IC637 Program Analysis

Lecture 7: Context Depth and Flavors

Minseok Jeon

2025 Fall

Review: Necessity of Context Sensitive Analysis

® 1-call-site sensitive analysis can prove the castings are always safe.

® call-site sensitivity uses the call sites as context elements.

1 class A{}

2 class B{} 1-call-site sensitive analysis
3 class C{

4 static Object id(Object v) { id[10]

return v; .
}

5
6

7 void main(Stringl[] args) { id[11]

8 A a = new AQ);//l

9 B b = new B ;//l

10 A a2 = (A)id(a);//queryl a“ - {ll[]} b[] — {ZQH}

" B b2 = (B)id(b);//query2 v[10] = {{1[J} v[11] — {i2[]}
12 } a2[] — {L[]} v2[] — {l2[]}

13 }

2-Call-Site Sensitive Analysis

e conventional 2-call-site sensitive uses the caller methods' contexts.

1 class A{} class B{}
2 class C{

X , ,) 2-call-site sensitive analysis
3 static Object id(0bject v) {

t H .
‘5‘) return v > id[12,7]
6 static Object id1(0bject v) {
7 return id(v); > id[13,7]
8}
9 void main(String[] args) {
10 A a = new AQ;//l al] = {tl} o] = {L2[]}
11 B b = new BQO;//l idl.v[lQ] — {ll[]} idl.v[l?)] — {lz[]}
12 g 23 - Egilgigzi ;;;que”y; id.v[12,7] — {l1[]} id-w[13,7] — {I2[]}
13 = 1 H query
w1 a2(] = {L[]} b2[] = {l2[1}

15 }

Call-Site Sensitive Analysis

® Define Record and Merge for 1-call-site-sensitivity + 0-context-sensitive heap.

Record(heap, ctx) =
Merge(heap, hctx, invo, callerCtx) =

® Define Record and Merge for 1-call-site-sensitivity + 1-context-sensitive heap.

Record(heap, ctx) =
Merge(heap, hctx, invo, callerCtx) =

® Define Record and Merge for 2-call-site-sensitivity + 1-context-sensitive heap.

Record(heap, ctx) =
Merge(heap, hctx, invo, callerCtx) =

® Define Record and Merge for 2-call-site-sensitivity + 2-context-sensitive heap.

Record(heap, ctx) =
Merge(heap, hctx, invo, callerCtx) =

Quiz

® How can we prove the queries using conventional 1-context sensitive analysis?

1 class A{} class B{}

2

class C{

Object id(Object v) {
return v;

}

Object id1(0Object v) {
return this.id(v);

class D{

void main(String[] args) {

A a
B b
cl
c2
a3
b3

W= Qa0

new AQ);//lh
new BQ); //l2
new CQ);//l3
new CQ);//l4
(A)ct.idi(a); //query3
(B)c2.1id1(b); //query4

Object Sensitivity

® Object sensitivity uses the receiver objects as context elements.

class A{} class B{}
class C{
Object id(Object v) {
return v;
}
Object id1(0bject v) {
return this.id(v);
}
}
class D{
void main(String[] args) {
A a = new AQ);//lh
B b = new BQ);//l2

C c1 = new CQ);//l3

C c2 = new CQO);//ly

A a3 = (A)cl.idi(a);//query3

B b3 = (B)c2.id1(b);//querys
}

1-object sensitive analysis

\4

id[1s]

]
]

\4

id(l4]

al] = {u[)} bl = {la]}}
id1.ofl] — {11 []} id1lfly] — (I}
id.ofls] — {L]]} idoo[la] — {I]]}
a2l] = {L[]} v2[] — {i2[1}

© ©® N O U AW N

e e <
® N o G hr W N RO

2-Object Sensitivity

® How can we define 2-object sensitivity that can prove the queries?

class A{} class B{}
class C{
D allocD() {
return new D();}//I1
}
class D{
Object id(0Object v) {
return v;}
}
class E{
void main(String[] args) {
C c1 = new CQ);//ls
c2 = new CQ);//l3
dl = cl.allocD();
d2 = c2.allocD();
a = (A)dil.id(new AQ));//queryl
b = (B)d2.id(new B());//query2

w =0 0Q

1

© ©® N O U W N

e e <
® N o G hr W N RO

2-Object Sensitivity

e 2-object sensitive analysis uses the heap contexts of the receiver objects.

class A{} class B{}
class C{
D allocD() {
return new D();}//I1
}
class D{
Object id(0Object v) {
return v;}
}
class E{
void main(String[] args) {
C c1 = new CQ);//ls

C ¢c2 = new CQ);//l3
D d1 = cl.allocD();
D d2 = c2.allocD();
A a = (A)dl.id(new AQ));//ly
B b = (B)d2.id(new B(Q));//Is

1

2-object sensitive analysis

allocD[ls]

id[ls, 1]

allocD[l3]

cl]] = {le]

I} e2l] = {i[)}
d1f] = {L[l2]} 3
I}
}

d2]] — {li[ls]}
olls, 1] — {l5[]}
o] — {ls[]}

U[lz,ll] — {l4[
af] = {l4[]

2-Object Sensitivity

® Typical code pattern that needs 2-object sensitivity

class A{}

class B{}

class C {
public static void main (){
ArrayList all = new ArrayList();//AL1
ArrayList al2 = new ArrayList();//A4L2

all.add(new A(Q));
al2.add(new B());

ArrayList.ListItr itl = all.iterator();
ArrayList.ListItr it2 = al2.iterator();

(A)itl.next(); //Query 1
(B)it2.next (); //Query 2

a
b

v W

class ArrayList{

Object [] elementData = new Object[10];
int size = 0;

void add(0Object e){

}

}

elementData[size++] = e;

ListItr iterator (){

}

return new ListItr(); //IT

class ListItr{

}

int cursor = 0;
Object next (){
return elementDatal[cursor++];

}

Object Sensitivity

® Define Record and Merge for 1-object-sensitivity + 0-context-sensitive heap.

Record(heap, ctx) =
Merge(heap, hctx, invo, callerCtx) =

® Define Record and Merge for 1-object-sensitivity + 1-context-sensitive heap.

Record(heap, ctx) =
Merge(heap, hctx, invo, callerCtx) =

® Define Record and Merge for 2-object-sensitivity + 1-context-sensitive heap.

Record(heap, ctx) =
Merge(heap, hctx, invo, callerCtx) =

® Define Record and Merge for 2-object-sensitivity + 2-context-sensitive heap.

Record(heap, ctx) =
Merge(heap, hctx, invo, callerCtx) =

2-Object Sensitivity

® 2-object sensitivity is known to be highly precise but also very expensive analysis.

xalan
2000 + .
“a° 1750 2°bl
N
D 1500
E
1250
K]
¥ 1000
2 2call
g 750
< |
500 1 .
| obj I call
250 B .
700 800 900 1000 1100 1200

alarms

Quiz

® (2-)object sensitivity is precise but very expensive.

® Try to define a new context flavor which is a faster (but less precise) version of object
sensitivity.

Problem of Object Sensitivity

® Problem of object sensitivity in terms of scalability.

1 class C{

2 D allocD() { . .- .
3 if (cond ()1 1-object sensitive analysis
4 return new D();//Ij

5 }

6 elsed{

7 return new D();//ly

8 } allocD[lg

9 }

11 class D{
12 Object id(Object v) {

13 return v;} CH — {13[]}

14 }

12 ClizidEn{Lain(String[] args) { dH - {ll[]’l2[]}
17 Cc=new CO; /i3 o[lh] = {l]]}
18 Dd = c.allocD();

19 Aa= (Md.id(new AO); /s v[le] = {la]]}

20 }
21 }

©O~NOUIAWN R

Type Sensitivity

® Type sensitivity! is a coarser version of object sensitivity.

® Type sensitivity uses class types instead of objects.

class C{
D allocD() {
if (cond) {
return new D();//Iy
¥
elsef{
return new D();//la
¥
¥
¥
class D{
Object id(Object v) {
return v;}
}
class E{
void main(String[] args) {
C = new CQ);//l3
D c.allocD();
A (A)d.id(new AQ));//lg
}

}

P a0
[

Uhttps://dl.acm.org/doi/10.1145,/1925844.1926390

1-object sensitive analysis

i o {0

o[l = {is[]}
d] = {h], 1}
v[C] = {la[l}

Type Sensitivity

® Define Record and Merge for 1-type-sensitivity + 0-context-sensitive heap where
toClass: H — C maps each heap allocation site to its allocating class (e.g., toClass(l;) = C).

Record(heap, ctx) =
Merge(heap, hctx, invo, callerCtx) =

® Define Record and Merge for 1-type-sensitivity + 1-context-sensitive heap.

Record(heap, ctx) =
Merge(heap, hctx, invo, callerCtx) =

® Define Record and Merge for 2-type-sensitivity + 1-context-sensitive heap.

Record(heap, ctx) =
Merge(heap, hctx, invo, callerCtx) =

® Define Record and Merge for 2-type-sensitivity + 2-context-sensitive heap.

Record(heap, ctx) =
Merge(heap, hctx, invo, callerCtx) =

Quiz

® Try to define a new context flavor that is a coarser version of call-site sensitivity.

Quiz

® Try to define a new context flavor that is a coarser than object sensitivity but more precise
than type sensitivity.

Quiz

® When ¢ < j, if i-call-site sensitivity proves a query, does j-call-site sensitivity also prove the
same query? If so, why? If not, give a counterexample.

® When ¢ > j, if i-call-site sensitivity proves a query, does j-call-site sensitivity also prove the
same query? If so, why? If not, give a counterexample.

Quiz

® |f j-call-site sensitivity proves a query, does j-object sensitivity also prove the same query? If
so, why? If not, give a counterexample.

® [f j-object sensitivity proves a query, does j-call-site sensitivity also prove the same query? If
so, why? If not, give a counterexample.

Quiz

® |f k-type sensitivity proves a query, does k-object sensitivity also prove the same query? If
so, why? If not, give a counterexample.

® |f k-object sensitivity proves a query, does k-type sensitivity also prove the same query? If
so, why? If not, give a counterexample.

Quiz

® When i < j, if i-object sensitivity proves a query, does j-type sensitivity also prove the same
query? If so, why? If not, give a counterexample.

