
IC637 Program Analysis
Lecture 8: Selective Context Sensitivity

Minseok Jeon

2025 Fall

Minseok Jeon IC637 Program Analysis 2025 Fall 1/31

Review: 1-Call-Site Sensitivity

• 1-call-site sensitive analysis can prove the castings are always safe.
• call-site sensitivity uses the call sites as context elements.

1 class A{}
2 class B{}
3 class C{
4 static Object id(Object v) {
5 return v;
6 }
7 void main(String [] args) {
8 A a = new A();//l1
9 B b = new B();//l2

10 A a2 = (A)id(a);// query1
11 B b2 = (B)id(b);// query2
12 }
13 }

1-call-site sensitive analysis

main[]
id[10]

id[11]

a[] → {l1[]} b[] → {l2[]}
v[10] → {l1[]} v[11] → {l2[]}
a2[] → {l1[]} b2[] → {l2[]}

Minseok Jeon IC637 Program Analysis 2025 Fall 2/31

Review: 2-Call-Site Sensitive Analysis

• conventional 2-call-site sensitive uses the caller methods’ contexts.
1 class A{} class B{}
2 class C{
3 static Object id(Object v) {
4 return v;
5 }
6 Object id1(Object v) {
7 return this.id(v);
8 }
9 void main(String [] args) {

10 A a = new A();//l1
11 B b = new B();//l2
12 A a2 = (A)id1(a);// query1
13 B b2 = (B)id1(b);// query2
14 }
15 }

2-call-site sensitive analysis

main[]
id1[12]

id1[13]

id[12,7]

id[13,7]

a[] → {l1[]} b[] → {l2[]}
v[10] → {l1[]} v[11] → {l2[]}
a2[] → {l1[]} b2[] → {l2[]}

Minseok Jeon IC637 Program Analysis 2025 Fall 3/31

Review: Object Sensitivity

• Object sensitivity uses the receiver objects as context elements.
1 class A{} class B{}
2 class C{
3 Object id(Object v) {
4 return v;
5 }
6 Object id1(Object v) {
7 return this .id(v);
8 }
9 }

10 class D{
11 void main(String [] args) {
12 A a = new A();//l1
13 B b = new B();//l2
14 C c1 = new C();//l3
15 C c2 = new C();//l4
16 A a3 = (A)c1.id1(a);// query3
17 B b3 = (B)c2.id1(b);// query4
18 }
19 }

1-object sensitive analysis

main[]
id1[l3]

id1[l4]

id[l3]

id[l4]

a[] → {l1[]} b[] → {l2[]}
id1.v[l3] → {l1[]} id1.v[l4] → {l2[]}
id.v[l3] → {l1[]} id.v[l4] → {l2[]}

a2[] → {l1[]} b2[] → {l2[]}

Minseok Jeon IC637 Program Analysis 2025 Fall 4/31

Review: 2-Object Sensitivity

• 2-object sensitive analysis uses the heap contexts of the receiver objects.
1 class C{
2 D allocD () {
3 return new D() ;} //l1
4 }
5 class D{
6 Object id(Object v) {
7 return v;}
8 }
9 class E{

10 void main(String [] args) {
11 C c1 = new C();//l2
12 C c2 = new C();//l3
13 D d1 = c1. allocD ();
14 D d2 = c2. allocD ();
15 A a = (A)d1.id(new A());//l4
16 B b = (B)d2.id(new B());//l5
17 }}

2-object sensitive analysis

main[]
allocD[l2]

allocD[l3]

id[l2, l1]

id[l3, l1]

c1[] → {l2[]} c2[] → {l3[]}
d1[] → {l1[l2]} d2[] → {l1[l3]}

v[l2, l1] → {l4[]} v[l3, l1] → {l5[]}
a[] → {l4[]} b[] → {l5[]}

Minseok Jeon IC637 Program Analysis 2025 Fall 5/31

Performance of Context Sensitivities in Practice

• Problem: k-context sensitivity is precise but very expensive.
Minseok Jeon IC637 Program Analysis 2025 Fall 6/31

Necessity of Selective Context Sensitivity

• In the following example, dummy does not need to be analyzed context sensitively.
1 class A{} class B{}
2 class C{
3 static Object id(Object v) {
4 return v;
5 }
6 static void dummy (){
7 return ;
8 }
9 void main(String [] args) {

10 A a1 = new A();//l1
11 B b1 = new B();//l2
12 A a2 = (A)id(a1);// query1
13 B b2 = (B)id(b1);// query2
14 dummy ();
15 dummy ();
16 }
17 }

1-call-site sensitivity

main[]
id[12]

id[13]

dummy[14]

dummy[15]

a1[] → {l1[]} b1[] → {l2[]}
v[12] → {l1[]} v[13] → {l2[]}
a2[] → {l1[]} b2[] → {l2[]}

Minseok Jeon IC637 Program Analysis 2025 Fall 7/31

Necessity of Selective Context Sensitivity

• Applying 1-call-site sensitivity to the method id and context insensitive analysis to
dummy still proves the queries.

1 class A{} class B{}
2 class C{
3 static Object id(Object v) {
4 return v;
5 }
6 static void dummy (){ return ;}
7 void main(String [] args) {
8 A a1 = new A();
9 B b1 = new B();

10 A a2 = (A)id(a1);// query1
11 B b2 = (B)id(b1);// query2
12 dummy ();
13 dummy ();
14 }}

id: 1-call-site sensitivity
dummy: context insensitive

main[]
id[10]

id[11]
dummy[]

a[] → {l1[]} b[] → {l2[]}
v[10] → {l1[]} v[11] → {l2[]}
a2[] → {l1[]} b2[] → {l2[]}

• The goal of selective context sensitivity is to identify suitable context sensitivity to
each method call before analysis.

Minseok Jeon IC637 Program Analysis 2025 Fall 8/31

Necessity of Selective Context Sensitivity

• Selective context sensitivity can improve the performance of static analysis.

2obj+Selective

Minseok Jeon IC637 Program Analysis 2025 Fall 9/31

Analysis Rule

• Rule for method calls (e.g., V Call) needs to be updated as follows:

Merge(depth, heap, hctx, invo, callerCtx) = calleeCtx,

V arP ointsT o(this, calleeCtx, heap, hctx),
CallGraph(invo, callerCtx, toMeth, calleeCtx)←

V Call(base, sig, invo, inMeth), CallGraph(_, _, inMeth, callerCtx),
V arP ointsT o(base, callerCtx, heap, hctx),
HeapT ype(heap, heapT), LookUp(heapT, sig, toMeth),
T hisV ar(toMeth, this), ApplyDepth(toMeth, depth).

• Key difference 1: ApplyDepth(toMeth, depth)
• Key difference 2: Merge takes another parameter depth

• Define Merge for selective call-site sensitivity:
• Define Merge for selective object sensitivity:

Minseok Jeon IC637 Program Analysis 2025 Fall 10/31

Analysis Rule

• Merge for selective 2-call-site sensitivity:

Merge(depth, heap, hctx, invo, ctx) = ⌈ctx ++ invo⌉depth

• Merge for selective object sensitivity:
Merge(depth, heap, hctx, invo, ctx) = ⌈hctx ++ heap⌉depth

Minseok Jeon IC637 Program Analysis 2025 Fall 11/31

Modeling Static Analyzer

• Given a program P , a parametric static analyzer FP is modeled as follows.

FP : AP → P(QP) × N.

where AP :MP → {0, 1, 2} denotes mappings from methods to depths, QP denotes sets
of proven queries, and N denotes analysis costs.

• Given a mapping a ∈ A, so-called abstraction, we can generate input facts

ApplyDepth(Meth : M, Depth : Int)1

For example, if a method meth is mapped to depth depth in the abstraction a, we
generate an input fact ApplyDepth(meth, depth).

1M: the set of method identifiers, Int: the set of integers.
Minseok Jeon IC637 Program Analysis 2025 Fall 12/31

Modeling Static Analyzer

• Given a program P , a parametric static analyzer FP is modeled as follows.

FP : AP → P(QP) × N.

where AP :MP → {0, 1, 2} denotes mappings from methods to depths, QP denotes sets
of proven queries, and N denotes analysis costs.

• For convenience, we define two projection functions: proved(FP (a)) returns the set
of proven queries, and cost(FP (a)) returns the analysis cost (a ∈ AP).

• Property (monotonicity): assigning a deeper depth to a method call-site does not
degrade analysis precision.

Minseok Jeon IC637 Program Analysis 2025 Fall 13/31

Monotonicity of Analysis

• Two mappings a, a′ ∈ AP can be ordered as follows:
∀m ∈MP .a(m) ≤ a′(m) ⇐⇒ a ⊑ a′

Using a bigger mapping does not degrade analysis precision:

a ⊑ a′ =⇒ proved(FP (a)) ⊆ proved(FP (a′))

Minseok Jeon IC637 Program Analysis 2025 Fall 14/31

Open Challenge

• How can we find the right context sensitivity for each method call?

Minseok Jeon IC637 Program Analysis 2025 Fall 15/31

Machine Learning-based Selective Context Sensitivity

• Machine learning-based approach can be used:

• Idea: learn a machine learning model that maps each method call to the right depth.
Minseok Jeon IC637 Program Analysis 2025 Fall 16/31

Machine Learning-based Selective Context Sensitivity

• Goal: learn a machine learning model that maps each method call to the right depth
from a set of training data (e.g., a set of small programs).

method trained model depth

train data

• Assumption, if a model is effective for the training data, it is also effective for the
test data.

Minseok Jeon IC637 Program Analysis 2025 Fall 17/31

Disjunctive Model

• Disjunctive model: The disjunctive model describes selective context sensitivity
using boolean formulas.

Let A = {a1, a2, . . . , am} be a set of atomic features, where each atomic feature is a
predicate over methods (e.g., methods take more than 1 parameter):

ai(P) :MP → {true, false}.

Given a program P , a formula f represents a set of program components as follows:

[[true]]P = MP [[¬f]]P = [[true]]P \ [[f]]P
[[false]]P = ∅ [[f1 ∧ f2]]P = [[f1]]P ∩ [[f2]]P

[[ai]]P = {c ∈ [[true]]P | ai(P)(c) = true} [[f1 ∨ f2]]P = [[f1]]P ∪ [[f2]]P

Minseok Jeon IC637 Program Analysis 2025 Fall 18/31

Disjunctive Model

• Let (f1, f2) be a pair of mutually exclusive selective formulas. Then, the model
M(f1,f2) assigns a depth to each formula as follows:

M(f1,f2)(P) = λm ∈MP .


2 if m ∈ [[f2]]P
1 if m ∈ [[f1]]P
0 otherwise

Minseok Jeon IC637 Program Analysis 2025 Fall 19/31

Learning Problem

Given a training set P = {P1, P2, . . . , Pn}, the learning problem is as follows:

Given a codebase P, find (f1, f2) that maximizes∑
P ∈P

proved(FP (M(f1,f2)(P))) while minimizing cost(FP (M(f1,f2)(P))). (1)

• Question: what does an ideal solution of the learning problem look like?

Minseok Jeon IC637 Program Analysis 2025 Fall 20/31

Solution of the Learning Problem (Minimal Solution)

Definition

Let P be a codebase and (f1, f2) be a parameter. We say (f1, f2) is a minimal solution
of the learning problem (1) if

1. (f1, f2) is precise enough:
∑

P ∈P |proved(FP (M(f1,f2)(P)))|∑
P ∈P |proved(FP (λm.2))| ≥ γ, and

2. there exists no solution smaller than (f1, f2): if (f ′
1, f ′

2) meets the precision

constraint, i.e.,
∑

P ∈P |proved(FP (M(f ′
1,f ′

2)(P)))|∑
P ∈P |proved(FP (λm.2(P)))| ≥ γ, and (f ′

1, f ′
2) is smaller than

(f1, f2), i.e., f ′
1 ⊑ f1 and f ′

2 ⊑ f2, then (f ′
1, f ′

2) is equivalent to (f1, f2):

∀P ∈ P.∀m ∈MP .M(f1,f2)(P)(m) = M(f ′
1,f ′

2)(P)(m)

where f ⊑ f ′ =⇒ ∀P.f(P) ⊆ f ′(P).

Minseok Jeon IC637 Program Analysis 2025 Fall 21/31

Challenge

• Learning the two formulas (f1, f2) at once is difficult.

• Suppose the search space for a formula is S, then the search space for (f1, f2) is
S × S.

• Question. How can we reduce the search space?

Minseok Jeon IC637 Program Analysis 2025 Fall 22/31

Our Approach to Reduce the Search Space

• To reduce the search space, we decompose the learning problem (1) into the
following two subproblems.

The first subproblem is as follows:

Find f2 that minimizes
∑
P ∈P

cost(FP (M(true,f2)(P)))

while satisfying
∑

P ∈P |proved(FP (M(true,f2)(P)))|∑
P ∈P |proved(FP (λm.2(P)))| ≥ γ. (2)

Minseok Jeon IC637 Program Analysis 2025 Fall 23/31

Solution to the first subproblem (2)

Definition

Let P be a codebase. We say f2 is a minimal solution of the subproblem (2) if

1. f2 is precise enough:
∑

P ∈P |proved(FP (M(true,f2)(P)))|∑
P ∈P |proved(FP (λm.2))| ≥ γ, and

2. there exists no solution smaller than f2: if f ′
2 meets the precision constraint, i.e.,∑

P ∈P |proved(FP (M(true,f ′
2)(P)))|∑

P ∈P |proved(FP (λm.2(P)))| ≥ γ, and f ′
2 is smaller than f2, i.e., f ′

2 ⊑ f2, then f ′
2

is equivalent to f2:

∀P ∈ P.∀m ∈MP .M(true,f2)(P)(m) = M(true,f ′
2)(P)(m).

Minseok Jeon IC637 Program Analysis 2025 Fall 24/31

Our Approach to Reduce the Search Space

• Suppose we have a solution f2 to the first subproblem. Then, we learn f1.

The second subproblem is as follows:

Find f1 that minimizes
∑
P ∈P

cost(FP (M(f1,f2)(P)))

while satisfying
∑

P ∈P |proved(FP (M(f1,f2)(P)))|∑
P ∈P |proved(FP (λm.2(P)))| ≥ γ. (3)

Minseok Jeon IC637 Program Analysis 2025 Fall 25/31

Solution to the second subproblem (3)

Definition

Let P be a codebase. We say f1 is a minimal solution of the subproblem (3) if

1. f1 is precise enough:
∑

P ∈P |proved(FP (M(f1,f2)(P)))|∑
P ∈P |proved(FP (λm.2))| ≥ γ, and

2. there exists no solution smaller than f1: if f ′
1 meets the precision constraint, i.e.,∑

P ∈P |proved(FP (M(f ′
1,f2)(P)))|∑

P ∈P |proved(FP (λm.2(P)))| ≥ γ, and f ′
1 is smaller than f1, i.e., f ′

1 ⊑ f1, then f ′
1 is

equivalent to f1:

∀P ∈ P.∀m ∈MP .M(f1,f2)(P)(m) = M(f ′
1,f2)(P)(m).

Minseok Jeon IC637 Program Analysis 2025 Fall 26/31

Our Decomposition is Safe

• If f2 and f1 are solutions of the subproblems (2) and (3), respectively, then (f1, f2)
is a solution of the learning problem (1).

Theorem

Let f1, f2 be minimal solutions of the two problems (2) and (3), respectively. Then,
(f1, f2) is a minimal solution of the learning problem (1).

Minseok Jeon IC637 Program Analysis 2025 Fall 27/31

Our Decomposition is Safe

Proof.
• (Precision) the precision constraint of the learning problem (1) is satisfied as f1 is a

solution of the subproblem (3).
• (Minimality) Suppose k ∈ {1, 2}.f ′

k ⊑ fk and (f ′
1, f ′

2) meets the precision contraint.
• As (f ′

1, f ′
2) meets the precision contraint, (true, f ′

2) also meets the precision constraint
and f ′

2 ⊑ f2. As f2 is a solution to the subproblem (2), f2 and f ′
2 are equivalent.

• As f2 and f ′
2 are equivalent, (f ′

1, f2) meets the precision constraint and f ′
1 ⊑ f1. As f1

is a solution to the problem (3) when f2 is used, f ′
1 and f1 are equivalent.

• Detailed proof is provided in the paper2.

2https://dgistpl.github.io/papers/oopsla17a.pdf
Minseok Jeon IC637 Program Analysis 2025 Fall 28/31

Overall Learning Procedure

1. Learn f2 that meets the precision constraint (
∑

P ∈P
|proved(FP (M(true,f2)(P)))|∑

P ∈P
|proved(FP (λm.2(P)))|

≥ γ) of

the subproblem (2) while minimizing the cost of
∑

P ∈P cost(FP (M(true,f2)(P))).

2. Learn f1 that meets the precision constraint (
∑

P ∈P
|proved(FP (M(f1,f2)(P)))|∑

P ∈P
|proved(FP (λm.2(P)))|

≥ γ) of the

subproblem (3) while minimizing the cost of
∑

P ∈P cost(FP (M(f1,f2)(P))).

• We can use standard learning algorithms to learn f2 and f1.

Minseok Jeon IC637 Program Analysis 2025 Fall 29/31

Evaluation Results

• Our selective context sensitivity enhances the balance between the precision and the
cost.

1200 1400 1600 1800 2000

of may-fail casts

0

500

1000

1500

2000

2500

a
n
a
ly

si
s

ti
m

e
(s

)

Insensitive

2objH

2objH+IntroA
2objH+IntroB2objH+Data(Ours)

bloat

500 600 700 800 900 1000 1100 1200 1300

of may-fail casts

100

0

100

200

300

400

500

600

700

800

a
n
a
ly

si
s

ti
m

e
(s

)

Insensitive

2objH

2objH+IntroA

2objH+IntroB

2objH+Data(Ours)

xalan

Minseok Jeon IC637 Program Analysis 2025 Fall 30/31

Wrap-up

• Context sensitivity is essential for precise pointer analysis, but it can be expensive.
• Selective context sensitivity applies different depths to different methods to balance

precision and cost.
• Machine learning can be used to learn the right context sensitivity for each method

from training data.

Minseok Jeon IC637 Program Analysis 2025 Fall 31/31

