
IC637 Program Analysis
Lecture 7: Context Depth and Flavors

Minseok Jeon

2025 Fall

Minseok Jeon IC637 Program Analysis 2025 Fall 1/21

Review: Necessity of Context Sensitive Analysis

• 1-call-site sensitive analysis can prove the castings are always safe.
• call-site sensitivity uses the call sites as context elements.

1 class A{}
2 class B{}
3 class C{
4 static Object id(Object v) {
5 return v;
6 }
7 void main(String [] args) {
8 A a = new A();//l1
9 B b = new B();//l2

10 A a2 = (A)id(a);// query1
11 B b2 = (B)id(b);// query2
12 }
13 }

1-call-site sensitive analysis

main[]
id[10]

id[11]

a[] → {l1[]} b[] → {l2[]}
v[10] → {l1[]} v[11] → {l2[]}
a2[] → {l1[]} b2[] → {l2[]}

Minseok Jeon IC637 Program Analysis 2025 Fall 2/21

2-Call-Site Sensitive Analysis

• conventional 2-call-site sensitive uses the caller methods’ contexts.
1 class A{} class B{}
2 class C{
3 static Object id(Object v) {
4 return v;
5 }
6 static Object id1(Object v) {
7 return id(v);
8 }
9 void main(String [] args) {

10 A a = new A();//l1
11 B b = new B();//l2
12 A a2 = (A)id1(a);// query1
13 B b2 = (B)id1(b);// query2
14 }
15 }

2-call-site sensitive analysis

main[]
id1[12]

id1[13]

id[12,7]

id[13,7]

a[] → {l1[]} b[] → {l2[]}
id1.v[12] → {l1[]} id1.v[13] → {l2[]}

id.v[12, 7] → {l1[]} id.v[13, 7] → {l2[]}
a2[] → {l1[]} b2[] → {l2[]}

Minseok Jeon IC637 Program Analysis 2025 Fall 3/21

Call-Site Sensitive Analysis

• Define Record and Merge for 1-call-site-sensitivity + 0-context-sensitive heap.

Record(heap, ctx) =
Merge(heap, hctx, invo, callerCtx) =

• Define Record and Merge for 1-call-site-sensitivity + 1-context-sensitive heap.

Record(heap, ctx) =
Merge(heap, hctx, invo, callerCtx) =

• Define Record and Merge for 2-call-site-sensitivity + 1-context-sensitive heap.

Record(heap, ctx) =
Merge(heap, hctx, invo, callerCtx) =

• Define Record and Merge for 2-call-site-sensitivity + 2-context-sensitive heap.

Record(heap, ctx) =
Merge(heap, hctx, invo, callerCtx) =

Minseok Jeon IC637 Program Analysis 2025 Fall 4/21

Quiz

• How can we prove the queries using conventional 1-context sensitive analysis?
1 class A{} class B{}
2 class C{
3 Object id(Object v) {
4 return v;
5 }
6 Object id1(Object v) {
7 return this .id(v);
8 }
9 }

10 class D{
11 void main(String [] args) {
12 A a = new A();//l1
13 B b = new B();//l2
14 C c1 = new C();//l3
15 C c2 = new C();//l4
16 A a3 = (A)c1.id1(a);// query3
17 B b3 = (B)c2.id1(b);// query4
18 }
19 }Minseok Jeon IC637 Program Analysis 2025 Fall 5/21

Object Sensitivity

• Object sensitivity uses the receiver objects as context elements.
1 class A{} class B{}
2 class C{
3 Object id(Object v) {
4 return v;
5 }
6 Object id1(Object v) {
7 return this .id(v);
8 }
9 }

10 class D{
11 void main(String [] args) {
12 A a = new A();//l1
13 B b = new B();//l2
14 C c1 = new C();//l3
15 C c2 = new C();//l4
16 A a3 = (A)c1.id1(a);// query3
17 B b3 = (B)c2.id1(b);// query4
18 }
19 }

1-object sensitive analysis

main[]
id1[l3]

id1[l4]

id[l3]

id[l4]

a[] → {l1[]} b[] → {l2[]}
id1.v[l3] → {l1[]} id1.v[l4] → {l2[]}
id.v[l3] → {l1[]} id.v[l4] → {l2[]}

a2[] → {l1[]} b2[] → {l2[]}

Minseok Jeon IC637 Program Analysis 2025 Fall 6/21

2-Object Sensitivity

• How can we define 2-object sensitivity that can prove the queries?
1 class A{} class B{}
2 class C{
3 D allocD () {
4 return new D() ;} //l1
5 }
6 class D{
7 Object id(Object v) {
8 return v;}
9 }

10 class E{
11 void main(String [] args) {
12 C c1 = new C();//l2
13 C c2 = new C();//l3
14 D d1 = c1. allocD ();
15 D d2 = c2. allocD ();
16 A a = (A)d1.id(new A());// query1
17 B b = (B)d2.id(new B());// query2
18 }}

Minseok Jeon IC637 Program Analysis 2025 Fall 7/21

2-Object Sensitivity

• 2-object sensitive analysis uses the heap contexts of the receiver objects.
1 class A{} class B{}
2 class C{
3 D allocD () {
4 return new D() ;} //l1
5 }
6 class D{
7 Object id(Object v) {
8 return v;}
9 }

10 class E{
11 void main(String [] args) {
12 C c1 = new C();//l2
13 C c2 = new C();//l3
14 D d1 = c1. allocD ();
15 D d2 = c2. allocD ();
16 A a = (A)d1.id(new A());//l4
17 B b = (B)d2.id(new B());//l5
18 }}

2-object sensitive analysis

main[]
allocD[l2]

allocD[l3]

id[l2, l1]

id[l3, l1]

c1[] → {l2[]} c2[] → {l3[]}
d1[] → {l1[l2]} d2[] → {l1[l3]}

v[l2, l1] → {l4[]} v[l3, l1] → {l5[]}
a[] → {l4[]} b[] → {l5[]}

Minseok Jeon IC637 Program Analysis 2025 Fall 8/21

2-Object Sensitivity

• Typical code pattern that needs 2-object sensitivity

class A{}
class B{}
class C {

public static void main (){
ArrayList al1 = new ArrayList ();// AL1
ArrayList al2 = new ArrayList ();// AL2

al1.add(new A());
al2.add(new B());

ArrayList . ListItr it1 = al1. iterator ();
ArrayList . ListItr it2 = al2. iterator ();

A a = (A)it1.next (); // Query 1
B b = (B)it2.next (); // Query 2
}

}

class ArrayList {
Object [] elementData = new Object [10];
int size = 0;
void add(Object e){

elementData [size ++] = e;
}
ListItr iterator (){

return new ListItr (); // IT
}
class ListItr {

int cursor = 0;
Object next (){

return elementData [cursor ++];
}

}
}

Minseok Jeon IC637 Program Analysis 2025 Fall 9/21

Object Sensitivity

• Define Record and Merge for 1-object-sensitivity + 0-context-sensitive heap.

Record(heap, ctx) =
Merge(heap, hctx, invo, callerCtx) =

• Define Record and Merge for 1-object-sensitivity + 1-context-sensitive heap.

Record(heap, ctx) =
Merge(heap, hctx, invo, callerCtx) =

• Define Record and Merge for 2-object-sensitivity + 1-context-sensitive heap.

Record(heap, ctx) =
Merge(heap, hctx, invo, callerCtx) =

• Define Record and Merge for 2-object-sensitivity + 2-context-sensitive heap.

Record(heap, ctx) =
Merge(heap, hctx, invo, callerCtx) =

Minseok Jeon IC637 Program Analysis 2025 Fall 10/21

2-Object Sensitivity

• 2-object sensitivity is known to be highly precise but also very expensive analysis.

Minseok Jeon IC637 Program Analysis 2025 Fall 11/21

Quiz

• (2-)object sensitivity is precise but very expensive.
• Try to define a new context flavor which is a faster (but less precise) version of object

sensitivity.

Minseok Jeon IC637 Program Analysis 2025 Fall 12/21

Problem of Object Sensitivity

• Problem of object sensitivity in terms of scalability.

1 class C{
2 D allocD () {
3 if (cond ()){
4 return new D();//l1
5 }
6 else {
7 return new D();//l2
8 }
9 }

10 }
11 class D{
12 Object id(Object v) {
13 return v;}
14 }
15 class E{
16 void main(String [] args) {
17 C c = new C();//l3
18 D d = c. allocD ();
19 A a = (A)d.id(new A());//l4
20 }
21 }

1-object sensitive analysis

main[]
id[l1]

id[l2]
allocD[l3]

c[] → {l3[]}
d[] → {l1[], l2[]}
v[l1] → {l4[]}
v[l2] → {l4[]}

Minseok Jeon IC637 Program Analysis 2025 Fall 13/21

Type Sensitivity

• Type sensitivity1 is a coarser version of object sensitivity.
• Type sensitivity uses class types instead of objects.

1 class C{
2 D allocD () {
3 if (cond ()){
4 return new D();//l1
5 }
6 else {
7 return new D();//l2
8 }
9 }

10 }
11 class D{
12 Object id(Object v) {
13 return v;}
14 }
15 class E{
16 void main(String [] args) {
17 C c = new C();//l3
18 D d = c. allocD ();
19 A a = (A)d.id(new A());//l4
20 }
21 }

1-object sensitive analysis

main[] id[C]allocD[E]

c[] → {l3[]}
d[] → {l1[], l2[]}
v[C] → {l4[]}

1https://dl.acm.org/doi/10.1145/1925844.1926390
Minseok Jeon IC637 Program Analysis 2025 Fall 14/21

Type Sensitivity

• Define Record and Merge for 1-type-sensitivity + 0-context-sensitive heap where
toClass: H→ C maps each heap allocation site to its allocating class (e.g., toClass(l1) = C).

Record(heap, ctx) =
Merge(heap, hctx, invo, callerCtx) =

• Define Record and Merge for 1-type-sensitivity + 1-context-sensitive heap.
Record(heap, ctx) =
Merge(heap, hctx, invo, callerCtx) =

• Define Record and Merge for 2-type-sensitivity + 1-context-sensitive heap.
Record(heap, ctx) =
Merge(heap, hctx, invo, callerCtx) =

• Define Record and Merge for 2-type-sensitivity + 2-context-sensitive heap.
Record(heap, ctx) =
Merge(heap, hctx, invo, callerCtx) =

Minseok Jeon IC637 Program Analysis 2025 Fall 15/21

Quiz

• Try to define a new context flavor that is a coarser version of call-site sensitivity.

Minseok Jeon IC637 Program Analysis 2025 Fall 16/21

Quiz

• Try to define a new context flavor that is a coarser than object sensitivity but more precise
than type sensitivity.

Minseok Jeon IC637 Program Analysis 2025 Fall 17/21

Quiz

• When i < j, if i-call-site sensitivity proves a query, does j-call-site sensitivity also prove the
same query? If so, why? If not, give a counterexample.

• When i > j, if i-call-site sensitivity proves a query, does j-call-site sensitivity also prove the
same query? If so, why? If not, give a counterexample.

Minseok Jeon IC637 Program Analysis 2025 Fall 18/21

Quiz

• If i-call-site sensitivity proves a query, does j-object sensitivity also prove the same query? If
so, why? If not, give a counterexample.

• If i-object sensitivity proves a query, does j-call-site sensitivity also prove the same query? If
so, why? If not, give a counterexample.

Minseok Jeon IC637 Program Analysis 2025 Fall 19/21

Quiz

• If k-type sensitivity proves a query, does k-object sensitivity also prove the same query? If
so, why? If not, give a counterexample.

• If k-object sensitivity proves a query, does k-type sensitivity also prove the same query? If
so, why? If not, give a counterexample.

Minseok Jeon IC637 Program Analysis 2025 Fall 20/21

Quiz

• When i < j, if i-object sensitivity proves a query, does j-type sensitivity also prove the same
query? If so, why? If not, give a counterexample.

Minseok Jeon IC637 Program Analysis 2025 Fall 21/21

