

IC637 Program Analysis

Lecture 8: Selective Context Sensitivity

Minseok Jeon

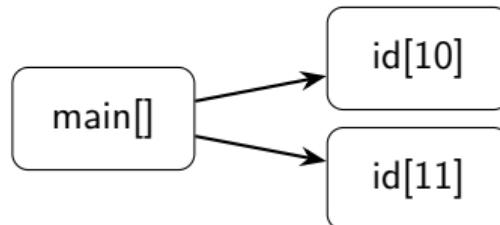
2025 Fall

Review: 1-Call-Site Sensitivity

- 1-call-site sensitive analysis can prove the castings are always safe.
- call-site sensitivity uses the call sites as context elements.

```
1 class A{}  
2 class B{}  
3 class C{  
4     static Object id(Object v) {  
5         return v;  
6     }  
7     void main(String[] args) {  
8         A a = new A(); //l1  
9         B b = new B(); //l2  
10        A a2 = (A)id(a); //query1  
11        B b2 = (B)id(b); //query2  
12    }  
13 }
```

1-call-site sensitive analysis



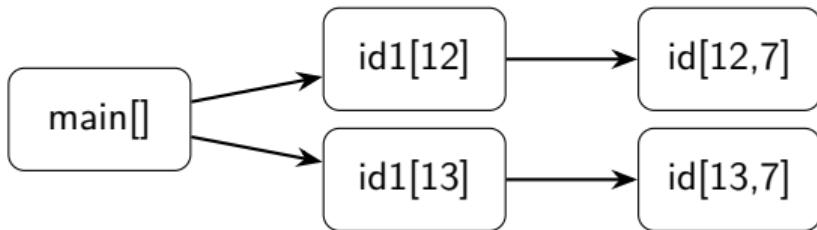
$a[] \rightarrow \{l_1[]\}$ $b[] \rightarrow \{l_2[]\}$
 $v[10] \rightarrow \{l_1[]\}$ $v[11] \rightarrow \{l_2[]\}$
 $a2[] \rightarrow \{l_1[]\}$ $b2[] \rightarrow \{l_2[]\}$

Review: 2-Call-Site Sensitive Analysis

- conventional 2-call-site sensitive uses the caller methods' contexts.

```
1 class A{} class B{}
2 class C{
3     static Object id(Object v) {
4         return v;
5     }
6     Object id1(Object v) {
7         return this.id(v);
8     }
9     void main(String[] args) {
10        A a = new A(); //l1
11        B b = new B(); //l2
12        A a2 = (A)id1(a); //query1
13        B b2 = (B)id1(b); //query2
14    }
15 }
```

2-call-site sensitive analysis



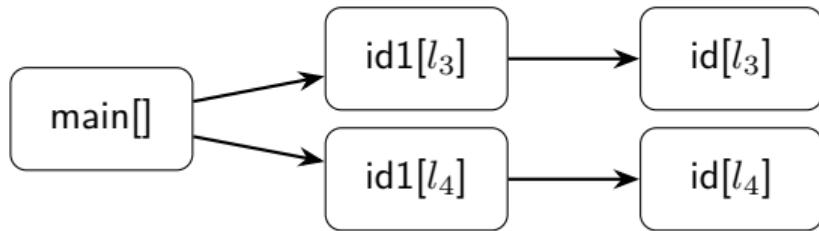
$a[] \rightarrow \{l_1[]\}$ $b[] \rightarrow \{l_2[]\}$
 $v[10] \rightarrow \{l_1[]\}$ $v[11] \rightarrow \{l_2[]\}$
 $a2[] \rightarrow \{l_1[]\}$ $b2[] \rightarrow \{l_2[]\}$

Review: Object Sensitivity

- Object sensitivity uses the receiver objects as context elements.

```
1 class A{} class B{}  
2 class C{  
3     Object id(Object v) {  
4         return v;  
5     }  
6     Object id1(Object v) {  
7         return this.id(v);  
8     }  
9 }  
10 class D{  
11     void main(String[] args) {  
12         A a = new A(); //l1  
13         B b = new B(); //l2  
14         C c1 = new C(); //l3  
15         C c2 = new C(); //l4  
16         A a3 = (A)c1.id1(a); //query3  
17         B b3 = (B)c2.id1(b); //query4  
18     }  
19 }
```

1-object sensitive analysis



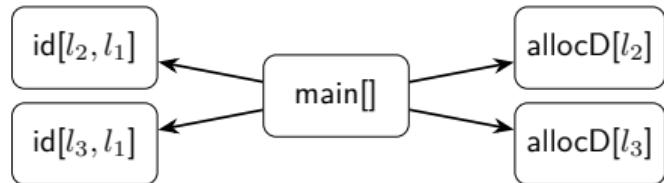
$a[] \rightarrow \{l_1[]\}$ $b[] \rightarrow \{l_2[]\}$
 $id1.v[l_3] \rightarrow \{l_1[]\}$ $id1.v[l_4] \rightarrow \{l_2[]\}$
 $id.v[l_3] \rightarrow \{l_1[]\}$ $id.v[l_4] \rightarrow \{l_2[]\}$
 $a2[] \rightarrow \{l_1[]\}$ $b2[] \rightarrow \{l_2[]\}$

Review: 2-Object Sensitivity

- **2-object sensitive** analysis uses the heap contexts of the receiver objects.

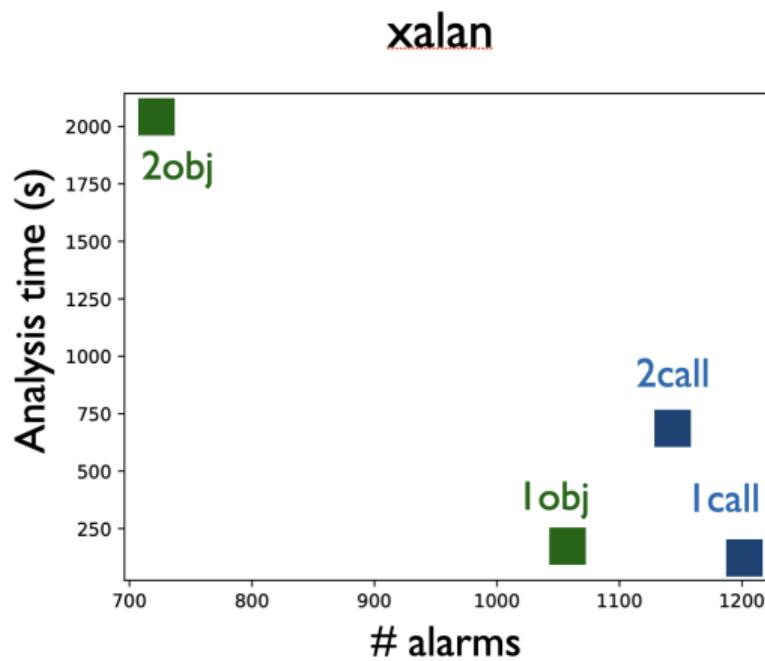
```
1 class C{  
2     D allocD() {  
3         return new D();}//l1  
4 }  
5 class D{  
6     Object id(Object v) {  
7         return v;}  
8 }  
9 class E{  
10    void main(String[] args) {  
11        C c1 = new C();//l2  
12        C c2 = new C();//l3  
13        D d1 = c1.allocD();  
14        D d2 = c2.allocD();  
15        A a = (A)d1.id(new A());//l4  
16        B b = (B)d2.id(new B());//l5  
17    } }
```

2-object sensitive analysis



$c1[] \rightarrow \{l_2[]\}$ $c2[] \rightarrow \{l_3[]\}$
 $d1[] \rightarrow \{l_1[l_2]\}$ $d2[] \rightarrow \{l_1[l_3]\}$
 $v[l_2, l_1] \rightarrow \{l_4[]\}$ $v[l_3, l_1] \rightarrow \{l_5[]\}$
 $a[] \rightarrow \{l_4[]\}$ $b[] \rightarrow \{l_5[]\}$

Performance of Context Sensitivities in Practice

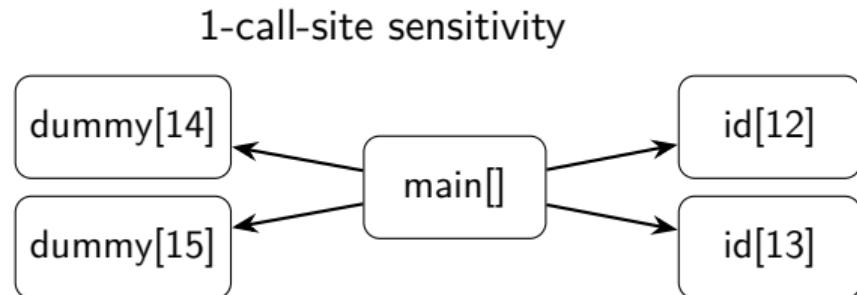


- **Problem:** k -context sensitivity is precise but very expensive.

Necessity of Selective Context Sensitivity

- In the following example, dummy does not need to be analyzed context sensitively.

```
1 class A{} class B{}
2 class C{
3     static Object id(Object v) {
4         return v;
5     }
6     static void dummy(){
7         return;
8     }
9     void main(String[] args) {
10         A a1 = new A(); //l1
11         B b1 = new B(); //l2
12         A a2 = (A)id(a1); //query1
13         B b2 = (B)id(b1); //query2
14         dummy();
15         dummy();
16     }
17 }
```

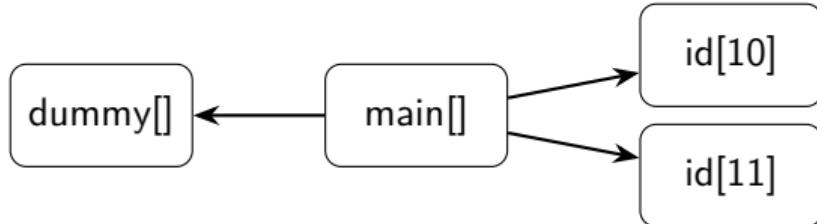

$$\begin{aligned}a1[] &\rightarrow \{l_1[]\} \quad b1[] \rightarrow \{l_2[]\} \\v[12] &\rightarrow \{l_1[]\} \quad v[13] \rightarrow \{l_2[]\} \\a2[] &\rightarrow \{l_1[]\} \quad b2[] \rightarrow \{l_2[]\}\end{aligned}$$

Necessity of Selective Context Sensitivity

- Applying 1-call-site sensitivity to the method `id` and context insensitive analysis to `dummy` still proves the queries.

```
1 class A{} class B{}  
2 class C{  
3     static Object id(Object v) {  
4         return v;  
5     }  
6     static void dummy(){return;}  
7     void main(String[] args) {  
8         A a1 = new A();  
9         B b1 = new B();  
10        A a2 = (A)id(a1);//query1  
11        B b2 = (B)id(b1);//query2  
12        dummy();  
13        dummy();  
14    }}
```

`id`: 1-call-site sensitivity
`dummy`: context insensitive

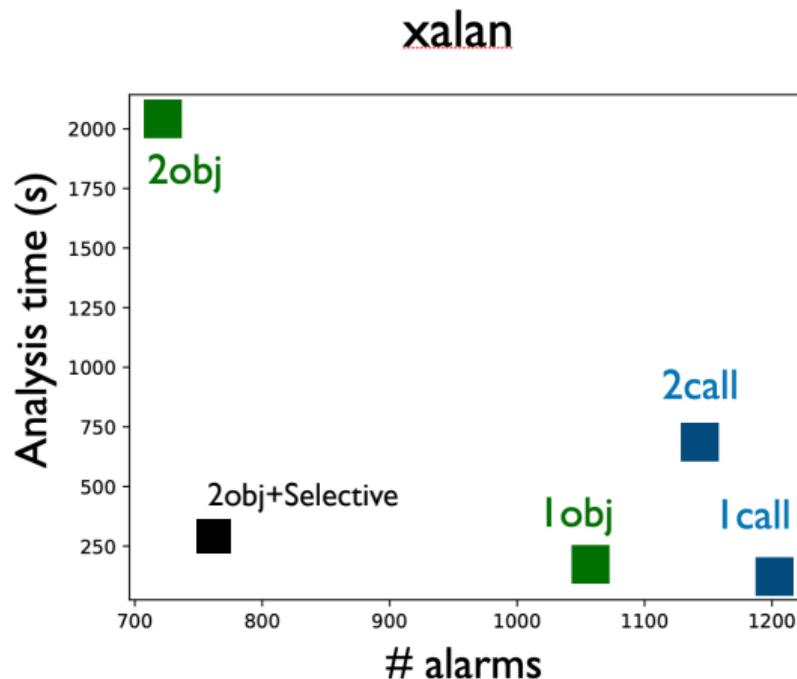


$a[] \rightarrow \{l_1[]\}$ $b[] \rightarrow \{l_2[]\}$
 $v[10] \rightarrow \{l_1[]\}$ $v[11] \rightarrow \{l_2[]\}$
 $a2[] \rightarrow \{l_1[]\}$ $b2[] \rightarrow \{l_2[]\}$

- The goal of selective context sensitivity is to identify suitable context sensitivity to each method call before analysis.

Necessity of Selective Context Sensitivity

- Selective context sensitivity can improve the performance of static analysis.



Analysis Rule

- Rule for method calls (e.g., $VCall$) needs to be updated as follows:

```
Merge(depth, heap, hctx, invo, callerCtx) = calleeCtx,  
VarPointsTo(this, calleeCtx, heap, hctx),  
CallGraph(invo, callerCtx, toMeth, calleeCtx) ←  
   $VCall$ (base, sig, invo, inMeth), CallGraph(, , inMeth, callerCtx),  
  VarPointsTo(base, callerCtx, heap, hctx),  
  HeapType(heap, heapT), LookUp(heapT, sig, toMeth),  
  ThisVar(toMeth, this), ApplyDepth(toMeth, depth).
```

- Key difference 1: **ApplyDepth**(*toMeth*, *depth*)
- Key difference 2: **Merge** takes another parameter **depth**
- Define **Merge** for selective call-site sensitivity:
- Define **Merge** for selective object sensitivity:

Analysis Rule

- **Merge** for selective 2-call-site sensitivity:

$$\mathbf{Merge}(depth, heap, hctx, invo, ctx) = \lceil ctx + invo \rceil_{depth}$$

- **Merge** for selective object sensitivity:

$$\mathbf{Merge}(depth, heap, hctx, invo, ctx) = \lceil hctx + heap \rceil_{depth}$$

Modeling Static Analyzer

- Given a program P , a parametric static analyzer F_P is modeled as follows.

$$F_P : \mathcal{A}_P \rightarrow \mathcal{P}(\mathbb{Q}_P) \times \mathbb{N}.$$

where $\mathcal{A}_P : \mathbb{M}_P \rightarrow \{0, 1, 2\}$ denotes mappings from methods to depths, \mathbb{Q}_P denotes sets of proven queries, and \mathbb{N} denotes analysis costs.

- Given a mapping $\mathbf{a} \in \mathcal{A}$, so-called abstraction, we can generate input facts

$$ApplyDepth(Meth : M, Depth : Int)^1$$

For example, if a method $meth$ is mapped to depth $depth$ in the abstraction \mathbf{a} , we generate an input fact $ApplyDepth(meth, depth)$.

¹ M : the set of method identifiers, \mathbb{N} : the set of integers.

Modeling Static Analyzer

- Given a program P , a parametric static analyzer F_P is modeled as follows.

$$F_P : \mathcal{A}_P \rightarrow \mathcal{P}(\mathbb{Q}_P) \times \mathbb{N}.$$

where $\mathcal{A}_P : \mathbb{M}_P \rightarrow \{0, 1, 2\}$ denotes mappings from methods to depths, \mathbb{Q}_P denotes sets of proven queries, and \mathbb{N} denotes analysis costs.

- For convenience, we define two projection functions: $\text{proved}(F_P(a))$ returns the set of proven queries, and $\text{cost}(F_P(a))$ returns the analysis cost ($a \in \mathcal{A}_P$).
- Property (monotonicity): assigning a deeper depth to a method call-site does not degrade analysis precision.

Monotonicity of Analysis

- Two mappings $\mathbf{a}, \mathbf{a}' \in \mathcal{A}_P$ can be ordered as follows:

$$\forall m \in \mathbb{M}_P. \mathbf{a}(m) \leq \mathbf{a}'(m) \iff \mathbf{a} \sqsubseteq \mathbf{a}'$$

Using a bigger mapping does not degrade analysis precision:

$$\mathbf{a} \sqsubseteq \mathbf{a}' \implies \text{proved}(F_P(\mathbf{a})) \subseteq \text{proved}(F_P(\mathbf{a}'))$$

Open Challenge

- How can we find the right context sensitivity for each method call?

Machine Learning-based Selective Context Sensitivity

- Machine learning-based approach can be used:

Data-Driven Context-Sensitivity for Points-to Analysis

SEHUN JEONG, Korea University, Republic of Korea

MINSEOK JEON*, Korea University, Republic of Korea

SUNGDEOK CHA, Korea University, Republic of Korea

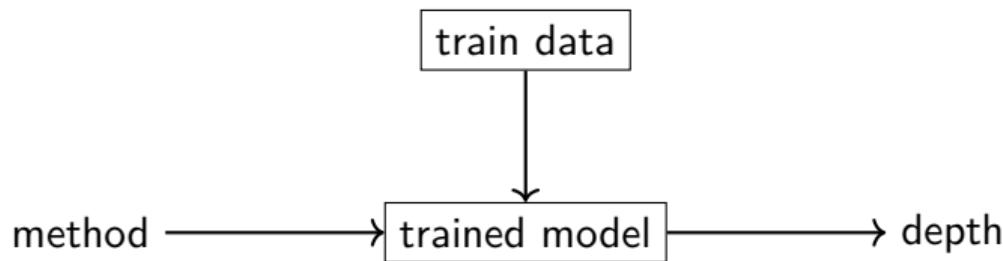
HAKJOO OH†, Korea University, Republic of Korea

We present a new data-driven approach to achieve highly cost-effective context-sensitive points-to analysis for Java. While context-sensitivity has greater impact on the analysis precision and performance than any other precision-improving techniques, it is difficult to accurately identify the methods that would benefit the most from context-sensitivity and decide how much context-sensitivity should be used for them. Manually

- Idea: learn a machine learning model that maps each method call to the right depth.

Machine Learning-based Selective Context Sensitivity

- Goal: learn a machine learning model that maps each method call to the right depth from a set of training data (e.g., a set of small programs).



- Assumption, if a model is effective for the training data, it is also effective for the test data.

Disjunctive Model

- Disjunctive model: The disjunctive model describes selective context sensitivity using boolean formulas.

Let $\mathbb{A} = \{a_1, a_2, \dots, a_m\}$ be a set of atomic features, where each atomic feature is a predicate over methods (e.g., methods take more than 1 parameter):

$$a_i(P) : \mathbb{M}_P \rightarrow \{\text{true}, \text{false}\}.$$

Given a program P , a formula f represents a set of program components as follows:

$$\llbracket \text{true} \rrbracket_P = \mathbb{M}_P$$

$$\llbracket \text{false} \rrbracket_P = \emptyset$$

$$\llbracket a_i \rrbracket_P = \{c \in \llbracket \text{true} \rrbracket_P \mid a_i(P)(c) = \text{true}\}$$

$$\llbracket \neg f \rrbracket_P = \llbracket \text{true} \rrbracket_P \setminus \llbracket f \rrbracket_P$$

$$\llbracket f_1 \wedge f_2 \rrbracket_P = \llbracket f_1 \rrbracket_P \cap \llbracket f_2 \rrbracket_P$$

$$\llbracket f_1 \vee f_2 \rrbracket_P = \llbracket f_1 \rrbracket_P \cup \llbracket f_2 \rrbracket_P$$

Disjunctive Model

- Let (f_1, f_2) be a pair of mutually exclusive selective formulas. Then, the model $\mathcal{M}^{(f_1, f_2)}$ assigns a depth to each formula as follows:

$$\mathcal{M}^{(f_1, f_2)}(P) = \lambda m \in \mathbb{M}_P. \quad \begin{cases} 2 & \text{if } m \in \llbracket f_2 \rrbracket_P \\ 1 & \text{if } m \in \llbracket f_1 \rrbracket_P \\ 0 & \text{otherwise} \end{cases}$$

Learning Problem

Given a training set $\mathbf{P} = \{P_1, P_2, \dots, P_n\}$, the learning problem is as follows:

Given a codebase \mathbf{P} , find (f_1, f_2) that maximizes

$$\sum_{P \in \mathbf{P}} \text{proved}(F_P(\mathcal{M}^{(f_1, f_2)}(P))) \text{ while minimizing } \text{cost}(F_P(\mathcal{M}^{(f_1, f_2)}(P))). \quad (1)$$

- Question: what does an ideal solution of the learning problem look like?

Solution of the Learning Problem (Minimal Solution)

Definition

Let \mathbf{P} be a codebase and (f_1, f_2) be a parameter. We say (f_1, f_2) is a minimal solution of the learning problem (1) if

1. (f_1, f_2) is precise enough: $\frac{\sum_{P \in \mathbf{P}} |proved(F_P(\mathcal{M}^{(f_1, f_2)}(P)))|}{\sum_{P \in \mathbf{P}} |proved(F_P(\lambda m.2))|} \geq \gamma$, and
2. there exists no solution smaller than (f_1, f_2) : if (f'_1, f'_2) meets the precision constraint, i.e., $\frac{\sum_{P \in \mathbf{P}} |proved(F_P(\mathcal{M}^{(f'_1, f'_2)}(P)))|}{\sum_{P \in \mathbf{P}} |proved(F_P(\lambda m.2(P)))|} \geq \gamma$, and (f'_1, f'_2) is smaller than (f_1, f_2) , i.e., $f'_1 \sqsubseteq f_1$ and $f'_2 \sqsubseteq f_2$, then (f'_1, f'_2) is equivalent to (f_1, f_2) :

$$\forall P \in \mathbf{P}. \forall m \in \mathbb{M}_P. \mathcal{M}^{(f_1, f_2)}(P)(m) = \mathcal{M}^{(f'_1, f'_2)}(P)(m)$$

where $f \sqsubseteq f' \implies \forall P. f(P) \subseteq f'(P)$.

Challenge

- Learning the two formulas (f_1, f_2) at once is difficult.
- Suppose the search space for a formula is S , then the search space for (f_1, f_2) is $S \times S$.
- ***Question.*** How can we reduce the search space?

Our Approach to Reduce the Search Space

- To reduce the search space, we decompose the learning problem (1) into the following two subproblems.

The first subproblem is as follows:

Find f_2 that minimizes $\sum_{P \in \mathbf{P}} \text{cost}(F_P(\mathcal{M}^{(\text{true}, f_2)}(P)))$

while satisfying $\frac{\sum_{P \in \mathbf{P}} |\text{proved}(F_P(\mathcal{M}^{(\text{true}, f_2)}(P)))|}{\sum_{P \in \mathbf{P}} |\text{proved}(F_P(\lambda m.2(P)))|} \geq \gamma$. (2)

Solution to the first subproblem (2)

Definition

Let \mathbf{P} be a codebase. We say f_2 is a minimal solution of the subproblem (2) if

1. f_2 is precise enough: $\frac{\sum_{P \in \mathbf{P}} |proved(F_P(\mathcal{M}^{(true, f_2)}(P)))|}{\sum_{P \in \mathbf{P}} |proved(F_P(\lambda m.2))|} \geq \gamma$, and
2. there exists no solution smaller than f_2 : if f'_2 meets the precision constraint, i.e.,
$$\frac{\sum_{P \in \mathbf{P}} |proved(F_P(\mathcal{M}^{(true, f'_2)}(P)))|}{\sum_{P \in \mathbf{P}} |proved(F_P(\lambda m.2(P)))|} \geq \gamma$$
, and f'_2 is smaller than f_2 , i.e., $f'_2 \sqsubseteq f_2$, then f'_2 is equivalent to f_2 :

$$\forall P \in \mathbf{P}. \forall m \in \mathbb{M}_P. \mathcal{M}^{(true, f_2)}(P)(m) = \mathcal{M}^{(true, f'_2)}(P)(m).$$

Our Approach to Reduce the Search Space

- Suppose we have a solution f_2 to the first subproblem. Then, we learn f_1 .

The second subproblem is as follows:

Find f_1 that minimizes $\sum_{P \in \mathbf{P}} \text{cost}(F_P(\mathcal{M}^{(f_1, f_2)}(P)))$

while satisfying $\frac{\sum_{P \in \mathbf{P}} |\text{proved}(F_P(\mathcal{M}^{(f_1, f_2)}(P)))|}{\sum_{P \in \mathbf{P}} |\text{proved}(F_P(\lambda m.2(P)))|} \geq \gamma$. (3)

Solution to the second subproblem (3)

Definition

Let \mathbf{P} be a codebase. We say f_1 is a minimal solution of the subproblem (3) if

1. f_1 is precise enough: $\frac{\sum_{P \in \mathbf{P}} |proved(F_P(\mathcal{M}^{(f_1, f_2)}(P)))|}{\sum_{P \in \mathbf{P}} |proved(F_P(\lambda m.2))|} \geq \gamma$, and
2. there exists no solution smaller than f_1 : if f'_1 meets the precision constraint, i.e.,
$$\frac{\sum_{P \in \mathbf{P}} |proved(F_P(\mathcal{M}^{(f'_1, f_2)}(P)))|}{\sum_{P \in \mathbf{P}} |proved(F_P(\lambda m.2(P)))|} \geq \gamma$$
, and f'_1 is smaller than f_1 , i.e., $f'_1 \sqsubseteq f_1$, then f'_1 is equivalent to f_1 :

$$\forall P \in \mathbf{P}. \forall m \in \mathbb{M}_P. \mathcal{M}^{(f_1, f_2)}(P)(m) = \mathcal{M}^{(f'_1, f_2)}(P)(m).$$

Our Decomposition is Safe

- If f_2 and f_1 are solutions of the subproblems (2) and (3), respectively, then (f_1, f_2) is a solution of the learning problem (1).

Theorem

Let f_1, f_2 be minimal solutions of the two problems (2) and (3), respectively. Then, (f_1, f_2) is a minimal solution of the learning problem (1).

Our Decomposition is Safe

Proof.

- (Precision) the precision constraint of the learning problem (1) is satisfied as f_1 is a solution of the subproblem (3).
- (Minimality) Suppose $k \in \{1, 2\}$. $f'_k \sqsubseteq f_k$ and (f'_1, f'_2) meets the precision constraint.
 - As (f'_1, f'_2) meets the precision constraint, (true, f'_2) also meets the precision constraint and $f'_2 \sqsubseteq f_2$. As f_2 is a solution to the subproblem (2), f_2 and f'_2 are equivalent.
 - As f_2 and f'_2 are equivalent, (f'_1, f_2) meets the precision constraint and $f'_1 \sqsubseteq f_1$. As f_1 is a solution to the problem (3) when f_2 is used, f'_1 and f_1 are equivalent.

□

- Detailed proof is provided in the paper².

²<https://dgistpl.github.io/papers/oopsla17a.pdf>

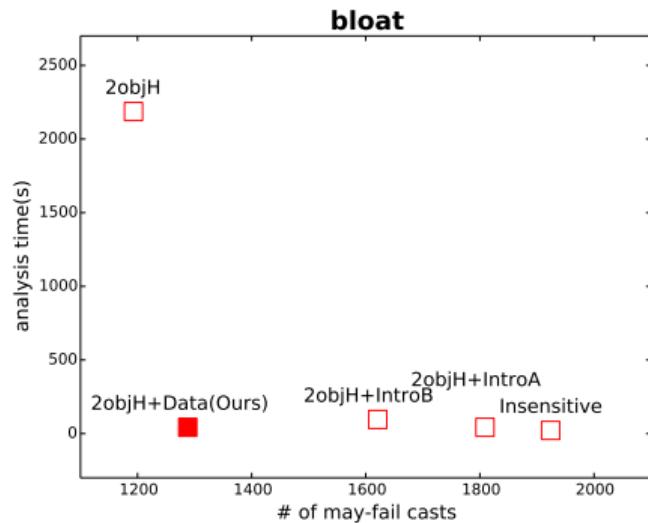
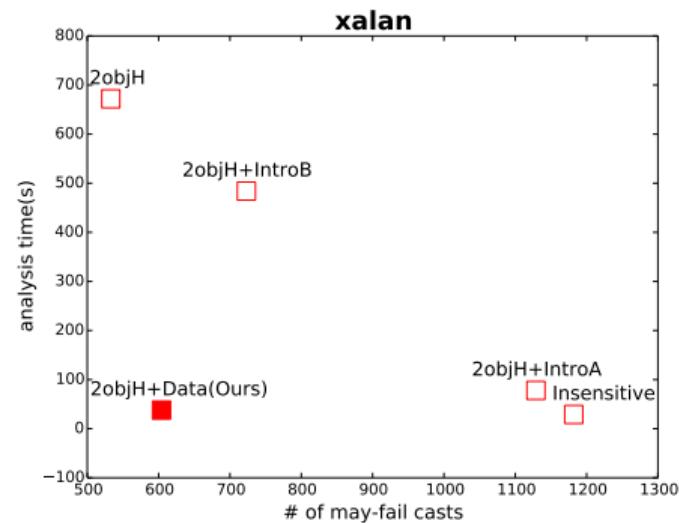
Overall Learning Procedure

1. Learn f_2 that meets the precision constraint $(\frac{\sum_{P \in \mathbf{P}} |proved(F_P(\mathcal{M}^{(true, f_2)}(P)))|}{\sum_{P \in \mathbf{P}} |proved(F_P(\lambda m.2(P)))|} \geq \gamma)$ of the subproblem (2) while minimizing the cost of $\sum_{P \in \mathbf{P}} cost(F_P(\mathcal{M}^{(true, f_2)}(P)))$.
2. Learn f_1 that meets the precision constraint $(\frac{\sum_{P \in \mathbf{P}} |proved(F_P(\mathcal{M}^{(f_1, f_2)}(P)))|}{\sum_{P \in \mathbf{P}} |proved(F_P(\lambda m.2(P)))|} \geq \gamma)$ of the subproblem (3) while minimizing the cost of $\sum_{P \in \mathbf{P}} cost(F_P(\mathcal{M}^{(f_1, f_2)}(P)))$.

- We can use standard learning algorithms to learn f_2 and f_1 .

Evaluation Results

- Our selective context sensitivity enhances the balance between the precision and the cost.



Wrap-up

- Context sensitivity is essential for precise pointer analysis, but it can be expensive.
- Selective context sensitivity applies different depths to different methods to balance precision and cost.
- Machine learning can be used to learn the right context sensitivity for each method from training data.