IC637 Program Analysis

Lecture 8: Selective Context Sensitivity

Minseok Jeon

2025 Fall

Review: 1-Call-Site Sensitivity

e 1-call-site sensitive analysis can prove the castings are always safe.

® call-site sensitivity uses the call sites as context elements.

1 class A{}

2 class B{} 1-call-site sensitive analysis
3 class C{

4 static Object id(Object v) { id[10]

return v; .
}

5

6

7 void main(Stringl[] args) { id[11]

8 A a = new AQ);//l

9 B b = new B ;//l

10 A a2 = (A)id(a);//queryl a“ - {ll[]} b[] — {ZQH}

" B b2 = (B)id(b);//query2 v[10] = {{1[J} v[11] — {i2[]}
12 } a2[] — {L[]} v2[] — {l2[]}

13 }

Review: 2-Call-Site Sensitive Analysis

® conventional 2-call-site sensitive uses the caller methods' contexts.

1 class A{} class B{}
2 class C{

3 static Object id(Object v) { 2-call-site sensitive analysis

4 return v;

5} id1[12] > id[12,7]
6 Object id1(0bject wv) {

7 return this.id(v);

g} > id[13,7]
9 void main(String[] args) {

10 A a = new AQ);//1

N B e me DO all = {u} o] = {10}

12 A a2 = (A)idi(a);//queryl v[10] = {i1[]} v[11] = {L2[]}

13 B b2 = (B)id1(b);//query2 a2l] — {L[]} v2[] — {l2[]}

14 }

Review: Object Sensitivity

® Object sensitivity uses the receiver objects as context elements.

class A{} class B{}
class C{
Object id(Object v) {
return v;
}
Object id1(0bject v) {
return this.id(v);
}
}
class D{
void main(String[] args) {
A a = new AQ);//lh
B b = new BQ);//l2

C c1 = new CQ);//l3

C c2 = new CQO);//ly

A a3 = (A)cl.idi(a);//query3

B b3 = (B)c2.id1(b);//querys
}

1-object sensitive analysis

\4

\4

id(l4]

ot |

al] = {u[)} bl = {la]}}
id1.ofl] — {11 []} id1lfly] — (I}
id.ofls] — {L]]} idoo[la] — {I]]}
a2l] = {L[]} v2[] — {i2[1}

Review: 2-Object Sensitivity

e 2-object sensitive analysis uses the heap contexts of the receiver objects.

D allocD() {
return new DQ);}//I;

Object id(0Object wv) {
return v;}

void main(Stringl[] args) {

class C{

}

class D{

}

class E{
C c1
C c2
D di
D d2
A a
B b

1

new CQO;//l2
new CQ);//l3
cl.allocD();
c2.allocD();
(A)d1l.id(new AQ));//la
(B)d2.id(new BQ)); //l5

2-object sensitive analysis

id[ls, 1]

Al = {k[]} ¢
dif) = {h[la]}
vlla, 1] = {la]} v

al] = {la[]} b

allocD[l2

allocD[l3

2[] = {i5]]}

[
[

d2[} — {l[l5]}

I3, 1] — {l5[]}
| = {ls[0}

Performance of Context Sensitivities in Practice

xalan
2000
‘& 1750 2°bl
N
D 1500
£
+ 1250
a
¥ 1000
= 2call
g 750
< [|
500 - .
| obj I call
250 u C
760 860 960 10'00 11'00 1_2'5
alarms

® Problem: k-context sensitivity is precise but very expensive.

Necessity of Selective Context Sensitivity

® In the following example, dummy does not need to be analyzed context sensitively.

1 class A{} class B{}
2 class C{

3 static Object id(Object v) { 1-call-site Sensitivity

4 return v;

5)

6 static void dummy () { dummy|[14]

7 return;

8 7

9 void main(String[] args) { dummy[15]

10 A al = new AQ);//l

1 B bl = new BQ);//l2

12 A a2 = (A)id(al);//queryl al[] — {ll[]} bl[] — {ZQH}
Gy, e o[12] = (L[]} v[13] = {B(]}
15 dummy () : a’2[] - {llﬂ} bQH - {l2 H}
16}

17 }

Necessity of Selective Context Sensitivity

® Applying 1-call-site sensitivity to the method id and context insensitive analysis to

dummy still proves the queries.

class A{} class B{} id: 1-call-site sensitivity
class C{ . .
static Object id(Object v) { dummy: context insensitive
return v;
static void dummy(){return;}
void main(String[] args) { dun"ny”
A al = new AQ);
B bl = new B();
A a2 = (A)id(al);//queryl
B b2 = (B)id(bl);//query2 al] = {lu[]} o] = {i2[]}
. v[10] = {L[]} v[11] = {i2[]}
1y a2l] = {L[]} 2] = {I2[]}

The goal of selective context sensitivity is to identify suitable context sensitivity to
each method call before analysis.

Necessity of Selective Context Sensitivity

® Selective context sensitivity can improve the performance of static analysis.

xalan

2000| Il
& 17501 ZObJ
N
D 1500
=
¥ 1250
a
@
Q1000
T,‘:’ . 2call
< |

500 2obj+Selective .

! | obj I call
250 [| N L
700 800 900 1000 1100 1200

alarms

Analysis Rule

® Rule for method calls (e.g., VCall) needs to be updated as follows:

Merge(depth, heap, hctx, invo, callerCtz) = calleeCtzx,

VarPointsTo(this, calleeCtx, heap, hetx),

CallGraph(invo, callerCtz, toMeth, calleeCtx) +
VCall(base, sig,invo,inMeth), CallGraph(
VarPointsTo(base, callerCtz, heap, hetx),
HeapType(heap, heapT'), LookUp(heapT, sig, toMeth),
ThisVar(toMeth,this), ApplyDepth(toMeth, depth).

inMeth, callerCtzx),

—)—

® Key difference 1: ApplyDepth(toMeth, depth)
® Key difference 2: Merge takes another parameter depth

® Define Merge for selective call-site sensitivity:

® Define Merge for selective object sensitivity:

Analysis Rule

® Merge for selective 2-call-site sensitivity:

Merge(depth, heap, hctz, invo, ctx) = [ctx H invo] depth

® Merge for selective object sensitivity:

Merge(depth, heap, hetz, invo, ctx) = [hetx H heap]depth

Modeling Static Analyzer

® Given a program P, a parametric static analyzer Fp is modeled as follows.

Fp : Ap —>'P(Qp) x N.

where Ap : Mp — {0, 1,2} denotes mappings from methods to depths, Qp denotes sets
of proven queries, and N denotes analysis costs.

e Given a mapping a € A, so-called abstraction, we can generate input facts
ApplyDepth(Meth : M, Depth : Int)!

For example, if a method meth is mapped to depth depth in the abstraction a, we
generate an input fact ApplyDepth(meth, depth).

IM: the set of method identifiers, Int: the set of integers.

Modeling Static Analyzer

® Given a program P, a parametric static analyzer Fp is modeled as follows.

Fp: Ap — 'P(Qp) x N.
where Ap : Mp — {0, 1,2} denotes mappings from methods to depths, Qp denotes sets

of proven queries, and N denotes analysis costs.

® For convenience, we define two projection functions: proved(Fp(a)) returns the set
of proven queries, and cost(Fp(a)) returns the analysis cost (a € Ap).

® Property (monotonicity): assigning a deeper depth to a method call-site does not
degrade analysis precision.

Monotonicity of Analysis

® Two mappings a,a’ € Ap can be ordered as follows:

Vm € Mp.a(m) <a'(m) <= aLCa’

Using a bigger mapping does not degrade analysis precision:

aCa = proved(Fp(a)) C proved(Fp(a’))

Open Challenge

® How can we find the right context sensitivity for each method call?

Machine Learning-based Selective Context Sensitivity

® Machine learning-based approach can be used:

Data-Driven Context-Sensitivity for Points-to Analysis

SEHUN JEONG, Korea University, Republic of Korea
MINSEOK JEON®, Korea University, Republic of Korea
SUNGDEOK CHA, Korea University, Republic of Korea
HAKJOO OHTY, Korea University, Republic of Korea

We present a new data-driven approach to achieve highly cost-effective context-sensitive points-to analysis
for Java. While context-sensitivity has greater impact on the analysis precision and performance than any
other precision-improving techniques, it is difficult to accurately identify the methods that would benefit the
most from context-sensitivity and decide how much context-sensitivity should be used for them. Manually

® |dea: learn a machine learning model that maps each method call to the right depth.

Machine Learning-based Selective Context Sensitivity

® Goal: learn a machine learning model that maps each method call to the right depth
from a set of training data (e.g., a set of small programs).

train data

method ——{rained model ————+ depth

e Assumption, if a model is effective for the training data, it is also effective for the
test data.

Disjunctive Model

® Disjunctive model: The disjunctive model describes selective context sensitivity
using boolean formulas.

Let A = {a1,aq9,...,a,} be a set of atomic features, where each atomic feature is a
predicate over methods (e.g., methods take more than 1 parameter):

a;(P) : Mp — {true, false}.
Given a program P, a formula f represents a set of program components as follows:

[truelp = Mp [=f1p = [truelp \ [f]P
[falselp = 0 [finfele = [flpO[f]rp
[ailp = {c € [truelp | ai(P)(c) = true} [fiV fo]p = [AlpULfdp

Disjunctive Model

® Let (f1, f2) be a pair of mutually exclusive selective formulas. Then, the model
MU1:12) assigns a depth to each formula as follows:

2 ifme[fo]p
MUILEY(P) = xm e Mp. { 1 ifme[fi]p
0 otherwise

Learning Problem

Given a training set P = {P;, P5,..., P,}, the learning problem is as follows:

Given a codebase P, find (f1, f2) that maximizes

>~ proved(Fp(M12)(P))) while minimizing cost(Fp(MU/2)(P))). (1)
PcP

® Question: what does an ideal solution of the learning problem look like?

Solution of the Learning Problem (Minimal Solution)

Definition

Let P be a codebase and (fi, f2) be a parameter. We say (fi, f2) is a minimal solution
of the learning problem (1) if

: : > pep [Proved(Fp(MULI2) (P))|
1. (f1, f2) is precise enough: Pfiep iproved(Fp O] > 7, and

2. there exists no solution smaller than (f1, f2): if (f1, f5) meets the precision

Y pep lproved(Fp(MULID ()]
constraint, i.e., S Toroved(Fr Om 3(P))

(f1, f2), i.e., f1 C f1 and f5 C fo, then (f1, f5) is equivalent to (f1, f2):

>, and (f{, f3) is smaller than

VP € P.Vm € Mp. MU1S2)(P)(m) = MU1/2) (P)(m)
where f C f/ = VP.f(P) C f(P).

Challenge

® Learning the two formulas (f1, f2) at once is difficult.

® Suppose the search space for a formula is S, then the search space for (f1, f2) is
S xS.

® Question. How can we reduce the search space?

Our Approach to Reduce the Search Space

® To reduce the search space, we decompose the learning problem (1) into the
following two subproblems.

The first subproblem is as follows:

Find f, that minimizes Z cost(Fp(MUIruef2)(p)))
PeP

Y pep |proved(Fp(MUruel2)(P)))|
> pep [proved(Fp(Am.2(P)))|

while satisfying >, (2)

Solution to the first subproblem (2)

Definition

Let P be a codebase. We say fs is a minimal solution of the subproblem (2) if
h- > pep lProved(Fp(MUrue2)(P)))|

’ ZPGP |proved(Fp(Am.2))|
2. there exists no solution smaller than fo: if f} meets the precision constraint, i.e.,
3 pep lproved(Fp (M52 ())|

> pep [Proved(Fp(Am.2(P)))|
is equivalent to fs:

1. fy is precise enoug

>, and

> v, and f4 is smaller than fs, i.e., f5 C fs, then f}

VP € P.¥m € Mp. MUe2)(P)(m) = M) (P)(m).

Our Approach to Reduce the Search Space

® Suppose we have a solution fs to the first subproblem. Then, we learn fi.
The second subproblem is as follows:

Find fi that minimizes Z cost(Fp(MUL12)(P)))
PeP

EPEP ’proved(FP(M(fl’fQ) (P)))\
!

hile satisfyi
while satistying > pep [proved(Fp(Am.2(P)))

=7 (3)

Solution to the second subproblem (3)

Definition

Let P be a codebase. We say fi is a minimal solution of the subproblem (3) if
TBeiD |proved(Fp(M(F1:£2) (P)))]

EPeP |proved(Fp(Am.2))|
2. there exists no solution smaller than f1: if f] meets the precision constraint, i.e.,
3 pep lproved(Fp(MY1:92) (P))]

> pep [Proved(Fp(Am.2(P)))|
equivalent to fi:

> 7, and

1. fi is precise enough: by

>, and f] is smaller than fi, i.e., f{ C fi, then f{ is

VP € P.Ym € Mp. MU12)(P)(m) = MU (P)(m).

Our Decomposition is Safe

® If fy and f; are solutions of the subproblems (2) and (3), respectively, then (f1, f2)
is a solution of the learning problem (1).

Theorem

Let f1, fo be minimal solutions of the two problems (2) and (3), respectively. Then,
(f1, f2) is a minimal solution of the learning problem (1).

Our Decomposition is Safe

® (Precision) the precision constraint of the learning problem (1) is satisfied as f; is a
solution of the subproblem (3).

¢ (Minimality) Suppose k € {1,2}.f, C fi and (f], f3) meets the precision contraint.
® As (f], f4) meets the precision contraint, (true, f}) also meets the precision constraint
and f5 C fo. As fy is a solution to the subproblem (2), f> and f4 are equivalent.
® As fy and f} are equivalent, (f1, f2) meets the precision constraint and f; C f1. As f;
is a solution to the problem (3) when f5 is used, fi and f; are equivalent.

Ol

e Detailed proof is provided in the paper?.

https://dgistpl.github.io/papers/oopslal7a.pdf

Overall Learning Procedure

(Zpep Iproved(Fp (Mo /2) (P)))|
Y pep lProved(Fp (m.2(P)))|

the subproblem (2) while minimizing the cost of 3 pcp cost(Fp(Mruef2)(P))).

1. Learn f5 that meets the precision constraint >) of

ZPEP |proved(Fp(MF1:52) (Py)))
ZPGP |proved(Fp (Am.2(P)))|

subproblem (3) while minimizing the cost of 3" pep cost(Fp(MU1:/2)(P))).

>) of the

2. Learn f; that meets the precision constraint (

® We can use standard learning algorithms to learn fo and fi.

Evaluation Results

® Qur selective context sensitivity enhances the balance between the precision and the

cost.
bloat N xalan
2500 .
20bjH 700[20bjH
O O
2000 600
20bjH+IntroB
@ g 50 0
@ 1500 7]
£ £ 400
= =
2 K]
2 1000] 2 300
[©
s c
5 ® 200
500 ;
i 20bjH+IntroA
20bjH+IntroA 100| , .
. j 20bjH+Data(Ours)
20bjH+Data(Ours) ~ 20PjH-+IntroB Insensitive) 17 [insensitive
[] O O
0 0
~10
1200 1400 1600 1800 2000 105 600 700 800 900 1000 1100 1200 1300

of may-fail casts # of may-fail casts

Wrap-up

e Context sensitivity is essential for precise pointer analysis, but it can be expensive.

e Selective context sensitivity applies different depths to different methods to balance
precision and cost.

® Machine learning can be used to learn the right context sensitivity for each method
from training data.

