′))}

wherek = Score(T)(;, %) andk ′ = Score(T)(;, % ′). It consider the learning objective of the model:
1) coverage, 2) precision, and 3) generality in order. First, for coverage of the model, the function
first filters out the programs that cannot describe the graph given component 2 to ensure that 2 is
always covered by the model. Second, to maximize the precision of the model, the function only
considers the programs that have better quality scores than the current best program % . Then, it
checks the new program % ′ is strictly more general than the current one % for better generality of
the model. If no programs are better than % in (line 14), the iteration terminates. Otherwise, it picks

any program in %2 using Select : P(P) → P function and updates % (line 15). Finally, the procedure
returns the current best program % (line 16).
The high-level idea of the top-down (or bottom-up) algorithm is to iteratively specialize (or

generalize) descriptions in the program from the most general (or most specific) one. In our
evaluation, we choose a better algorithm that performs better for the validation sets: the top-down
algorithm for the node classification task and the bottom-up algorithm for the graph classification
task. Now, we describe the details of the top-down and bottom-up algorithms.

5.2 Top-Down Algorithm

The top-down algorithm starts from the most general program and iteratively mutates it into a
more specific one to increase the precision of the program while preserving the coverage of the
program. For the top-down algorithm, the Initialize : C→ P function returns themost general GDL
program %⊤ for whatever graph component 2 is given. The Mutate : P→ P(P) function returns
the set of mutated programs:

Mutate(%) = {% ′ | %
↓
{ % ′}

where
↓
{ denotes one-step mutation of the program for the top-down algorithm in Figure 6.

Each one-step mutation %
↓
{ % ′ is an operation that strictly decreases the generality of the

program (i.e., % ′ ⊏ %) by adding descriptions (AddNode or AddEdge) or specializeing features

(SpecializeNode or SpecializeEdge). The AddNode rule adds a new node description X+ = (G,<q>)

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.

PL4XGL: A Programming Language Approach to Explainable Graph Learning 234:11

(G, _) ∉ X X+ = (G,<q>)

(~, _) ∈ X X� = (G,~,<q
′
>) or (~, G,<q

′
>)

(X, C)
↓
{ (X ∪ {X+ , X� }, C)

AddNode

(G, _) ∈ X (G,~, _) ∉ X

(~, _) ∈ X X� = (G,~,<q>)

(X, C)
↓
{ (X ∪ {X� }, C)

AddEdge

X+ = (G,<q>) ∈ X

<q
′
> ∈ SpecializeItv(<q>)

X ′
+
= (G,<q

′
>)

(X, C)
↓
{ (X \ {X+ } ∪ {X

′
+
}, C)

SpecializeNode

X� = (G,~,<q>) ∈ X

<q
′
> ∈ SpecializeItv(<q>)

X ′
�
= (G,~,<q

′
>)

(X, C)
↓
{ (X \ {X� } ∪ {X

′
�
}, C)

SpecializeEdge

Fig. 6. One-step mutation rules (
↓
{) for top-down algorithm.

and an edge description X� from the node G to a existing node ~ or vice versa into the program % .

The AddEdge rule adds a new edge description X� = (G,~,<q>) between existing variables G and ~
into the program % . The SpecializeNode (or SpecializeEdge) rule specialize the interval vector of the
existing symbolic node G (or symbolic edge (G,~)) in the program % by using SpecializeItv.
The implementation of SpecializeItv (i.e., specializing the intervals) is a design choice. Our

SpecializeItv cuts an interval with the median value in the interval. Due to the space limit, we present
our implementation of SpecializeItv in Section A of our supplementary material. The mutation
function (i.e.,Mutate) is also a design choice. For instance, the following mutation functionMutate2

can be used which enumerates a larger number of mutated programs:

Mutate2 (%) = Mutate(%) ∪
⋃

% ′∈Mutate(%)

Mutate(% ′).

Similarly, we can define Mutate: , where : determines the enumeration depth, as follows:

Mutate: (%) = Mutate:−1 (%) ∪
⋃

% ′∈Mutate:−1 (%)

Mutate(% ′).

Using Mutate: (: > 1) instead of Mutate may find better-scored GDL programs, but this exponen-
tially increases the training cost. In our evaluation, we used Mutate3 for the two small synthetic
datasets, while we used Mutate for the other real-world datasets. The impact of the depth : is
discussed at the end of Section 6.3.

Example. Recall the following example featured graph �1 in Figure 2a

�1 = ⟨1.2⟩ ⟨0.2⟩ ⟨0.4⟩ ⟨0.8⟩

E1 E2 E3E4

where the gray and white nodes belong to label ;1 and ;2, respectively. Suppose the current target
training component of the Synthesize procedure is the node E1, and the hyperparameter n is 1.
We ignore edge features in the graph and edge descriptions in GDL programs for brevity. The
top-down algorithm explores program space P from the most general one to a more specific one.

(1) The algorithm first generates the most general program for node classification:

⟨[−∞,∞]⟩

x

.

Then, it describes all nodes {E1, E2, E3, E4}, and its quality scorek is | {E1,E4 } |
| {E1,E2,E3,E4 } |+1

=
2
5
.

(2) Using one-step mutation rules in Figure 6, the following mutated programs are generated:

⟨[−∞,∞]⟩

x

⟨[−∞,∞]⟩

y

, ⟨[−∞,∞]⟩

x

⟨[−∞,∞]⟩

y

, ⟨[0.8,∞]⟩

x

, ⟨[−∞, 0.4]⟩

x

.

The first two programs are generated by the AddNode rule, and the last two are generated by
the SpecializeNode rule. The last two programs specified the interval with 0.4 and 0.8, which

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.

234:12 Minseok Jeon, Jihyeok Park, and Hakjoo Oh

X+ = (G, _) ∈ X

�G = {X� ∈ X | X� = (G, _, _) ∨ X� = (_, G, _)}

(X, C)
↑
{ (X \ {X+ } \ �G , C)

RemoveNode
X� ∈ X

(X, C)
↑
{ (X \ {X� }, C)

RemoveEdge

X+ = (G,<q>) ∈ X

<q
′
> ∈ GeneralizeItv(<q>)

X ′
+
= (G,<q

′
>)

(X, C)
↑
{ (X \ {X+ } ∪ {X

′
+
}, C)

GeneralizeNode

X� = (G,~,<q>) ∈ X

<q
′
> ∈ GeneralizeItv(<q>)

X ′
�
= (G,~,<q

′
>)

(X, C)
↑
{ (X \ {X� } ∪ {X

′
�
}, C)

GeneralizeEdge

Fig. 7. One-step mutation rules (
↑
{) for bo�om-up algorithm.

are median feature values of the training nodes. Among them, the first program is selected

with the scorek =
| {E1,E4 } |
| {E1,E4 } |+1

=
2
3
, which precisely includes the nodes belong to ;1.

(3) Now, since no more better program exists as the result of the mutation, the algorithm
terminates and returns the program:

⟨[−∞,∞]⟩

x

⟨[−∞,∞]⟩

y

.

5.3 Bo�om-Up Algorithm

The bottom-up algorithm works oppositely; it starts from the most specific program and iteratively
mutates it into a more general one while preserving the precision of the program. For the bottom-up
algorithm, the Initialize : C→ P function returns the most specific GDL program % that describes
the given graph component 2 , satisfying ∀% ′ ⊏ % .2 ∉ ⟦% ′⟧. The implementation of Initialize is
decribed in Section A of our supplementary material. The Mutate : P→ P(P) function returns the
set of mutated programs:

Mutate(%) = {% ′ | %
↑
{ % ′}

where
↑
{ denotes one-step mutation of the program for the bottom-up algorithm in Figure 7, and

it strictly increases the generality of the program % . We skip the detailed description of the
↑
{ rules

because they are similar to the
↓
{ rules in Figure 6 but with opposite semantics. How to generalize

interval vectors for program mutation (i.e., GeneralizeItv) is also a design choice. We generalize an
interval by replacing a lower bound or an upper bound with −∞ or∞, respectively. The detailed
implementation of our GeneralizeItv is described in Section A of our supplementary material.

Example. Consider the example in Section 5.2 again but now with the bottom-up algorithm.

(1) The algorithm first generates the most specific program for the node E1 in �1:

⟨[1.2, 1.2]⟩

a

⟨[0.2, 0.2]⟩

b

⟨[0.4, 0.4]⟩

c

⟨[0.8, 0.8]⟩

d

.

Then, it can describe only E1, and its quality score isk =
| {E1 } |
| {E1 } |+1

=
1
2
.

(2) The algorithm can mutate the program into a more general one by applying the RemoveNode
rule to remove the variable d:

⟨[1.2, 1.2]⟩

a

⟨[0.2, 0.2]⟩

b

⟨[0.4, 0.4]⟩

c

.

While its quality scorek is still 1
2
, the mutated program is strictly more general (⊏) than the

previous one. Therefore, it is selected as the next program to be mutated.
(3) After five more mutations using the RemoveNode and GeneralizeNode rules, it generates:

⟨[−∞,∞]⟩

a

⟨[−∞,∞]⟩

b

.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.

PL4XGL: A Programming Language Approach to Explainable Graph Learning 234:13

where its quality score isk =
| {E1,E4 } |
| {E1,E4 } |+1

=
2
3
.

(4) Now, since no more better program exists as the result of the mutation, the algorithm
terminates and returns the above program as the synthesized candidate program.

In our evaluation, the top-down algorithm shows strength in discovering important feature
values, while the bottom-up algorithm excels at capturing key graph structures. The detailed
observations are discussed in Section E of our supplementary material.

Discussion. Our synthesis algorithms may fail to find optimal GDL programs maximizing the score
k . This is because the two synthesis algorithms perform a greedy search; they may end up with a
local optimum. We would like to note that designing a sound (i.e., synthesize optimal programs)
or complete (i.e., synthesized programs are optimal) algorithm for the GDL synthesis problem is
challenging because it is difficult to check whether a given GDL program is the globaly best-scored
one or not in the search space.

6 EVALUATION

We implement PL4XGL in Python and evaluate our model compared to the state-of-the-art GNN
explanation technique, SubgraphX [Yuan et al. 2021], to answer the following research questions:

• RQ1 (Explanation Cost): How much faster is PL4XGL compared to SubgraphX in produc-
ing explanations for classification results?
• RQ2 (Correctness of Explanations): Does PL4XGL guarantee to produce correct explana-
tions for classification results while SubgraphX does not?
• RQ3 (Classification Accuracy): How accurately does PL4XGL classify graph components
compared to GNN-based models while providing explanations?

We evaluate PL4XGL on graph and node classification tasks, which are two main applications of
graph neural networks [Wu et al. 2021].

Datasets for Graph Classification. For graph classification, we use four real-world molecular
datasets [Debnath et al. 1991; Wu et al. 2018]:MUTAG, BBBP, BACE, and HIV. These molecular
datasets have been widely used for evaluating graph-classification models [Li et al. 2022; Xu et al.
2019; Ying et al. 2019] as well as for evaluating GNN explanation techniques [Luo et al. 2020; Ying
et al. 2019; Yuan et al. 2022, 2021]. A node and an edge in the molecular datasets represent an atom
and a bond of a molecule, respectively. In theMUTAG dataset, the node and edge features present the
types of atoms (i.e., carbon, nitrogen, oxygen, fluorine, iodine, chlorine, and bromine) and bonds (i.e.,
aromatic, single, double, and triple), and the graph labels indicate mutagenicity (mutagenic effects)
on Salmonella typhimurium. In the BBBP, BACE, and HIV datasets, the node features describe
chemical and topological properties such as atomic numbers and degrees. Edge features present
chemical properties such as bond types. The labels in the BBBP dataset indicate the blood-brain
barrier permeability, where predicting the penetration is a long standing problem in development of
drugs targeting central nervous system [Morofuji and Nakagawa 2020]. The labels in BACE present
qualitative (binary label) binding results for a set of inhibitors of human beta-secretase 1 (BACE-1).
The labels in the HIV dataset indicate the ability to inhibit HIV replication.

Datasets for Node Classification. For node classification, we use eight datasets in three different
domains: 1) two for synthetic datasets [Yuan et al. 2022], 2) three forweb page datasets [Pei et al. 2020],
and three for citation network datasets [Wu et al. 2021]. The two synthetic datasets BA-Shapes and
Tree-Cycles also have been widely used for evaluating and comparing various GNN explanation
methods [Luo et al. 2020; Ying et al. 2019; Yuan et al. 2022, 2021]. (1) The BA-Shapes dataset is
constructed with a base Barabási-Albert (BA) graph on 300 nodes, and 80 house-structured motifs.
Each house-structured motif consists of five nodes and is attached to a node randomly selected from

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.

234:14 Minseok Jeon, Jihyeok Park, and Hakjoo Oh

Table 1. Statistics of the datasets

Graph classification Node classification

Molecular datasets Synthetic datasets Web page datasets Citation networks
MUTAG BBBP BACE HIV BA-Shapes Tree-Cycles Wisconsin Texas Cornell Cora Citeseer Pubmed

Graphs 188 2,039 1,513 41,127 1 1 1 1 1 1 1 1
Nodes (avg) 17.9 24.0 34.0 25.5 700 871 183 183 251 2,708 3,327 19,717
Edges (avg) 19.7 25.9 36.8 27.5 2,055 971 450 279 277 5,278 4,552 44,324
Labels 2 2 2 2 4 2 5 5 5 7 6 3
Node features 1 9 9 9 1 1 1,703 1,703 1,703 1,433 3,703 500
Edge features 1 3 3 3 0 0 0 0 0 0 0 0

3

11

220

0

0

00

00

00

(a) BA-Shapes

1

1

1

1

1

10

0

0

0 00 0

(b) Tree-Cycles

Fig. 8. Simplified examples of synthetic datasets. Numbers in nodes represent the labels nodes belong to.

the base BA graph. Additionally, 70 random edges are added to the resulting graph for perturbation.
There are four different node labels based on their structural roles. Nodes that do not belong to
house-structured motifs are assigned label 0, and each house motif consists of a top node (label 3),
two middle nodes (label 1), and two bottom nodes (label 2). A middle node in a motif is connected
to the base BA graph. Figure 8a shows an example of a house-structured motif attached to a base
graph and describes how nodes are labeled differently. (2) The Tree-Cycles dataset consists of a
base 8-level balanced binary tree (label 0) and 80 six-node cycle motifs (label 1). Each cycle motif
is randomly attached to the base binary tree, and 87 edges are randomly added to the resulting
graph. In both BA-Shapes and Tree-Cycles, we used degrees (i.e., # of edges of a node) as a node
feature. In the web page datasets (Wisconsin, Texas, and Cornell), nodes and edges represent
web pages and hyperlinks, respectively, and the labels represent the categories (i.e., student, project,
course, staff, and faculty). In the citation networks (Cora, Citeseer, and Pubmed), nodes and edges
represent documents and citation links, respectively, and the labels represent document classes. In
these six datasets, nodes are associated with bag-of-words feature vectors.

Baseline GNN-based Models for SubgraphX. For a fair comparison with SubgraphX, we use
the original experimental setting of SubgraphX as much as possible. The baseline GNN-based
models for SubgraphX are GIN [Xu et al. 2019] and GCN [Kipf and Welling 2017] because they
are used for evaluation in the original paper of SubgraphX and also the most popular models
on which other recent GNN explanation techniques have been evaluated [Luo et al. 2020; Ying
et al. 2019; Yuan et al. 2021]. For graph classification tasks, we use GCN for BBBP and GIN for
MUTAG, BACE, and HIV as the baseline GNN-based model. For node classification tasks, we use
GCN as the baseline GNN-based model for all five datasets. We split the datasets into 8:1:1 for
training, validation, and testing sets, respectively. For the two molecular datasets MUTAG and
BBBP, we utilize the data split used in Yuan et al. [2021]. We applied a random split to the other
remaining datasets. In our evaluation, PL4XGL used an AMD Ryzen Threadripper 3990X with 64
cores. The GNNs and SubgraphX used an NVIDIA RTX A6000 GPU for training and producing
the explanations.

6.1 RQ1. Explanation Cost

We first compare the explanation cost of PL4XGL and SubgraphX [Yuan et al. 2021]. We used
the artifact of Liu et al. [2021] that provides the implementation of SubgraphX. For a thorough
comparison, we also compare the training and classification costs.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.

PL4XGL: A Programming Language Approach to Explainable Graph Learning 234:15

Table 2. Cost comparison between PL4XGL and the baseline GNN with SubgraphX in minutes. The rows
“Training” show the cost of training the model, “Classification” show the cost of classifying the test sets, and
“Explanation” show the cost of producing explanations for the test sets. The rows “Total” show the sum of
the three costs. The bold numbers indicate the be�er (i.e., lower) ones. ‘timeout’ indicates that the method
failed to finish its task within the time budget (2 days for training, 1 day for classification, and 4 days for
explanation).

Dataset Cost (minutes)
GNN+

SubgraphX
PL4XGL Dataset Cost (minutes)

GNN+

SubgraphX
PL4XGL

MUTAG

Training 0.2 12.3

Wisconsin

Training 0.4 8.0

Classification 0.1 0.1 Classification 0.1 0.1

Explanation 8.4 0.0 Explanation 69.3 0.0

Total 8.7 12.4 Total 69.5 8.1

BBBP

Training 1.0 34.3

Texas

Training 0.4 5.0

Classification 0.1 0.7 Classification 0.1 0.1

Explanation 160.0 0.0 Explanation 52.1 0.0

Total 161.1 35.0 Total 52.3 5.1

BACE

Training 1.0 60.6

Cornell

Training 0.3 5.0

Classification 0.1 4.0 Classification 0.1 0.1

Explanation 141.1 0.0 Explanation 95.8 0.0

Total 142.2 69.9 Total 96.0 5.1

HIV

Training 12.2 timeout

Cora

Training 0.4 61.6

Classification 0.1 N/A Classification 0.1 0.9

Explanation 2887.8 N/A Explanation timeout 0.0

Total 2900.1 timeout Total timeout 62.5

BA-Shapes

Training 0.1 0.2

Citeseer

Training 0.4 245.2

Classification 0.1 0.1 Classification 0.1 2.0

Explanation 4756.0 0.0 Explanation timeout 0.0

Total 4756.2 0.2 Total timeout 247.2

Tree-Cycles

Training 0.1 0.2

Pubmed

Training 0.6 2702.9

Classification 0.1 0.1 Classification 0.1 17.0

Explanation 3.4 0.0 Explanation timeout 0.0

Total 3.6 0.2 Total timeout 2719.9

Table 2 shows the cost comparison in minutes. The columns “GNN+SubgraphX” and “PL4XGL”
represent the cost of the baseline and PL4XGL, respectively. The rows “Training”, “Classification”,
and “Explanation” present the respective costs for training the model, classifying the test sets, and
generating explanations for the test sets. The rows “Total” sum the three costs. The bold numbers
indicate the better (i.e., lower) ones. The term “timeout” means the method failed to finish its task
within the time budget. The time budget was 2 days for training, 1 day for classification, and 4 days
for generating explanations.
As PL4XGL is designed to produce explanations for predictions simultaneously, its explana-

tion cost is always 0. By contrast, the explanation cost of SubgraphX was significant. For the
BA-Shapes dataset, SubgraphX took about 3 days to produce explanations for the test set. Sub-
graphX took this amount of time because it explored a huge number of candidate subgraphs. For
example, to explain a single node belonging to the Barabási-Albert graph (label 0), SubgraphX had
to explore 2355 candidate subgraphs. Note that SubgraphX failed to produce explanations for the
three citation network datasets because of its expensive explanation cost. In terms of classification
and explanation costs (i.e.,“Classification” + “Explanation”), PL4XGL was at least 35 times faster.

The classification and training costs, however, show a trade-off of PL4XGL. In the largest dataset
HIV, for example, PL4XGL failed to finish its learning within the time budget (i.e., 2 days), whereas

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.

234:16 Minseok Jeon, Jihyeok Park, and Hakjoo Oh

the baseline finished its learning within 12.2 minutes. In the Pubmed dataset, the classification task
took 17.0 minutes in PL4XGL, while the classification cost of the baseline was negligible. However,
we would like to note that except for the MUTAG and HIV datasets, PL4XGL outperforms the
baseline in terms of the “Total” cost.

6.2 RQ2. Correctness of Explanations

Now, we compare the correctness (i.e., whether the provided explanations reflect the actual reasons
for the classifications) of those explanations produced by PL4XGL and SubgraphX with widely
used metrics. For evaluating the quality of GNN explanation techniques, various metrics have
been proposed [Kakkad et al. 2023; Yuan et al. 2022]. Unfortunately, however, there is no metric
that can directly measure the correctness of the explanations because the actual reasons for the
classifications are unavailable in black-box models (GNNs). Instead, Fidelity, which can be seen as a
proxy metric for measureing the correctness, has been widely used [Lucic et al. 2022].

Fidelity is designed for quantifying the faithfulness of subgraph explanations to the underlying
model, and variations of Fidelity exist [Yuan et al. 2022]. In our evaluation, we employ Fidelity−acc ,
which is applicable to both PL4XGL and SubgraphX. The insight behind the metric Fidelity−acc is
that if a provided explanation subgraph is the actual reason for a prediction on an original graph,
then the model ought to classify the subgraph into the same label. Fidelity−acc assesses whether
the model’s predictions for the subgraphs are identical to the original ones as follows:

Fidelity−acc =
1

#

#∑

8=1

(1(~̂8 = ~8) − 1(~̂
<8

8 = ~8)) (lower is better).

is the number of explained classifications, ~8 represents an original classification result (for the
8th component in the test set), ~̂8 is the classification result for the original graph.<8 presents the
nodes in the explanation subgraph, and ~̂<8

8 presents the classification result for the subgraph. The
indicator function 1(0 = 1) equals 1 if 0 and 1 are the same, and 0 otherwise. Then, the equation
1(~̂8 = ~8) − 1(~̂<8

8 = ~8) equals 0 if the model produces the same label for the given subgraph,
and 1 otherwise. In Fidelity−acc , a lower score indicates the greater faithfulness. For simplicity, we
denote Fidelity−acc as Fidelity.
Sparsity is typically evaluated in conjunction with Fidelity. Evaluating Fidelity alone is insufficient

for comparing explanations, as using the original graphs as subgraph explanations would result in
an optimal Fidelity score of 0. The key insight behind Sparsity is that effective explanations should
be sparse and simple; smaller subgraphs are considered better. The formal definition of Sparsity is:

Sparsity =
1

#

#∑

8=1

(1 −
|<8 |

|"8 |
) (higher is better)

where |<8 | and |"8 |
3 denote the number of nodes in the explanation subgraph and the original

graph, respectively. In Sparsity, the higher is the better, implying greater simplicity.
As the two metrics above are designed to compare subgraph explanations, we translated the

GDL program explanations of PL4XGL into subgraph explanations. Figure 9 shows how a GDL
program is translated into a subgraph. The column “Original graph” presents a graph � in the
MUTAG dataset classified by PL4XGL. The column “GDL program” denotes the provided explanation

program % = X target graph for the classification. The column “Transformed subgraph” presents

a transformed subgraph � ′ ∈ {� |[| (�,[) ∈ ⟦X⟧}. In the explanation, the black colored edges

3In node classification datasets where the size of the original graph is large (e.g., #nodes is 700 in a graph), we define"8 as

the number of nodes within two (Wisconsin, Texas, and Cornell) or three hops (BA-Shapes and Tree-Cycles) from the

target explained node. This adjustment is for more meaningful comparison of explanation sparsity [Yuan et al. 2021].

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.

PL4XGL: A Programming Language Approach to Explainable Graph Learning 234:17

Original graph � GDL program % Transformed subgraph � ′

⟨[−∞,∞]⟩

⟨[−∞,∞]⟩

⟨[−∞,∞]⟩

⟨[−∞,∞]⟩ ⟨[1,∞]⟩

⟨[2,∞]⟩

⟨[1, 1]⟩

Fig. 9. How we translate a GDL program into a subgraph explanation.

0.2 0.3 0.4 0.5 0.6 0.7

Sparsity

0.0

0.1

0.2

0.3

0.4

0.5

F
id
el
it
y

PL4XGL

MUTAG

SubgraphX

0.4 0.5 0.6 0.7

Sparsity

0.000

0.025

0.050

0.075

0.100

0.125

0.150

F
id
el
it
y

PL4XGL

BBBP

SubgraphX

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sparsity

0.0

0.1

0.2

0.3

0.4

F
id
el
it
y

PL4XGL

BACE

SubgraphX

0.5 0.6 0.7 0.8

Sparsity

0.002

0.004

0.006

0.008

0.010

0.012

0.014

F
id
el
it
y

HIV

SubgraphX

0.3 0.4 0.5 0.6 0.7

Sparsity

0.0

0.1

0.2

0.3

F
id
el
it
y

PL4XGL

Tree-Cycles

SubgraphX

0.60 0.65 0.70 0.75 0.80 0.85 0.90

Sparsity

0.0

0.2

0.4

0.6

F
id
el
it
y

PL4XGL

BA-Shapes

SubgraphX

0.6 0.7 0.8 0.9

Sparsity

0.00

0.05

0.10

0.15

0.20

0.25

F
id
el
it
y

PL4XGL

Wisconsin

SubgraphX

0.6 0.7 0.8 0.9

Sparsity

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

F
id
el
it
y

PL4XGL

Texas

SubgraphX

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

Sparsity

0.0

0.1

0.2

0.3

0.4

0.5

F
id
el
it
y

PL4XGL

Cornell

SubgraphX

Fig. 10. Comparison of Fidelity and Sparsity between PL4XGL and SubgraphX. The size of the subgraph
explanations is parameterized in SubgraphX; the blue lines show how Fidelity and Sparsity changes over the
chosen hyperparameter values (i.e., size of the explanations). In PL4XGL, the size of explanation is determined
by the model. The squares (□) present Fidelity and Sparsity of PL4XGL’s explanations.

represent edge descriptions with the most general constraint ⟨[−∞,∞]⟩; they describe all the types
of bonds. The column “Transformed subgraph” presents a subgraph (bold edges) described by

the GDL program % . For example, the node descriptions ⟨[−∞,∞]⟩ , ⟨[1, 1]⟩ , ⟨[2,∞]⟩ , ⟨[1,∞]⟩ are
valuated as carbon (C), nitrogen (N), chlorine (cl), and oxygen (O). For a given graph � , multiple

subgraphs of it can be described by a GDL program % (i.e., |{� |[| (�,[) ∈ ⟦X⟧}| > 1). However, all

the subgraphs in {� |[| (�,[) ∈ ⟦X⟧} have the same Sparsity score because the subgraphs have the
same number of nodes. Also, they are guaranteed to achieve the same Fidelity score (Theorem 6.1).
Figure 10 compares Fidelity and Sparsity of PL4XGL and SubgraphX for the nine datasets.

Fidelity and Sparsity of SubgraphX are not available for the citation networks as it failed to produce
explanations. Similarly, these metrics of PL4XGL are not available for the HIV dataset. In the plots,

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.

234:18 Minseok Jeon, Jihyeok Park, and Hakjoo Oh

Table 3. Fidelity and Sparsity score of PL4XGL for the citation networks. As SubgraphX failed to produce
explanations within the time budget (i.e., four days), the values are unavailable (N/A).

Fidelity Sparsity

Cora Citeseer Pubmed Cora Citeseer Pubmed

PL4XGL 0.0 0.0 0.0 0.82 0.66 0.92

SubgraphX N/A N/A N/A N/A N/A N/A

Table 4. Explanations produced by PL4XGL and SubgraphX for the synthetic datasets.

BA-Shapes Tree-Cycles

P
L
4
X
G
L

Label 0 Label 1 Label 2 Label 3 Label 0 Label 1

S
u
b
g
r
a
p
h
X

⟨[12,∞]⟩

⟨[−∞,∞]⟩

⟨[12,∞]⟩

⟨[4,∞]⟩

⟨[3, 4]⟩

⟨[2, 2]⟩

⟨[2, 2]⟩

⟨[2, 2]⟩

⟨[4,∞]⟩

⟨[2, 2]⟩

⟨[3, 4]⟩

⟨[3, 5]⟩

⟨[3, 3]⟩

⟨[3, 3]⟩

⟨[−∞,∞]⟩

⟨[−∞, 2]⟩

⟨[−∞, 2]⟩

the Y-axis represents Fidelity, with lower values indicating better, more faithful explanations. The
X-axis denotes Sparsity, where higher values correspond to simpler (and thus better) explanations.
In the plots, the squares and blue lines represent the performance of PL4XGL and SubgraphX,
respectively. When explaining a prediction, SubgraphX provides a subgraph that can include at
most : nodes where the value of : is a hyperparameter given by users. In our experiments, we
used : values ranging from 5 to 40 for graph classification and from 1 to 30 for node classification.
Unlike SubgraphX, the Fidelity and Sparsity values of PL4XGL are fixed as the model itself chooses
the size of the explanations.

Figure 10 demonstrates that PL4XGL provides significantly more faithful yet sparse explanations
compared to SubgraphX. PL4XGL outperforms SubgraphX in terms of Fidelity for all datasets,
achieving the optimal score of 0. We would like to note that Fidelity of PL4XGL is guaranteed to be
0 for any dataset. In graph classifications, for example, the following theorem holds.4

Theorem 6.1. If PL4XGL classifies a graph � into a label 8 and provides a GDL program % as an
explanation, PL4XGL classifies all the subgraphs transformed from % into the same label 8 .

The explanations of PL4XGL are also sparse. The transformed subgraphs consist of about only
21% of the nodes in the original graphs. PL4XGL also provided simple (high Sparsity score) and
model-faithful (low Fidelity score) explanations for the citation networks as described in Table 3. The
explanations of PL4XGL are also general that can be applicable to a more number of predictions
compared to SubgraphX. Due to the space limit, the detailed results are presented and discussed
in Section D of our supplementary material.

Qualitative Comparison on the Synthetic Datasets. In the synthetic datsets, where the labels
have certain properties, the quality of the explanations can therefore be measured by checking
whether the properties are identified or not. The rows “PL4XGL” and “SubgraphX” in Table 4 present
the explanations provided by PL4XGL and SubgraphX. Each column presents the explanation for
a label in the datasets.

4See Section B of our supplementary material for the proof and the corresponding theorem for node classification.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.

PL4XGL: A Programming Language Approach to Explainable Graph Learning 234:19

Table 5. Classification accuracy (%) comparison of PL4XGL against representative GNNs.

GCN GAT ChebyNet JKNet GraphSage GIN DGCN PL4XGL

MUTAG 80.0±0.0 89.0±2.2 86.0±4.1 68.0±7.5 78.0±4.4 91.0±5.4 N/A 100.0±0.0
BBBP 83.6±1.4 82.3±1.6 84.6±1.0 85.6±1.9 86.6±0.9 86.2±1.4 N/A 86.8±0.0
BACE 78.4±2.8 52.4±3.3 78.9±1.4 79.9±1.9 79.8±0.8 80.9±0.4 N/A 80.9±0.0
HIV 96.4±0.0 96.4±0.0 96.8±0.2 96.8±0.1 96.9±0.2 96.8±0.1 N/A N/A

BA-Shapes 95.1±0.6 76.8±2.3 97.1±0.0 94.3±0.0 97.1±0.0 92.0±1.1 95.1±0.7 95.7±0.0
Tree-Cycles 97.7±0.0 90.9±0.0 100.0±0.0 98.9±0.0 100.0±0.0 93.2±0.0 99.2±0.5 100.0±0.0

Wisconsin 64.0±0.0 49.6±3.1 86.4±3.9 64.8±1.5 92.8±2.9 56.0±0.0 96.0±0.0 88.0±0.0
Texas 67.7±5.3 50.0±0.0 87.7±2.1 68.8±4.3 86.6±2.6 50.0±0.0 86.6±2.6 83.3±0.0

Cornell 58.9±2.6 61.1±0.0 81.0±6.5 61.1±0.0 87.7±2.1 61.1±0.0 86.6±2.6 88.8±0.0

Cora 85.6±0.3 86.4±1.8 86.5±5.2 84.9±3.5 86.3±3.2 86.7±0.0 83.2±5.9 80.0± 0.0

Citeseer 75.2±0.0 74.3±0.7 79.1±0.9 73.7±4.2 75.9±2.3 75.2±0.0 71.3±6.0 63.8± 0.0

Pubmed 82.8±1.1 84.7±1.2 88.7±1.0 83.2±0.4 88.0±0.4 86.1±0.6 85.1±0.6 81.4±0.0

The GDL programs in Table 4 describe the properties of the synthetic datasets. For example,
⟨[12,∞]⟩ ⟨[−∞,∞]⟩ ⟨[12,∞]⟩ presents a property of a Barabási-Albert (BA) graph (i.e., label 0 in
BA-Shapes), which is often used to model several human-made networks (e.g., world wide web),
a majority of nodes (e.g., web pages) are connected with other nodes that have a large number
of edges. The program precisely and robustly desribed nodes in the Barabási-Albert graphs. In
the BA-Shapes dataset, 97% of the nodes in label 0 are described by the program, and 99% of

the nodes belong to the program have the label 0. ⟨[2, 2]⟩ ⟨[2, 2]⟩ describes a property of a
bottom node (label 2) in house motifs that has two edges and is connected to another bottom node.
⟨[4,∞]⟩ ⟨[3, 4]⟩ ⟨[2, 2]⟩ explains that the middle nodes (label 1) have three or four edges and can be

connected to any type of nodes (e.g., top, middle, bottom, and BA nodes), where ⟨[2, 2]⟩ describes

a top or bottom node, and ⟨[4,∞]⟩ a middle node or a node in the BA graph (that has at least four
edges). ⟨[4,∞]⟩ ⟨[2, 2]⟩ ⟨[3, 4]⟩ captures that top nodes (label 3) have two edges and are connected

with two middle nodes who have three or four edges. ⟨[3, 4]⟩ and ⟨[4,∞]⟩ capture the middle nodes
that have three and four nodes, respectively. In the Tree-Cycles dataset, ⟨[3, 5]⟩ ⟨[3, 3]⟩ ⟨[3, 3]⟩

describes a property of internal nodes in a binary tree (label 0). ⟨[−∞,∞]⟩ ⟨[−∞, 2]⟩ ⟨[−∞, 2]⟩ describes
a property of the nodes in Cycle motifs (label 1) that have an adjacent node that has two edges, and
the adjacent node also has another adjacent node that has two edges.

The subgraph explanations of SubgraphX capture the key subgraphs (i.e., motifs) for the labels.
The subgraphs (bold edges) in Table 4 explain why the red-colored nodes are classified into the
corresponding labels. For example in Label 1 of the Tree-Cycles dataset, the explanation illustrates
that the node is classified into Label 1 because the node is in a cycle motif.

6.3 RQ3. Classification Accuracy

Now, we compare the classification accuracy of PL4XGL against representative GNNs.

Baseline GNNs.We evaluate the classification accuracy of PL4XGL in comparison with seven graph
neural networks: GCN [Kipf and Welling 2017], GAT [Veličković et al. 2018], ChebyNet [Defferrard
et al. 2016], JKNet [Xu et al. 2018], GraphSage [Hamilton et al. 2017], GIN [Xu et al. 2019], and
DGCN [Park et al. 2022]. GCN, GAT, GIN are provided by the artifact of SubgraphX [Yuan et al.
2021], and we additionally implemented ChebyNet, JKNet, and GraphSage. We chose these GNNs
(except for the last) from a recent survey [Wu et al. 2021], which introduces representative GNN
models. For comparison with more recent GNNs, we include DGCN [Park et al. 2022], which
addressed limitations of GNNs in classifying heterophilic graphs such as the graphs in the web page
datasets. Details of training GNNs are described in Section C of our supplementary material.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.

234:20 Minseok Jeon, Jihyeok Park, and Hakjoo Oh

Table 6. How the learning cost and accuracy change with respect to the value of : in Mutate: .

Mutate Mutate2 Mutate3 Mutate4 Mutate5 Mutate6 Mutate7 Mutate8

BA-Shapes
Training cost (s) 1 2 8 19 39 100 392 1845

Accuracy 90 95.7 95.7 94.2 95.7 95.7 95.7 95.7

Tree-Cycles
Training cost (s) 1 3 5 10 20 63 108 1492

Accuracy 70.4 100 100 100 98.8 98.8 98.8 98.8

Classification Accuracy. Table 5 compares the classification accuracy, which reports the mean
accuracy over five runs along with the corresponding 95% confidence intervals. Since learning GNNs
is affected by random seeds, the five runs may show different performance. PL4XGL, however, does
not use such random seeds; the five runs produced the same accuracy. The results demonstrate
that PL4XGL achieves competitive accuracy in comparison to the baseline GNN models. The
classification accuracy of DGCN is not available for the graph classification datasets as DGCN is
designed for node classification tasks [Park et al. 2022]. For the five datasetsMUTAG, BBBP, BACE,
Tree-Cycles, and Cornell, PL4XGL shows the best accuracy. In the three datasets BA-Shapes,
Wisconsin, and Texas, PL4XGL shows the third or fourth-best accuracy. In the three citation
network datasets, PL4XGL achieved the worst accuracy, and it shows a limitation of our approach
discussed in Section 7. We would like to note that PL4XGL shows the best accuracy for the three
molecular datasets, which are decision-critical datasets related to the development of safe drugs.

Qualitative Analysis. PL4XGL achieved the high accuracy for the five datasetsMUTAG, BBBP,
BACE, Tree-Cycles, and Cornell thanks to the learned high-quality GDL programs. For instance,
the following GDL program contributed significantly to the high accuracy in the MUTAG dataset:

⟨[−∞,∞]⟩ ⟨[0, 0]⟩ ⟨[−∞,∞]⟩

⟨[−∞,∞]⟩

⟨[−∞,∞]⟩ ⟨[−∞,∞]⟩ ⟨[−∞,∞]⟩ ⟨[−∞,∞]⟩ ⟨[−∞,∞]⟩

In the GDL program, the black colored edges and nodes with the constraint ⟨[−∞,∞]⟩ denote
any type of bonds (e.g., aromatic, single, double, triple) and atoms (e.g., carbon, nitrogen, oxygen,
fluorine, iodine, chlorine, bromine), respectively. The green colored edges and the nodes with the
constraint ⟨[0, 0]⟩ represent aromatic bonds and carbons, respectively. In the classification task,
the above GDL program classified 45% of the test graphs, all of which were correctly classified.
We guess the above GDL program captures a key pattern of the mutagenic effects on Salmonella
typhimurium. In the MUTAG dataset, the above GDL program describes only the mutagenetic
molecules (i.e., precision = 100%), and 77% of the mutegenic molecules are described by the above
GDL program (i.e., recall = 77%).

Impact of the enumeration depth. Table 6 shows how the value of : inMutate: (fromAlgorithm 1)
affected the training cost and accuracy on the two synthetic datasets. In Table 6, the rows “Training
cost (s)” present the training cost in seconds, and the rows “Accuracy” present the classification
accuracy for the test sets. The results show that using the smallest : (i.e., : = 1) was insufficient
for achieving high accuracy in the two synthetic datasets. This was because the search algorithm
failed to discover high-quality GDL programs with the smallest search depth. We would like to
note that we used : = 1 for the ten real-world datasets because using a larger : (e.g., : = 2) failed
its learning within the time budget. However, the results also indicate that using an excessively
large : (e.g., : = 8) may lower the accuracy. In the Tree-Cycles dataset, the accuracy decreased
from 100% to 98.8% when : increased from 2 to 8. This was because the algorithm synthesized an
overfitted GDL programs when it used the large search depth.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.

PL4XGL: A Programming Language Approach to Explainable Graph Learning 234:21

7 DISCUSSION

This section discusses limitations of PL4XGL and future work. In addition, we compare the expres-
siveness of GDL against subgraphs as a graph pattern description language.

7.1 Limitations and Future Work

PL4XGL has inherent strength in explainability, but it currently has many limitations and much
room for improvement.

Limited Expressiveness of GDL. The current language is not expressive enough to describe
diverse graph properties; GDL may not capture key properties of datasets, which may lead to
suboptimal accuracy. For example, PL4XGL showed relatively lower accuracy for the citation
network datasets (Cora, Citeseer, Pubmed) because the current GDL is unable to describe key
properties of the datasets. Citation networks are homophilic graphs (i.e., nodes in the same labels
are usually connected), and GNNs are particularly effective for such datasets because they are
designed under the assumption that input graphs are homophilic [Park et al. 2022]. However,
PL4XGL failed to achieve high accuracy for the datasets because the current GDL is unable to
describe this homophilic property. There exist many other properties that the current GDL is unable
to describe (e.g., “molecules containing more oxygens than chlorines”). Therefore, enhancing the
expressiveness of GDL is a promising research direction, potentially improving the performance of
PL4XGL across diverse datasets.

Expensive Training andClassificationCosts.Though the explanation cost is removed, PL4XGL re-
quires significantly higher training and classification costs compared to the baseline GNNs. As
described in Table 2, PL4XGL failed its learning in the HIV dataset, and the classification cost of
PL4XGL is 170 times higher than the baseline GNN in the Pubmed dataset. The expensive training
and classification costs mainly come from the current approach generating too many GDL programs.
We would like to note that the model used only a few learned GDL programs for the classification
task. In the MUTAG dataset, for example, PL4XGL used only 5% of the learned GDL programs.
Therefore, if the training process could be optimized to learn and retain only the essential GDL
programs, training and classification costs could be significantly reduced.

7.2 Expressiveness Comparison between Subgraph and GDL

As a graph pattern description language, GDL is strictly more expressive than subgraphs. That is, a
subgraph can be represented by a GDL program, but not vice versa. For example, the following
subgraph � ′ describes a graph pattern that three nodes are connected by two edges where each
node and edge has the same feature vector ⟨1.0⟩:

� ′ = ⟨1.0⟩

E1

⟨1.0⟩

E2

⟨1.0⟩

E3
⟨1.0⟩ ⟨1.0⟩

.

The above subgraph can be described by the following GDL program % :

% =
⟨[1.0, 1.0]⟩

x

⟨[1.0, 1.0]⟩

y

⟨[1.0, 1.0]⟩

z
⟨[1.0, 1.0]⟩ ⟨[1.0, 1.0]⟩

.

The subgraph � ′ and the GDL program % above describe the same graph pattern. However, the
following GDL program % ′, where each node and edge variable has a feature value constraint
⟨[0.0, 5.0]⟩, cannot be equivalently described by a single subgraph:

% ′ = ⟨[0.0, 5.0]⟩

x

⟨[0.0, 5.0]⟩

y

⟨[0.0, 5.0]⟩

z
⟨[0.0, 5.0]⟩ ⟨[0.0, 5.0]⟩

.

This is because nodes and edges in a subgraph are associated with concrete feature values, unlike
the more flexible representations possible with GDL.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.

234:22 Minseok Jeon, Jihyeok Park, and Hakjoo Oh

8 RELATED WORK

In this section, we discuss previous work closely related to ours.

Improving Explainability of Graph Neural Networks. Instead of developing a new method
for explainable graph learning, numerous works have focused on improving explainability of
graph neural networks [Feng et al. 2022a; Funke et al. 2021; Lucic et al. 2022; Pope et al. 2019;
Schnake et al. 2021; Vu and Thai 2020a; Wu et al. 2022; Ying et al. 2019; Zhang et al. 2021, 2022].
GraphMask [Schlichtkrull et al. 2021] and PGExplainer [Luo et al. 2020] learn a classifier that
predicts whether the removal of an edge would affect the classification results; they use the learned
classifier to identify important subgraphs. GraphLime [Huang et al. 2022] identifies important
node features by fitting a feature selection algorithm, Hilbert-Schmidt Independence Criterion
Lasso, to local classification results of the given GNNs. Similarly, PGM-Explainer [Vu and Thai
2020b] uses bayesian network to explain local classification results of GNNs. KerGNN [Feng et al.
2022b] classifies a node with its pre-trained graphs, named graph filters, using graph kernels that
measure the similarity of the subgraph of the node and the graph filters. The used graph filters
can be provided as explanations. Instead of providing instance-level explanations, XGNN provides
model-level explanations. XGNN [Yuan et al. 2020] uses reinforcement learning to generate graph
patterns that maximize certain prediction of the given GNN.

Graph Pa�ern Description Languages. In the literature, subgraphs have been used as a dominant
graph pattern description language; GDL can be employed instead of subgraphs. For example,
graph data mining and GNN explanation techniques [Kakkad et al. 2023; Ramraj and Prabhakar
2015] have produced valuable subgraphs in graph datasets. Inokuchi et al. [2000] use the Apriori-
based algorithm to mine frequent subgraphs. The Apriori-based algorithm searches frequent
patterns from a simple one to a complex one like our top-down synthesis algorithm. Yan and
Han [2002] use a pattern growth approach that employs DFS to enumerate possible subgraphs.
Existing GNN explanation techniques also try to find valuable subgraphs [Ye et al. 2023] for
explaining predictions of GNNs. As discussed in Section 7.2, GDL is strictly more expressive
than subgraphs; GDL can be employed in graph data mining and GNN explanation techniques.
For example, ⟨[12,∞]⟩ ⟨[−∞,∞]⟩ ⟨[12,∞]⟩ precisely (precision = 99%) and robustly (recall = 97%)
describes a key property of nodes in the Barabási-Albert graph thanks to the abstract feature values
[12,∞] and [−∞,∞], which are unavailable in the subgraph-based graph pattern descriptions.

9 CONCLUSION

In this paper, we investigated a new approach to accurate and explainable machine learning on
graphs. Deviating from the mainstream approaches based on GNNs, we developed a new graph
learning approach using two programming language techniques. First, we designed a domain-
specific language, GDL, for interpretable graph learning models; GDL programs serve as the source
code for our models. Second, we formulated the learning problem as a GDL program synthesis
problem and adapted two representative synthesis algorithms to learn GDL programs from training
data. The experimental results showed that our approach accurately classifies graph data and
provides correct explanations. We believe that our work can pave the way for future work that will
be both fascinating and useful in applying programming language techniques to graph learning
(and beyond).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.

PL4XGL: A Programming Language Approach to Explainable Graph Learning 234:23

DATA-AVAILABILITY STATEMENT

The artifact of PL4XGL is available in Zenodo [Jeon 2024] and GitHub5. The artifact includes the
implementation of PL4XGL, the datasets used in the evaluation, and the evaluation scripts.

ACKNOWLEDGMENTS

We thank Seunghun Lee and Seongjun Yun for their helpful comments on the baseline GNNs. This
work was partly supported by Institute of Information & communications Technology Planning
& Evaluation (IITP) grant funded by the Korea government(MSIT) (No.2020-0-01337,(SW STAR
LAB) Research on Highly-Practical Automated Software Repair) and by ICT Creative Consilience
Program through the Institute of Information & Communications Technology Planning & Eval-
uation(IITP) grant funded by the Korea government(MSIT) (IITP-2024-2020-0-01819, 10%). This
work was also supported by the National Research Foundation of Korea(NRF) grant funded by the
Korea government(MSIT)(No. 2021R1A5A1021944) and Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No.2021-
0-00177, High Assurance of Smart Contract for Secure Software Development Life Cycle, No.2022-
0-00277, Development of SBOM Technologies for Securing Software Supply Chains). Jihyeok Park
and Hakjoo Oh are corresponding authors.

REFERENCES

Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling Enumerative Program Synthesis via Divide and

Conquer. In Tools and Algorithms for the Construction and Analysis of Systems (TACAS). https://www.microsoft.com/en-

us/research/publication/scaling-enumerative-program-synthesis-via-divide-and-conquer/

Rajeev Alur, Rishabh Singh, Dana Fisman, and Armando Solar-Lezama. 2018. Search-Based Program Synthesis. Commun.

ACM 61, 12 (nov 2018), 84–93. https://doi.org/10.1145/3208071

Asim Kumar Debnath, Rosa L. Lopez de Compadre, Gargi Debnath, Alan J. Shusterman, and Corwin Hansch. 1991. Structure-

activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital

energies and hydrophobicity. Journal of Medicinal Chemistry 34, 2 (1991), 786–797. https://doi.org/10.1021/jm00106a046

arXiv:https://doi.org/10.1021/jm00106a046

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional Neural Networks on Graphs with Fast

Localized Spectral Filtering. In Proceedings of the 30th International Conference on Neural Information Processing Systems

(Barcelona, Spain) (NIPS’16). Curran Associates Inc., Red Hook, NY, USA, 3844–3852.

Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang. 2020. HOPPITY: LEARNING GRAPH TRANS-

FORMATIONS TO DETECT AND FIX BUGS IN PROGRAMS. In International Conference on Learning Representations.

https://openreview.net/forum?id=SJeqs6EFvB

Aosong Feng, Chenyu You, Shiqiang Wang, and Leandros Tassiulas. 2022b. KerGNNs: Interpretable Graph Neural Networks

with Graph Kernels. Proceedings of the AAAI Conference on Artificial Intelligence 36, 6 (Jun. 2022), 6614–6622. https:

//doi.org/10.1609/aaai.v36i6.20615

Jiarui Feng, Lecheng Kong, Hao Liu, Dacheng Tao, Fuhai Li, Muhan Zhang, and Yixin Chen. 2023. Extending the Design

Space of Graph Neural Networks by Rethinking Folklore Weisfeiler-Lehman. In Advances in Neural Information Processing

Systems.

Qizhang Feng, Ninghao Liu, Fan Yang, Ruixiang Tang, Mengnan Du, and Xia Hu. 2022a. DEGREE: Decomposition Based

Explanation for Graph Neural Networks. In International Conference on Learning Representations. https://openreview.

net/forum?id=Ve0Wth3ptT_

John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Structure Transformations from Input-Output

Examples. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Portland, OR, USA) (PLDI ’15). Association for Computing Machinery, New York, NY, USA, 229–239. https://doi.org/10.

1145/2737924.2737977

Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic. 2016. Example-Directed Synthesis: A Type-

Theoretic Interpretation. In Proceedings of the 43rd Annual ACMSIGPLAN-SIGACT Symposium on Principles of Programming

Languages (St. Petersburg, FL, USA) (POPL ’16). Association for Computing Machinery, New York, NY, USA, 802–815.

https://doi.org/10.1145/2837614.2837629

5https://github.com/kupl/PL4XGL

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.

https://www.microsoft.com/en-us/research/publication/scaling-enumerative-program-synthesis-via-divide-and-conquer/
https://www.microsoft.com/en-us/research/publication/scaling-enumerative-program-synthesis-via-divide-and-conquer/
https://doi.org/10.1145/3208071
https://doi.org/10.1021/jm00106a046
https://arxiv.org/abs/https://doi.org/10.1021/jm00106a046
https://openreview.net/forum?id=SJeqs6EFvB
https://doi.org/10.1609/aaai.v36i6.20615
https://doi.org/10.1609/aaai.v36i6.20615
https://openreview.net/forum?id=Ve0Wth3ptT_
https://openreview.net/forum?id=Ve0Wth3ptT_
https://doi.org/10.1145/2737924.2737977
https://doi.org/10.1145/2737924.2737977
https://doi.org/10.1145/2837614.2837629
https://github.com/kupl/PL4XGL

234:24 Minseok Jeon, Jihyeok Park, and Hakjoo Oh

Thorben Funke, Megha Khosla, and Avishek Anand. 2021. Hard Masking for Explaining Graph Neural Networks. https:

//openreview.net/forum?id=uDN8pRAdsoC

Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-Output Examples. In Proceedings of the

38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL ’11).

Association for Computing Machinery, New York, NY, USA, 317–330. https://doi.org/10.1145/1926385.1926423

Sumit Gulwani, Alex Polozov, and Rishabh Singh. 2017. Program Synthesis. Vol. 4. NOW. 1–119 pages. https://www.

microsoft.com/en-us/research/publication/program-synthesis/

David Gunning and David Aha. 2019. DARPA’s Explainable Artificial Intelligence (XAI) Program. AI Magazine 40, 2 (Jun.

2019), 44–58. https://doi.org/10.1609/aimag.v40i2.2850

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representation Learning on Large Graphs. In Ad-

vances in Neural Information Processing Systems, I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-

wanathan, and R. Garnett (Eds.), Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/

5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf

Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, and Yi Chang. 2022. GraphLIME: Local Interpretable Model

Explanations for Graph Neural Networks. IEEE Transactions on Knowledge and Data Engineering (2022), 1–6. https:

//doi.org/10.1109/TKDE.2022.3187455

Akihiro Inokuchi, TakashiWashio, andHiroshiMotoda. 2000. AnApriori-BasedAlgorithm forMining Frequent Substructures

from Graph Data. In Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery

(PKDD ’00). Springer-Verlag, Berlin, Heidelberg, 13–23.

Minseok Jeon. 2024. PL4XGL: A Programming Language Approach to Explainable Graph Learning (Artifact). (2024).

https://doi.org/10.5281/zenodo.10783891

Jaykumar Kakkad, Jaspal Jannu, Kartik Sharma, Charu Aggarwal, and Sourav Medya. 2023. A Survey on Explainability of

Graph Neural Networks. arXiv:2306.01958 [cs.LG]

Thomas N. Kipf and MaxWelling. 2017. Semi-Supervised Classification with Graph Convolutional Networks. In International

Conference on Learning Representations (ICLR).

Yuquan Li, Chang-Yu Hsieh, Ruiqiang Lu, Xiaoqing Gong, Xiaorui Wang, Pengyong Li, Shuo Liu, Yanan Tian, Dejun Jiang,

Jiaxian Yan, Qifeng Bai, Huanxiang Liu, Shengyu Zhang, and Xiaojun Yao. 2022. An adaptive graph learning method

for automated molecular interactions and properties predictions. Nature Machine Intelligence 4, 7 (2022), 645–651.

https://doi.org/10.1038/s42256-022-00501-8

Meng Liu, Youzhi Luo, Limei Wang, Yaochen Xie, Hao Yuan, Shurui Gui, Zhao Xu, Haiyang Yu, Jingtun Zhang, Yi Liu,

Keqiang Yan, Bora Oztekin, Haoran Liu, Xuan Zhang, Cong Fu, and Shuiwang Ji. 2021. DIG: A Turnkey Library for

Diving into Graph Deep Learning Research. arXiv preprint arXiv:2103.12608 (2021).

Yunchao “Lance” Liu, Yu Wang, Oanh Vu, Rocco Moretti, Bobby Bodenheimer, Jens Meiler, and Tyler

Derr. 2022. Interpretable Chirality-Aware Graph Neural Network for Quantitative Structure Activity

Relationship Modeling in Drug Discovery. bioRxiv (2022). https://doi.org/10.1101/2022.08.24.505155

arXiv:https://www.biorxiv.org/content/early/2022/08/26/2022.08.24.505155.full.pdf

Ana Lucic, Maartje A. Ter Hoeve, Gabriele Tolomei, Maarten De Rijke, and Fabrizio Silvestri. 2022. CF-GNNExplainer:

Counterfactual Explanations for Graph Neural Networks. In Proceedings of The 25th International Conference on Artificial

Intelligence and Statistics (Proceedings of Machine Learning Research, Vol. 151), Gustau Camps-Valls, Francisco J. R. Ruiz,

and Isabel Valera (Eds.). PMLR, 4499–4511. https://proceedings.mlr.press/v151/lucic22a.html

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang. 2020. Parameterized

Explainer for Graph Neural Network. In Proceedings of the 34th International Conference on Neural Information Processing

Systems (Vancouver, BC, Canada) (NIPS’20). Curran Associates Inc., Red Hook, NY, USA, Article 1646, 12 pages.

Anders Miltner, Adrian Trejo Nuñez, Ana Brendel, Swarat Chaudhuri, and Isil Dillig. 2022. Bottom-up Synthesis of Recursive

Functional Programs Using Angelic Execution. Proc. ACM Program. Lang. 6, POPL, Article 21 (jan 2022), 29 pages.

https://doi.org/10.1145/3498682

Yoichi Morofuji and Shinsuke Nakagawa. 2020. Drug Development for Central Nervous System Diseases Using In vitro

Blood-brain Barrier Models and Drug Repositioning. Curr Pharm Des 26, 13 (2020), 1466–1485. https://doi.org/10.2174/

1381612826666200224112534

Jinyoung Park, Sungdong Yoo, Jihwan Park, and Hyunwoo J Kim. 2022. Deformable Graph Convolutional Networks. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36. 7949–7956.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. 2020. Geom-GCN: Geometric Graph Convolu-

tional Networks. In International Conference on Learning Representations. https://openreview.net/forum?id=S1e2agrFvS

Phillip E. Pope, Soheil Kolouri, Mohammad Rostami, Charles E. Martin, and Heiko Hoffmann. 2019. Explainability Methods

for Graph Convolutional Neural Networks. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). 10764–10773. https://doi.org/10.1109/CVPR.2019.01103

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.

https://openreview.net/forum?id=uDN8pRAdsoC
https://openreview.net/forum?id=uDN8pRAdsoC
https://doi.org/10.1145/1926385.1926423
https://www.microsoft.com/en-us/research/publication/program-synthesis/
https://www.microsoft.com/en-us/research/publication/program-synthesis/
https://doi.org/10.1609/aimag.v40i2.2850
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://doi.org/10.1109/TKDE.2022.3187455
https://doi.org/10.1109/TKDE.2022.3187455
https://doi.org/10.5281/zenodo.10783891
https://arxiv.org/abs/2306.01958
https://doi.org/10.1038/s42256-022-00501-8
https://doi.org/10.1101/2022.08.24.505155
https://arxiv.org/abs/https://www.biorxiv.org/content/early/2022/08/26/2022.08.24.505155.full.pdf
https://proceedings.mlr.press/v151/lucic22a.html
https://doi.org/10.1145/3498682
https://doi.org/10.2174/1381612826666200224112534
https://doi.org/10.2174/1381612826666200224112534
https://openreview.net/forum?id=S1e2agrFvS
https://doi.org/10.1109/CVPR.2019.01103

PL4XGL: A Programming Language Approach to Explainable Graph Learning 234:25

T. Ramraj and R. Prabhakar. 2015. Frequent Subgraph Mining Algorithms – A Survey. Procedia Computer Science 47 (2015),

197–204. https://doi.org/10.1016/j.procs.2015.03.198 Graph Algorithms, High Performance Implementations and Its

Applications (ICGHIA 2014).

Susie Xi Rao, Shuai Zhang, Zhichao Han, Zitao Zhang, Wei Min, Zhiyao Chen, Yinan Shan, Yang Zhao, and Ce Zhang. 2021.

XFraud: Explainable Fraud Transaction Detection. Proc. VLDB Endow. 15, 3 (nov 2021), 427–436. https://doi.org/10.

14778/3494124.3494128

Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. 2021. Interpreting Graph Neural Networks for NLP With

Differentiable Edge Masking. In International Conference on Learning Representations. https://openreview.net/forum?id=

WznmQa42ZAx

Thomas Schnake, Oliver Eberle, Jonas Lederer, Shinichi Nakajima, Kristof T Schutt, Klaus-Robert Mueller, and Gregoire

Montavon. 2021. Higher-Order Explanations of Graph Neural Networks via Relevant Walks. IEEE Transactions on Pattern

Analysis and Machine Intelligence (2021), 1–1. https://doi.org/10.1109/tpami.2021.3115452

Mengying Sun, Sendong Zhao, Coryandar Gilvary, Olivier Elemento, Jiayu Zhou, and Fei Wang. 2019. Graph convolutional

networks for computational drug development and discovery. Briefings in Bioinformatics 21, 3 (06 2019), 919–935.

https://doi.org/10.1093/bib/bbz042 arXiv:https://academic.oup.com/bib/article-pdf/21/3/919/33227266/bbz042.pdf

Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim, Milo M.K. Martin, and Rajeev Alur. 2013.

TRANSIT: Specifying Protocols with Concolic Snippets. In Proceedings of the 34th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (Seattle, Washington, USA) (PLDI ’13). Association for Computing Machinery,

New York, NY, USA, 287–296. https://doi.org/10.1145/2491956.2462174

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. 2018. Graph

Attention Networks. In International Conference on Learning Representations.

Minh Vu and My T. Thai. 2020a. PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Net-

works. In Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,

and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 12225–12235. https://proceedings.neurips.cc/paper/2020/file/

8fb134f258b1f7865a6ab2d935a897c9-Paper.pdf

Minh N. Vu and My T. Thai. 2020b. PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks.

In Proceedings of the 34th International Conference on Neural Information Processing Systems (Vancouver, BC, Canada)

(NIPS’20). Curran Associates Inc., Red Hook, NY, USA, Article 1025, 11 pages.

Yingxin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. 2022. Discovering Invariant Rationales for Graph

Neural Networks. In International Conference on Learning Representations. https://openreview.net/forum?id=hGXij5rfiHw

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. 2021. A Comprehensive

Survey on Graph Neural Networks. IEEE Transactions on Neural Networks and Learning Systems 32, 1 (2021), 4–24.

https://doi.org/10.1109/TNNLS.2020.2978386

Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S. Pappu, Karl Leswing, and

Vijay Pande. 2018. MoleculeNet: a benchmark for molecular machine learning. Chem. Sci. 9 (2018), 513–530. Issue 2.

https://doi.org/10.1039/C7SC02664A

Jiacheng Xiong, Zhaoping Xiong, Kaixian Chen, Hualiang Jiang, and Mingyue Zheng. 2021. Graph neural networks for

automated de novo drug design. Drug Discovery Today 26, 6 (2021), 1382–1393. https://doi.org/10.1016/j.drudis.2021.02.011

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful are Graph Neural Networks?. In 7th

International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.

https://openreview.net/forum?id=ryGs6iA5Km

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie Jegelka. 2018. Represen-

tation Learning on Graphs with Jumping Knowledge Networks. In Proceedings of the 35th International Conference on

Machine Learning (Proceedings of Machine Learning Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR,

5453–5462. https://proceedings.mlr.press/v80/xu18c.html

Xifeng Yan and Jiawei Han. 2002. gSpan: graph-based substructure pattern mining. In 2002 IEEE International Conference on

Data Mining, 2002. Proceedings. 721–724. https://doi.org/10.1109/ICDM.2002.1184038

Ziyuan Ye, Rihan Huang, Qilin Wu, and Quanying Liu. 2023. SAME: Uncovering GNN Black Box with Structure-aware

Shapley-based Multipiece Explanations. In Thirty-seventh Conference on Neural Information Processing Systems. https:

//openreview.net/forum?id=kBBsj9KRgh

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. 2019. GNNExplainer: Generating Expla-

nations for Graph Neural Networks. In Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle,

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Curran Associates, Inc. https://proceedings.neurips.

cc/paper_files/paper/2019/file/d80b7040b773199015de6d3b4293c8ff-Paper.pdf

Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. 2020. XGNN: Towards Model-Level Explanations of Graph Neural

Networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining

(Virtual Event, CA, USA) (KDD ’20). Association for Computing Machinery, New York, NY, USA, 430–438. https:

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.

https://doi.org/10.1016/j.procs.2015.03.198
https://doi.org/10.14778/3494124.3494128
https://doi.org/10.14778/3494124.3494128
https://openreview.net/forum?id=WznmQa42ZAx
https://openreview.net/forum?id=WznmQa42ZAx
https://doi.org/10.1109/tpami.2021.3115452
https://doi.org/10.1093/bib/bbz042
https://arxiv.org/abs/https://academic.oup.com/bib/article-pdf/21/3/919/33227266/bbz042.pdf
https://doi.org/10.1145/2491956.2462174
https://proceedings.neurips.cc/paper/2020/file/8fb134f258b1f7865a6ab2d935a897c9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/8fb134f258b1f7865a6ab2d935a897c9-Paper.pdf
https://openreview.net/forum?id=hGXij5rfiHw
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1039/C7SC02664A
https://doi.org/10.1016/j.drudis.2021.02.011
https://openreview.net/forum?id=ryGs6iA5Km
https://proceedings.mlr.press/v80/xu18c.html
https://doi.org/10.1109/ICDM.2002.1184038
https://openreview.net/forum?id=kBBsj9KRgh
https://openreview.net/forum?id=kBBsj9KRgh
https://proceedings.neurips.cc/paper_files/paper/2019/file/d80b7040b773199015de6d3b4293c8ff-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/d80b7040b773199015de6d3b4293c8ff-Paper.pdf
https://doi.org/10.1145/3394486.3403085
https://doi.org/10.1145/3394486.3403085

234:26 Minseok Jeon, Jihyeok Park, and Hakjoo Oh

//doi.org/10.1145/3394486.3403085

Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. 2022. Explainability in Graph Neural Networks: A Taxonomic Survey.

IEEE Transactions on Pattern Analysis and Machine Intelligence (2022), 1–19. https://doi.org/10.1109/TPAMI.2022.3204236

Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. 2021. On Explainability of Graph Neural Networks via Subgraph

Explorations. In Proceedings of the 38th International Conference on Machine Learning (ICML). 12241–12252.

Yue Zhang, David Defazio, and Arti Ramesh. 2021. RelEx: A Model-Agnostic Relational Model Explainer. In Proceedings of

the 2021 AAAI/ACM Conference on AI, Ethics, and Society (Virtual Event, USA) (AIES ’21). Association for Computing

Machinery, New York, NY, USA, 1042–1049. https://doi.org/10.1145/3461702.3462562

Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Cheekong Lee. 2022. ProtGNN: Towards Self-Explaining Graph

Neural Networks. Proceedings of the AAAI Conference on Artificial Intelligence 36, 8 (Jun. 2022), 9127–9135. https:

//doi.org/10.1609/aaai.v36i8.20898

Marinka Zitnik, Monica Agrawal, and Jure Leskovec. 2018. Modeling Polypharmacy Side Ef-

fects with Graph Convolutional Networks. bioRxiv (2018). https://doi.org/10.1101/258814

arXiv:https://www.biorxiv.org/content/early/2018/05/18/258814.full.pdf

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 234. Publication date: June 2024.

https://doi.org/10.1145/3394486.3403085
https://doi.org/10.1145/3394486.3403085
https://doi.org/10.1145/3394486.3403085
https://doi.org/10.1109/TPAMI.2022.3204236
https://doi.org/10.1145/3461702.3462562
https://doi.org/10.1609/aaai.v36i8.20898
https://doi.org/10.1609/aaai.v36i8.20898
https://doi.org/10.1101/258814
https://arxiv.org/abs/https://www.biorxiv.org/content/early/2018/05/18/258814.full.pdf

	Abstract
	1 Introduction
	2 Informal Overview
	3 Graph Description Language (GDL)
	3.1 Featured Graphs
	3.2 Syntax of GDL
	3.3 Semantics of GDL
	3.4 Generality Order between GDL Programs

	4 PL4XGL: A GDL-based Explainable Classification Model
	4.1 Classification Tasks on Featured Graphs
	4.2 Explainable Classification Model

	5 Learning GDL-based Model using Program Synthesis
	5.1 Algorithm Outline
	5.2 Top-Down Algorithm
	5.3 Bottom-Up Algorithm

	6 Evaluation
	6.1 RQ1. Explanation Cost
	6.2 RQ2. Correctness of Explanations
	6.3 RQ3. Classification Accuracy

	7 Discussion
	7.1 Limitations and Future Work
	7.2 Expressiveness Comparison between Subgraph and GDL

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

