
IC637 Program Analysis
Lecture 6: Context Sensitivity

Minseok Jeon

2025 Fall

Minseok Jeon IC637 Program Analysis 2025 Fall 1/25

Necessity of Context Sensitivity

• Without context sensitivity, it is unable to prove the castings are always safe.

1 class A{}
2 class B{}
3 class C{
4 static Object id(Object v) {
5 return v;
6 }
7 void main(String [] args) {
8 A a = new A();//l1
9 B b = new B();//l2

10 A a2 = (A)id(a);// query1
11 B b2 = (B)id(b);// query2
12 }
13 }

Analysis results (context insensitive):

main id

a→ {l1} b→ {l2} v → {l1, l2}
a2→ {l1, l2} b2→ {l1, l2}

• How can we prove the castings are always safe?

Minseok Jeon IC637 Program Analysis 2025 Fall 2/25

Necessity of Context Sensitivity

• By analyzing the method id context sensitively, we can prove the queries.

1 class A{}
2 class B{}
3 class C{
4 static Object id(Object v) {
5 return v;
6 }
7 void main(String [] args) {
8 A a = new A();//l1
9 B b = new B();//l2

10 A a2 = (A)id(a);// query1
11 B b2 = (B)id(b);// query2
12 }
13 }

Analysis results (context sensitive):

main[]
id[10]

id[11]

a[]→ {l1} b[]→ {l2}
v[10]→ {l1} v[11]→ {l2}
a2[]→ {l1} b2[]→ {l2}

Minseok Jeon IC637 Program Analysis 2025 Fall 3/25

Necessity of Context Sensitive Heap

• Describe analysis results for the following example.

1 class A {}
2

3 public class Tmp {
4 static A assignA () {
5 A v = new A();//l1
6 return v;
7 }
8 void main(String [] args) {
9 A a1 = assignA ();

10 A a2 = assignA ();
11 assert (a1 != a2);// query
12 }
13 }

Analysis results (without heap context):

main[]
assignA[9]

assignA[10]

Call graph of context sensitive analysis

v[9]→ {l1} v[10]→ {l1}
a1[]→ {l1} a2[]→ {l1}

• How can we prove the assertion?

Minseok Jeon IC637 Program Analysis 2025 Fall 4/25

Context Sensitive Heap

• For precision, heaps should be also analyzed in a context sensitive manner.

1 class A {}
2

3 public class Tmp {
4 static A assignA () {
5 A v = new A();//l1
6 return v;
7 }
8 void main(String [] args) {
9 A a1 = assignA ();

10 A a2 = assignA ();
11 assert (a1 != a2);// query
12 }
13 }

Analysis results (context sensitive):

main[]
assignA[9]

assignA[10]

Call graph of context sensitive analysis

v[9]→ {l1[9]} v[10]→ {l1[10]}
a1[]→ {l1[9]} a2[]→ {l1[10]}

Minseok Jeon IC637 Program Analysis 2025 Fall 5/25

Context Sensitive Analysis

• Give an example showing context sensitive analysis does not terminate.

Minseok Jeon IC637 Program Analysis 2025 Fall 6/25

Necessity of Context Abstraction

• Full context sensitive analysis does not terminate when it analyzes:

1 class A{} class B{}
2 class C{
3 Object id(int i, Object v) {
4 if (i > 0) {
5 return id(i-1,v);
6 } else {
7 return v;}
8 }
9 void main(String [] args) {

10 int i = input ();
11 A a = new A();//l1
12 B b = new B();//l2
13 A a2 = (A)id(i,a);// query1
14 B b2 = (B)id(i,b);// query2
15 }
16 }

Analysis results (context sensitive):

main[]
id[13]

id[14]

id[13,5]

id[14,5]

id[13,5,5]

id[14,5,5]

...

...

Call graph of context sensitive analysis

a[]→ {l1} b[]→ {l2}
v[13]→ {l1} v[14]→ {l2}

v[13, 5]→ {l1} v[14, 5]→ {l2}
v[13, 5, 5]→ {l1} v[14, 5, 5]→ {l2}

...

Minseok Jeon IC637 Program Analysis 2025 Fall 7/25

Necessity of Context Abstraction

• How can we make the context sensitive analysis always terminate?

Minseok Jeon IC637 Program Analysis 2025 Fall 8/25

(Last) K-limited Context Sensitive Analysis

• Conventional k-context sensitive analysis keeps last-k context elements.

1 class A{} class B{}
2 class C{
3 Object id(int i, Object v) {
4 if (i > 0) {
5 return id(i-1,v);
6 } else {
7 return v;}
8 }
9 void main(String [] args) {

10 int i = input ();
11 A a = new A();//l1
12 B b = new B();//l2
13 A a2 = (A)id(i,a);// query1
14 B b2 = (B)id(i,b);// query2
15 }
16 }

Analysis results:

main[]
id[13]

id[14]

id[13,5]

id[14,5]
id[5,5]

Call graph of (last) 2-context sensitivity

a[]→ {l1} b[]→ {l2}
v[13]→ {l1} v[14]→ {l2}

v[13, 5]→ {l1} v[14, 5]→ {l2}
v[5, 5]→ {l1, l2}

a2[]→ {l1, l2} b2[]→ {l1, l2}

Minseok Jeon IC637 Program Analysis 2025 Fall 9/25

Input Relations

Alloc(var : V, heap : H) V : the set of program variables
Move(to : V, from : V) H : the set of heap locations

Load(to : V, base : V, fld : F) F : the set of fields
Store(base : V, fld : F, from : V) M : the set of method identifiers

F ormalP aram(method : M, arg : A, var : V) S : the set of method signatures (names)
F ormalReturn(method : M, var : V) I : the set of instructions

ActualP aram(invocation : I, arg : A, var : V) T : the set of class types
ActualReturn(invocation : I, var : V) N : the set of natural numbers

T hisV ar(meth : M, this : V) C : the set of contexts
HeapT ype(heap : H, type : T) HC : the set of heap contexts

LookUp(type : T, sig : S, methM)
V irtualCall(base : V, sig : S, invo : I, inMeth : M)

Minseok Jeon IC637 Program Analysis 2025 Fall 10/25

Output Relations

V arP ointsT o(var : V, heap : H)
F ldP ointsT o(baseH : H, fld : F, heap : H)

CallGraph(invo : I, meth : M)

↓

V arP ointsT o(var : V, ctx : C, heap : H, heapCtx : HC)
F ldP ointsT o(baseH : H, heapCtx : HC, fld : F, heap : H, heapCtx : HC)

CallGraph(invo : I, callerCtx : C, meth : M, calleeCtx : C)

Minseok Jeon IC637 Program Analysis 2025 Fall 11/25

Example of Context Sensitive Analysis

class A{}
class B{}
class C{

Object id(Object v) {
return v;

}
void main(String [] args) {

A a = new A();//l1
B b = new B();//l2
A a2 = (A)id(a);//l3, query1
B b2 = (B)id(b);//l4, query2

}
}

VarPointsTo(a, [], l1, [])
VarPointsTo(b, [], l2, [])
CallGraph(l3, [], id, [l3])
CallGraph(l4, [], id, [l4])

VarPointsTo(v, [l3], l1, [])
VarPointsTo(v, [l4], l2, [])
VarPointsTo(a2, [], l1, [])
VarPointsTo(b2, [], l2, [])

Minseok Jeon IC637 Program Analysis 2025 Fall 12/25

Example of Context Sensitive Analysis

class A {}

public class Tmp {
static A assignA () {

return new A(); //l1
}
void main(String [] args) {

A a1 = assignA ();//l2
A a2 = assignA ();//l3
assert (a1 != a2);// query

}
}

VarPointsTo(a1, [], l1, [l2])
VarPointsTo(a2, [], l1, [l3])

CallGraph(l2, [], assignA, [l2])
CallGraph(l3, [], assignA, [l3])

Minseok Jeon IC637 Program Analysis 2025 Fall 13/25

Context Constructors

• Different choices of constructors yield different context sensitivity flavors

Record(heap : H, ctx : C) = newHCtx : HC

Merge(heap : H, hctx : HC, invo : I, ctx : C) = newCtx : C

• Record generates heap contexts
• Merge generates calling contexts

Minseok Jeon IC637 Program Analysis 2025 Fall 14/25

Analysis Rules

(1) Record(heap, ctx) = hctx,

V arPointsTo(var, ctx, heap, hctx)←
CallGraph(_, _, meth, ctx), Alloc(var, heap, meth)

(2) V arPointsTo(var, ctx, heap, hctx)←
CallGraph(_, _, meth, ctx), Move(to, from, meth),
V arPointsTo(from, ctx, heap, hctx)

Minseok Jeon IC637 Program Analysis 2025 Fall 15/25

Analysis Rules

(3) FldPointsTo(baseH, baseHCtx, fld, heap, hctx)←
Store(base, fld, from, meth), V arPointsTo(from, ctx, heap, hctx),
V arPointsTo(base, ctx, baseH, baseHCtx), CallGraph(_, _, meth, ctx)

(4) V arPointsTo(to, ctx, heap, hctx)←
Load(to, base, fld), V arPointsTo(base, ctx, baseH, baseHCtx),
F ldPointsTo(baseH, baseHCtx, fld, heap, hctx), CallGraph(_, _, meth, ctx)

Minseok Jeon IC637 Program Analysis 2025 Fall 16/25

Analysis Rules

(5) Merge(heap, hctx, invo, callerCtx) = calleeCtx,

V arPointsTo(this, calleeCtx, heap, hctx),
CallGraph(invo, callerCtx, toMeth, calleeCtx)←

V Call(base, sig, invo, inMeth), CallGraph(_, _, inMeth, callerCtx),
V arPointsTo(base, callerCtx, heap, hctx),
HeapType(heap, heapT), LookUp(heapT, sig, toMeth),
ThisV ar(toMeth, this)

Minseok Jeon IC637 Program Analysis 2025 Fall 17/25

Analysis Rules

(6) V arPointsTo(param′, calleeCtx, heap, hctx)←
CallGraph(invo, callerCtx, meth, calleeCtx),
FormalParam(meth, n, param′, param), ActualParam(invo, n, param),
V arPointsTo(param, callerCtx, heap, hctx)

(7) V arPointsTo(return, callerCtx, heap, hctx)←
CallGraph(invo, callerCtx, meth, calleeCtx),
FormalReturn(meth, return), ActualReturn(invo, return),
V arPointsTo(return, calleeCtx, heap, hctx)

Minseok Jeon IC637 Program Analysis 2025 Fall 18/25

Record and Merge for 1-Context Sensitivity

• Record and Merge for standard 1-context sensitivity, so-called 1-call-site sensitivity
(e.g., C : I, HC : I), is as follows:

Record(heap, ctx) = ctx

Merge(heap, hctx, invo, callerCtx) = invo

Minseok Jeon IC637 Program Analysis 2025 Fall 19/25

Open Question

• Define suitable Record and Merge that perform well in practice.

Minseok Jeon IC637 Program Analysis 2025 Fall 20/25

Exercise

• Define Record and Merge for 1-context sensitivity that prove the queries.

1 class A{} class B{}
2 class C{
3 Object id(Object v) {
4 return v;}
5 }
6 public class D {
7 void main(String [] args) {
8 A a = new A();//l1
9 B b = new B();//l2

10 C c = new C();//l3
11 A a2 = (A)c.id(a);// query1
12 B b2 = (B)c.id(b);// query2
13 }
14 }

Minseok Jeon IC637 Program Analysis 2025 Fall 21/25

Exercise

• Define Record and Merge for 2-context sensitivity that prove the queries.
1 class A{} class B{}
2 class C{
3 Object id(Object v) {
4 return v;}
5 Object id1(Object v) {
6 return id(v);}
7 }
8 public class D {
9 void main(String [] args) {

10 A a = new A();//l1
11 B b = new B();//l2
12 C c = new C();//l3
13 A a2 = (A)c.id(a);// query1
14 B b2 = (B)c.id(b);// query2
15 }
16 }

Minseok Jeon IC637 Program Analysis 2025 Fall 22/25

Quiz

• Can we prove the queries with k-context sensitive analysis?

1 class A{} class B{}
2 class C{
3 Object id(int i, Object v) {
4 if (i > 0) {
5 return id(i-1,v);
6 } else {
7 return v;}}}
8 public class D {
9 void main(String [] args) {

10 int i = input ();
11 A a = new A();//l1
12 B b = new B();//l2
13 C c = new C();//l3
14 A a2 = (A)c.id(i,a);// query1
15 B b2 = (B)c.id(i,b);// query2
16 }}

Minseok Jeon IC637 Program Analysis 2025 Fall 23/25

Quiz

• Define Record and Merge for 1-context sensitivity that prove the queries.

1 class A{} class B{}
2 class C{
3 Object id(int i, Object v) {
4 if (i > 0) {
5 return id(i-1,v);
6 } else {
7 return v;}}}
8 public class D {
9 void main(String [] args) {

10 int i = input ();
11 A a = new A();//l1
12 B b = new B();//l2
13 C c = new C();//l3
14 A a2 = (A)c.id(i,a);// query1
15 B b2 = (B)c.id(i,b);// query2
16 }}

Minseok Jeon IC637 Program Analysis 2025 Fall 24/25

Wrap-up: Context Sensitivity

• Context Insensitive Analysis: Merges all calling contexts, leading to imprecision
• Cannot distinguish different call sites

• Full Context Sensitivity: Distinguishes all calling contexts
• May not terminate (infinite contexts in recursive calls)

• K-limited Context Sensitivity: Abstracts contexts to ensure termination
• Keeps up to k context elements

Minseok Jeon IC637 Program Analysis 2025 Fall 25/25

