IC637 Program Analysis

Lecture 9: Context Tunneling

Minseok Jeon

2025 Fall

Review: 1-Call-Site Sensitivity

e 1-call-site sensitive analysis can prove the castings are always safe.

® call-site sensitivity uses the call sites as context elements.

1 class A{}

2 class B{} 1-call-site sensitive analysis
3 class C{

4 static Object id(Object v) { id[10]

return v; .
}

5

6

7 void main(Stringl[] args) { id[11]

8 A a = new AQ);//l

9 B b = new B ;//l

10 A a2 = (A)id(a);//queryl a“ - {ll[]} b[] — {ZQH}

" B b2 = (B)id(b);//query2 v[10] = {{1[J} v[11] — {i2[]}
12 } a2[] — {L[]} v2[] — {l2[]}

13 }

Review: 2-Call-Site Sensitive Analysis

® conventional 2-call-site sensitive uses the caller methods' contexts.

1 class A{} class B{}
2 class C{

3 static Object id(Object v) { 2-call-site sensitive analysis

4 return v;

5} id1[12] > id[12,7]
6 Object id1(0bject wv) {

7 return this.id(v);

g} > id[13,7]
9 void main(String[] args) {

10 A a = new AQ);//1

N B e me DO all = {u} o] = {10}

12 A a2 = (A)idi(a);//queryl v[10] = {i1[]} v[11] = {L2[]}

13 B b2 = (B)id1(b);//query2 a2l] — {L[]} v2[] — {l2[]}

14 }

Review: 1-Object Sensitivity

® Object sensitivity uses the receiver objects as context elements.

class A{} class B{}
class C{
Object id(Object vi) { 1-object sensitive analysis
return vi;
¥ .
Object id1(Object v2) { > id[ls]
return this.id(v2);
} .
} > Id[lg]
class D{
void main(String[] args) { a[] . {ll[]} b[] = {ZZH}
A a = new AQ;//lh
B b = new BO;//l2 ’Ul[lg] — {ll[]} Ul[lg} — {lg[]}
C ¢ = new CQ);//l3
A a3 = (A)c.id1(a);//query3 U2[l3] - {ll[]} U2[13} - {ZQH}
B b3 = (B)c.idl(b);//query a2(] = {i]} v2[] = {i2[]}
}

Review: 2-Object Sensitivity

e 2-object sensitive analysis uses the heap contexts of the receiver objects.

D allocD() {
return new DQ);}//I;

Object id(0Object wv) {
return v;}

void main(Stringl[] args) {

class C{

}

class D{

}

class E{
C c1
C c2
D di
D d2
A a
B b

1

new CQO;//l2
new CQ);//l3
cl.allocD();
c2.allocD();
(A)d1l.id(new AQ));//la
(B)d2.id(new BQ)); //l5

2-object sensitive analysis

id[ls, 1]

Al = {k[]} ¢
dif) = {h[la]}
vlla, 1] = {la]} v

al] = {la[]} b

allocD[l2

allocD[l3

2[] = {i5]]}

[
[

d2[} — {l[l5]}

I3, 1] — {l5[]}
| = {ls[0}

Limitation of Conventional K-Context Sensitivity

® |n the following example, conventional k-context sensitivity fails to prove the queries.

class A{} class B{} k-call-site sensitivity
class C{
Object id(int i, Object v) {
if (i > 0) { id[14] id[14,5]
TEOTT e
} else { id[15] id[15,5]
R ot o s
public class D {
void main(String[] args) { CLH — {ll[]} b[] - {ZQH} CH - {l3“}
int i = input(); 0[14] — {ll[]} U[15] — {lg[]}
A =n AO; /1
B b - new BO ./ s v[14,5] = {1} v[15,5] — {L2[]}
C c = new CQO;//l3
A a2 (A)c.id(i,a);//queryl 0[5775]_>{l1[],l2[]}

}}B b2 (B)c.id(i,b);//query2 G,QH N {ll[]7l2[]} bQH N {hﬂ;bﬂ}

Necessity of Context Tunneling

® With context tunneling, even 1-call-site sensitivity can prove the queries.

class A{} class B{}

clas

s C{

Object id(int i, Object v) {
if (i > 0) {
return id(i-1,v);
} else {
return v;}}}
public class D {
void main(String[] args) {

13

int
A a
B b
C c
A a2
B b2

i

= input ();

new AQ);//lv

new BQ); //l2

new CQ); //l3
(A)c.id(i,a);//queryl
(B)c.id(i,b);//query2

1-call-site sensitivity + tunneling
Important: {14, 15}

al] = {h[]} o] = {L2[]}
v[14] = {L[]} v[15] — {I2]}
a2l] = {L]} b2[] = {2[]}

Necessity of Context Tunneling

® Context tunneling can improve the performance of static analysis.

bloat
2500 T
0 2-ctx
/VT 2000}
w (4]
3 g 1500)
@] v
L] [’d
8 %\ 1000
c -
“ni< l-ctx+T I S‘X
500 .*_ X
Apply the tunneling
1“300 1400 1500 1600 1700 1800 1900 2000

alarms

vV 4

Precise

Analysis Rule (Call-Site Sensitivity with Tunneling)

® Rule for method calls (e.g., VCall) needs to be updated as follows:

Merge(important, heap, hctz, invo, callerCtz) = calleeCtz,

VarPointsTo(this, calleeCtx, heap, hetx),

CallGraph(invo, callerCtx, toMeth, calleeCtz) +
V Call(base, sig, invo,inMeth), CallGraph(
VarPointsTo(base, callerCtz, heap, hetz),
HeapType(heap, heapT'), LookUp(heapT, sig, toMeth),
ThisVar(toMeth,this), Importance(invo, important).

_,inMeth, callerCtzx),

—_

¢ Key difference 1: Importance(invo, important)

® Key difference 2: Merge takes another parameter important

® Define Merge for k-call-site sensitivity with context tunneling:

Analysis Rule

® Merge for 1-call-site sensitivity with context tunneling:

. . ; if 4 tant =t
Merge(important, heap, hctz, invo, ctx) = { ZZ;)O :f ;ZgZ:tZZt B f;l;see

® Merge for 2-call-site sensitivity with context tunneling:

.) tx H invols if important = true
M = [e
erge(important, heap, hetz, invo, ctx) { etz if important — false

® Merge for k-call-site sensitivity with context tunneling:

) . ctx H involy if important = true
M = [
erge(important, heap, hetz, invo, ctx) { (et if important — false

Analysis Rule (Object Sensitivity with Tunneling)

® Rule for method calls (e.g., VCall) needs to be updated as follows:

Merge(important, heap, hctz, invo, callerCtz) = calleeCtz,

VarPointsTo(this, calleeCtx, heap, hetx),

CallGraph(invo, callerCtx, toMeth, calleeCtz) +
V Call(base, sig, invo,inMeth), CallGraph(
VarPointsTo(base, callerCtz, heap, hetz),
HeapType(heap, heapT'), LookUp(heapT, sig, toMeth),
ThisVar(toMeth,this), Importance(heap, important)

_,inMeth, callerCtzx),

—_

® Key difference 1: Importance(heap,important)

® Key difference 2: Merge takes another parameter important

® Define Merge for k-object sensitivity with context tunneling:

Analysis Rule

® Merge for 1-object sensitivity with context tunneling:

. hct if 4 tant =t
Merge(important, heap, hctz, invo, ctz) = { hZag; ;f ZZgZ:tZZt B f:llsee

® Merge for 2-object sensitivity with context tunneling:

[hetx + heapls if important = true

Merge(important, heap, hetz, invo, ctz) = { Theta]s if important — false

® Merge for k-object sensitivity with context tunneling:

[ctx + invol, if important = true

Merge(important, heap, hctx, invo, ctx) = { (et if important — false

Modeling Static Analyzer

® Given a program P, a parametric static analyzer Fp is modeled as follows.

Fp: Ap —>'P(Qp) x N.

where Ap : Cp — {true, false} denotes mappings from each program component (e.g.,
call-site or object) to a boolean value, Qp denotes sets of proven queries, and N denotes
analysis costs.

e Given a mapping a € A, so-called abstraction, we can generate input facts
Importance(component : C,importance : b)l

For example, if a component ¢ is mapped to true in the abstraction a, we generate
an input fact Importance(c, true).

1C: the set of program components, b: the set of boolean values.

Modeling Static Analyzer

® Given a program P, a parametric static analyzer Fp is modeled as follows.

Fp : Ap —>'P(Qp) x N.

where Ap : Cp — {true, false} denotes mappings from each program component (e.g.,
call-site or object) to a boolean value, Qp denotes sets of proven queries, and N denotes
analysis costs.

e For convenience, we define two projection functions: proved(Fp(a)) returns the set
of proven queries, and cost(Fp(a)) returns the analysis cost (a € Ap).

Non-Monotonicity of Analysis

® Unlike selective context sensitivity, classifying more program components as
important (or unimportant) does not guarantee better (or worse) analysis precision.

Important: {14,15} Important: {14,15,5}
Important: {}

=
- ey

|d[15]

Open Challenge

® How can we find whether each program component is important or not?

Machine Learning-based Context Tunneling

® Machine learning-based approaches can be used:

Precise and Scalable Points-to Analysis via Data-Driven
Context Tunneling

MINSEOK JEON, Korea University, Republic of Korea
SEHUN JEONG, Korea University, Republic of Korea
HAKJOO OH", Korea University, Republic of Korea

We present context tunneling, a new approach for making k-limited context-sensitive points-to analysis
precise and scalable. As context-sensitivity holds the key to the development of precise and scalable points-to
analysis, a variety of techniques for context-sensitivity have been proposed. However, existing approaches
such as k-call-si itivity or k-obj itivity have a significant weakness that they unconditionally
update the context of a method at every call-site, allowing important context elements to be overwritten
by more recent, but not necessarily more important, context elements. In this paper, we show that this is a
key limiting factor of existing context-sensitive analyses, and demonstrate that remarkable increase in both
precision and scalability can be gained by maintaining important context elements only. Our approach, called
context tunneling, updates contexts selectively and decides when to propagate the same context without
modification.

® |dea: learn a machine learning model that maps each program component to a
boolean value.

Machine Learning-based Context Tunneling

® Goal: learn a machine learning model that classifies whether each program
component is important or not.

train data

b

component trained model important/not important

e Assumption, if a model is effective for the training data, it is also effective for the
test data.

Disjunctive Model

® Disjunctive model: We adapt the disjunctive model to describe context tunneling
technique (i.e., classifier) using boolean formulas.

Let A = {a1,aq9,...,a,} be a set of atomic features, where each atomic feature is a
predicate over program components:

a;(P) : Cp — {true, false}.
Given a program P, a formula f represents a set of program components as follows:

[true]p = Cp [=flp = [truelp \ [f]p
[falselp = 0 [finfele = [flpO[f]rp
[ai]p = {c€ [true]p | a;(P)(c) = true} [frV fo]p = [AilpU[flp

Disjunctive Model

e Let f be a tunneling formula. Then, the model M) classifies each program
component as follows:

false if c € [f]p
true otherwise

M (P) = X e Cp. {

Learning Problem

Given a training set P = { P}, P», ..., P,}, the learning problem is as follows:

Given a codebase P, find f that maximizes Z proved(Fp(M/(P))). (1)
PeP

Overall Learning Procedure

® \We can use standard learning algorithms to learn such f.

Evaluation Results

® Qur context tunneling significantly enhances the precision.

analysis time(s)

1900

1800 4

1700 4

1600

1500

1400 4

bloat
O
20bjH
lobjH+T |obiH
[elo]] D
O
560 7_":0 10‘00 12‘50 15‘00 17‘50 20‘00 22‘50

of may-fail casts

analysis time(s)

2000 1

1750 4

-
I
=3
S

1250 1

1000

~
a
o

500 4

250 4

xalan
O
20bjH
] lobjH
lobjH+T .
760 7_%0 8(50 8_%0 9(50 9_%0 1600 1650

of may-fail casts

Wrap-Up: Context Tunneling

® Motivation: Conventional k-context sensitivity usually loses important context
elements and it degrades the precision.

¢ Key Idea: Context tunneling enables the analysis to keep important context
elements for improving the precision.

e Challenge: Determining which program components are important
® Non-monotonic: more important # better precision

® Benefits: Significantly improves precision
® 1-obj with tunneling is even more precise than the conventional 2-obj

