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Explainable Graph Machine Learning
• Mainstream: Graph Neural Network (GNN) + post-hoc “explainers”

GNN Explanation
Technique

Two key limitations
• Additional (expensive) explanation cost is required
• The explanations are not guaranteed to be correct

Explanation
(e.g., key subgraph)
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Evaluation
• Compared PL4XGL with

• Representative GNNs : GCN, GAT, GIN, etc

• State-of-the-art GNN explainer : SubgraphX*

• Research questions:
• RQ1) Classification accuracy

• Settings:

• GNNs and SubgraphX trained and evaluated using a GPU (RTX A6000)

• PL4XGL trained and evaluated using 64-core CPU

• RQ2) Explainability

*Yuan et al. On explainability of graph neural networks via subgraph explorations. ICML 2021
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RQ1) Classification Accuracy
• Each dataset is split into 8:1:1 for training, validation, and evaluation

• PL4XGL achieved the best accuracy for 5 datasets

• PL4XGL did not scale for the largest dataset HIV (time budget = 48h)
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Molecule datasets (graph classification)

PL4XGL shows the best accuracy



RQ1) Classification Accuracy
• Each dataset is split into 8:1:1 for training, validation, and evaluation

• PL4XGL achieved the best accuracy for 5 datasets

• PL4XGL did not scale for the largest dataset HIV (time budget = 48h)
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PL4XGL failed its training in HIV dataset because of its training cost

• HIV includes 41,127 (1,049,163 nodes)
• Timeout = 2 day (48 hours)



0.2 0.3 0.4 0.5 0.6 0.7

Sparsity

0.0

0.1

0.2

0.3

0.4

0.5

Fi
de

lit
y

PL4XGL

MUTAG
SubgraphX

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sparsity

0.0

0.1

0.2

0.3

0.4

Fi
de

lit
y

PL4XGL

BACE
SubgraphX

Ex
pl

an
at

io
ns

 a
re

 c
or

re
ct

The explanations are simple

• Our approach provides correct & simple explanations

RQ2) Explainability
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Summary
• Problem : Accurate and explainable graph learning

• Solution : A purely PL-based approach to XAI

• Domain specific language design for defining AI models

• Program synthesis for learning models from training data

• Result:

• Accuracy can compete with GNNs

• Better explainability than GNNs with post-hoc explainer
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Summary
• Problem : Accurate and explainable graph learning

• Solution : A purely PL-based approach to XAI

• Domain specific language design for defining AI models

• Program synthesis for learning models from training data

• Result:

• Better explainability than GNNs with post-hoc explainer

Conclusion: PL techniques are even useful for AI!
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• Accuracy can compete with GNNs


