
IC637 Program Analysis
Lecture 9: Context Tunneling

Minseok Jeon

2025 Fall

Minseok Jeon IC637 Program Analysis 2025 Fall 1/24

Review: 1-Call-Site Sensitivity

• 1-call-site sensitive analysis can prove the castings are always safe.
• call-site sensitivity uses the call sites as context elements.

1 class A{}
2 class B{}
3 class C{
4 static Object id(Object v) {
5 return v;
6 }
7 void main(String [] args) {
8 A a = new A();//l1
9 B b = new B();//l2

10 A a2 = (A)id(a);// query1
11 B b2 = (B)id(b);// query2
12 }
13 }

1-call-site sensitive analysis

main[]
id[10]

id[11]

a[] → {l1[]} b[] → {l2[]}
v[10] → {l1[]} v[11] → {l2[]}
a2[] → {l1[]} b2[] → {l2[]}

Minseok Jeon IC637 Program Analysis 2025 Fall 2/24

Review: 2-Call-Site Sensitive Analysis

• conventional 2-call-site sensitive uses the caller methods’ contexts.
1 class A{} class B{}
2 class C{
3 static Object id(Object v) {
4 return v;
5 }
6 Object id1(Object v) {
7 return this.id(v);
8 }
9 void main(String [] args) {

10 A a = new A();//l1
11 B b = new B();//l2
12 A a2 = (A)id1(a);// query1
13 B b2 = (B)id1(b);// query2
14 }
15 }

2-call-site sensitive analysis

main[]
id1[12]

id1[13]

id[12,7]

id[13,7]

a[] → {l1[]} b[] → {l2[]}
v[10] → {l1[]} v[11] → {l2[]}
a2[] → {l1[]} b2[] → {l2[]}

Minseok Jeon IC637 Program Analysis 2025 Fall 3/24

Review: 1-Object Sensitivity

• Object sensitivity uses the receiver objects as context elements.
1 class A{} class B{}
2 class C{
3 Object id(Object v1) {
4 return v1;
5 }
6 Object id1(Object v2) {
7 return this .id(v2);
8 }
9 }

10 class D{
11 void main(String [] args) {
12 A a = new A();//l1
13 B b = new B();//l2
14 C c = new C();//l3
15 A a3 = (A)c.id1(a);// query3
16 B b3 = (B)c.id1(b);// query4
17 }
18 }

1-object sensitive analysis

main[]
id1[l3]

id1[l3]

id[l3]

id[l3]

a[] → {l1[]} b[] → {l2[]}
v1[l3] → {l1[]} v1[l3] → {l2[]}
v2[l3] → {l1[]} v2[l3] → {l2[]}

a2[] → {l1[]} b2[] → {l2[]}

Minseok Jeon IC637 Program Analysis 2025 Fall 4/24

Review: 2-Object Sensitivity

• 2-object sensitive analysis uses the heap contexts of the receiver objects.
1 class C{
2 D allocD () {
3 return new D() ;} //l1
4 }
5 class D{
6 Object id(Object v) {
7 return v;}
8 }
9 class E{

10 void main(String [] args) {
11 C c1 = new C();//l2
12 C c2 = new C();//l3
13 D d1 = c1. allocD ();
14 D d2 = c2. allocD ();
15 A a = (A)d1.id(new A());//l4
16 B b = (B)d2.id(new B());//l5
17 }}

2-object sensitive analysis

main[]
allocD[l2]

allocD[l3]

id[l2, l1]

id[l3, l1]

c1[] → {l2[]} c2[] → {l3[]}
d1[] → {l1[l2]} d2[] → {l1[l3]}

v[l2, l1] → {l4[]} v[l3, l1] → {l5[]}
a[] → {l4[]} b[] → {l5[]}

Minseok Jeon IC637 Program Analysis 2025 Fall 5/24

Limitation of Conventional K-Context Sensitivity

• In the following example, conventional k-context sensitivity fails to prove the queries.

1 class A{} class B{}
2 class C{
3 Object id(int i, Object v) {
4 if (i > 0) {
5 return id(i-1,v);
6 } else {
7 return v;}}}
8 public class D {
9 void main(String [] args) {

10 int i = input ();
11 A a = new A();//l1
12 B b = new B();//l2
13 C c = new C();//l3
14 A a2 = (A)c.id(i,a);// query1
15 B b2 = (B)c.id(i,b);// query2
16 }}

k-call-site sensitivity

main[]
id[14]

id[15]

id[14,5]

id[15,5]

...

...
id[5,...,5]

a[] → {l1[]} b[] → {l2[]} c[] → {l3[]}
v[14] → {l1[]} v[15] → {l2[]}

v[14, 5] → {l1[]} v[15, 5] → {l2[]}
. . .

v[5, . . . , 5] → {l1[], l2[]}
a2[] → {l1[], l2[]} b2[] → {l1[], l2[]}

Minseok Jeon IC637 Program Analysis 2025 Fall 6/24

Necessity of Context Tunneling

• With context tunneling, even 1-call-site sensitivity can prove the queries.

1 class A{} class B{}
2 class C{
3 Object id(int i, Object v) {
4 if (i > 0) {
5 return id(i-1,v);
6 } else {
7 return v;}}}
8 public class D {
9 void main(String [] args) {

10 int i = input ();
11 A a = new A();//l1
12 B b = new B();//l2
13 C c = new C();//l3
14 A a2 = (A)c.id(i,a);// query1
15 B b2 = (B)c.id(i,b);// query2
16 }}

1-call-site sensitivity + tunneling
Important: {14, 15}

main[]
id[14]

id[15]

a[] → {l1[]} b[] → {l2[]}
v[14] → {l1[]} v[15] → {l2[]}
a2[] → {l1[]} b2[] → {l2[]}

Minseok Jeon IC637 Program Analysis 2025 Fall 7/24

Necessity of Context Tunneling

• Context tunneling can improve the performance of static analysis.

1300 1400 1500 1600 1700 1800 1900 2000
0

500

1000

1500

2000

2500

1-ctx

2-ctx

bloat

Apply the tunneling

Sc
al

ab
le

Precise
alarms

A
na

ly
si

s
tim

e
(s

)

1-ctx+T

Minseok Jeon IC637 Program Analysis 2025 Fall 8/24

Analysis Rule (Call-Site Sensitivity with Tunneling)

• Rule for method calls (e.g., V Call) needs to be updated as follows:

Merge(important, heap, hctx, invo, callerCtx) = calleeCtx,

V arP ointsT o(this, calleeCtx, heap, hctx),
CallGraph(invo, callerCtx, toMeth, calleeCtx)←

V Call(base, sig, invo, inMeth), CallGraph(_, _, inMeth, callerCtx),
V arP ointsT o(base, callerCtx, heap, hctx),
HeapT ype(heap, heapT), LookUp(heapT, sig, toMeth),
T hisV ar(toMeth, this), Importance(invo, important).

• Key difference 1: Importance(invo, important)
• Key difference 2: Merge takes another parameter important

• Define Merge for k-call-site sensitivity with context tunneling:

Minseok Jeon IC637 Program Analysis 2025 Fall 9/24

Analysis Rule

• Merge for 1-call-site sensitivity with context tunneling:

Merge(important, heap, hctx, invo, ctx) =
{

invo if important = true
ctx if important = false

• Merge for 2-call-site sensitivity with context tunneling:

Merge(important, heap, hctx, invo, ctx) =
{
⌈ctx ++ invo⌉2 if important = true
⌈ctx⌉2 if important = false

. . .

• Merge for k-call-site sensitivity with context tunneling:

Merge(important, heap, hctx, invo, ctx) =
{
⌈ctx ++ invo⌉k if important = true
⌈ctx⌉k if important = false

Minseok Jeon IC637 Program Analysis 2025 Fall 10/24

Analysis Rule (Object Sensitivity with Tunneling)

• Rule for method calls (e.g., V Call) needs to be updated as follows:

Merge(important, heap, hctx, invo, callerCtx) = calleeCtx,

V arP ointsT o(this, calleeCtx, heap, hctx),
CallGraph(invo, callerCtx, toMeth, calleeCtx)←

V Call(base, sig, invo, inMeth), CallGraph(_, _, inMeth, callerCtx),
V arP ointsT o(base, callerCtx, heap, hctx),
HeapT ype(heap, heapT), LookUp(heapT, sig, toMeth),
T hisV ar(toMeth, this), Importance(heap, important)

• Key difference 1: Importance(heap, important)
• Key difference 2: Merge takes another parameter important

• Define Merge for k-object sensitivity with context tunneling:

Minseok Jeon IC637 Program Analysis 2025 Fall 11/24

Analysis Rule

• Merge for 1-object sensitivity with context tunneling:

Merge(important, heap, hctx, invo, ctx) =
{

hctx if important = true
heap if important = false

• Merge for 2-object sensitivity with context tunneling:

Merge(important, heap, hctx, invo, ctx) =
{
⌈hctx ++ heap⌉2 if important = true
⌈hctx⌉2 if important = false

. . .

• Merge for k-object sensitivity with context tunneling:

Merge(important, heap, hctx, invo, ctx) =
{
⌈ctx ++ invo⌉k if important = true
⌈ctx⌉k if important = false

Minseok Jeon IC637 Program Analysis 2025 Fall 12/24

Modeling Static Analyzer

• Given a program P , a parametric static analyzer FP is modeled as follows.

FP : AP → P(QP) × N.

where AP : CP → {true, false} denotes mappings from each program component (e.g.,
call-site or object) to a boolean value, QP denotes sets of proven queries, and N denotes
analysis costs.

• Given a mapping a ∈ A, so-called abstraction, we can generate input facts

Importance(component : C, importance : b)1

For example, if a component c is mapped to true in the abstraction a, we generate
an input fact Importance(c, true).

1C: the set of program components, b: the set of boolean values.
Minseok Jeon IC637 Program Analysis 2025 Fall 13/24

Modeling Static Analyzer

• Given a program P , a parametric static analyzer FP is modeled as follows.

FP : AP → P(QP) × N.

where AP : CP → {true, false} denotes mappings from each program component (e.g.,
call-site or object) to a boolean value, QP denotes sets of proven queries, and N denotes
analysis costs.

• For convenience, we define two projection functions: proved(FP (a)) returns the set
of proven queries, and cost(FP (a)) returns the analysis cost (a ∈ AP).

Minseok Jeon IC637 Program Analysis 2025 Fall 14/24

Non-Monotonicity of Analysis

• Unlike selective context sensitivity, classifying more program components as
important (or unimportant) does not guarantee better (or worse) analysis precision.

Important: {}

main[] id[]

Important: {14, 15}

main[]
id[14]

id[15]

Important: {14, 15, 5}

main[]
id[14]

id[15]
id[5]

Minseok Jeon IC637 Program Analysis 2025 Fall 15/24

Open Challenge

• How can we find whether each program component is important or not?

Minseok Jeon IC637 Program Analysis 2025 Fall 16/24

Machine Learning-based Context Tunneling

• Machine learning-based approaches can be used:

• Idea: learn a machine learning model that maps each program component to a
boolean value.

Minseok Jeon IC637 Program Analysis 2025 Fall 17/24

Machine Learning-based Context Tunneling

• Goal: learn a machine learning model that classifies whether each program
component is important or not.

component trained model important/not important

train data

• Assumption, if a model is effective for the training data, it is also effective for the
test data.

Minseok Jeon IC637 Program Analysis 2025 Fall 18/24

Disjunctive Model

• Disjunctive model: We adapt the disjunctive model to describe context tunneling
technique (i.e., classifier) using boolean formulas.

Let A = {a1, a2, . . . , am} be a set of atomic features, where each atomic feature is a
predicate over program components:

ai(P) : CP → {true, false}.

Given a program P , a formula f represents a set of program components as follows:

[[true]]P = CP [[¬f]]P = [[true]]P \ [[f]]P
[[false]]P = ∅ [[f1 ∧ f2]]P = [[f1]]P ∩ [[f2]]P

[[ai]]P = {c ∈ [[true]]P | ai(P)(c) = true} [[f1 ∨ f2]]P = [[f1]]P ∪ [[f2]]P

Minseok Jeon IC637 Program Analysis 2025 Fall 19/24

Disjunctive Model

• Let f be a tunneling formula. Then, the model M(f) classifies each program
component as follows:

M(f)(P) = λc ∈ CP .

{
false if c ∈ [[f]]P
true otherwise

Minseok Jeon IC637 Program Analysis 2025 Fall 20/24

Learning Problem

Given a training set P = {P1, P2, . . . , Pn}, the learning problem is as follows:

Given a codebase P, find f that maximizes
∑
P ∈P

proved(FP (Mf (P))). (1)

Minseok Jeon IC637 Program Analysis 2025 Fall 21/24

Overall Learning Procedure

• We can use standard learning algorithms to learn such f .

Minseok Jeon IC637 Program Analysis 2025 Fall 22/24

Evaluation Results

• Our context tunneling significantly enhances the precision.

2objH

1objH+T
1objH

2objH

1objH+T
1objH

Minseok Jeon IC637 Program Analysis 2025 Fall 23/24

Wrap-Up: Context Tunneling

• Motivation: Conventional k-context sensitivity usually loses important context
elements and it degrades the precision.

• Key Idea: Context tunneling enables the analysis to keep important context
elements for improving the precision.

• Challenge: Determining which program components are important
• Non-monotonic: more important ̸= better precision

• Benefits: Significantly improves precision
• 1-obj with tunneling is even more precise than the conventional 2-obj

Minseok Jeon IC637 Program Analysis 2025 Fall 24/24

