IC637 Program Analysis

Lecture 6: Context Sensitivity

Minseok Jeon

2025 Fall

Necessity of Context Sensitivity

e Without context sensitivity, it is unable to prove the castings are always safe.

1 class A{}
2 class B{}

3 class C{ Analysis results (context insensitive):
4 static Object id(Object v) {

5 return v;

7 void main(String[] args) {
8

9

A a=new AQ;//l

B b new BQ);//ls

a — {ll} b— {lQ} v — {ll,lg}

10 A a2 = (A)id(a);//queryl

u B b2 = (B)id(b);//query2 a2 — {l1,l2} 02 — {l1, 12}
12 }

13}

® How can we prove the castings are always safe?

Necessity of Context Sensitivity

® By analyzing the method id context sensitively, we can prove the queries.

1 class A{} Analysis results (context sensitive):
2 class B{}

3 class C{

4 static Object id(0Object v) { id[10]
return v; .
}
id[11]

5
6
7 void main(String[] args) {
8 A a = new AQ);//l

9

B b = new BO;//l
10 A a2 = (A)id(a);//queryl af] = {1} b]] = {i2}
11 B b2 = (B)id(b);//query2
n W[10] = {11} v[11] — {Io}

13} a2l] = {l1} 02 = {l2}

Necessity of Context Sensitive Heap

® Describe analysis results for the following example.

class A {}
Analysis results (without heap context):
public class Tmp {
static A assignA () {
A v =new AQ;//l .
return v;
}
void main(String[] args) {
A al = assignA(); Call graph of context sensitive analysis
A a2 = assignA(Q);
assert (al != a2);//query U[g] — {ll} U[lO] - {ll}
} all] = {h} a2]] = {lL}

® How can we prove the assertion?

Context Sensitive Heap

® For precision, heaps should be also analyzed in a context sensitive manner.

class A {}

public class Tmp {
static A assignA () {
new AQ);//l

A v =
return

}

v;

void main(String[] args) {
assignA () ;
assignA () ;

A a1l =
A a2 =
assert

(a1

'= a2);//query

Analysis results (context sensitive):
assignA[9]
assignA[10]

Call graph of context sensitive analysis

v[9] = {La[9]} v[10] — {1[10]}
all] = {L[9]} a2[] = {L1[10]}

Context Sensitive Analysis

® Give an example showing context sensitive analysis does not terminate.

Necessity of Context Abstraction

® Full context sensitive analysis does not terminate when it analyzes:

1 class A{} class B{} X .
2 class C{ Analysis results (context sensitive):

3 Object id(int i, Object v) {

4 if (i > 0) { [id[13] }—»[id[13,5] }»[id[13,5,5]}>
5 return id(i-1,v);

6 } else { [id[14] Hid[l4,5] }»[id[14,5,5]}—>
7 return v;}

8

9

b Call graph of context sensitive analysis
void main(Stringl[] args) {

10 int i = input(); aH — {ll} b[] N {l2}

11 A a = new AQ);//1

h B - e 30/ v[13] = {h} v[14] = {lp}

13 A a2 = (A)id(i,a);//queryl [137]_> {ll} [14 5] — {l2}

14 N B b2 = (B)id(i,b);//query2 v[13,5,5] — {l1} v[14,5,5] — {l2}

15

16 }

Necessity of Context Abstraction

® How can we make the context sensitive analysis always terminate?

(Last) K-limited Context Sensitive Analysis

® Conventional k-context sensitive analysis keeps last-k context elements.

1 class A{} class B{} Analysis results:
2 class C{

3 Object id(int i, Object v) { .

4 if (1> 0) { ‘ id[13] 'd[13 5]

5 return id(i-1,v); Id[5 5]
6 } else { .

g e v il |d[145]}/y

8 }

9 void main(Stringl]l args) { Call graph of (last) 2-context sensitivity
10 int i = input();

1 Aa=new AO;//Iy al] = {l1} o] = {l2}

12 B b = new B();//l2 [1]—> {ll} [1]—) {lg}

13 A a2 = (A)id(i,a);//queryl

14 B b2 = (B)id(i,b);//query2 v[13,5] — {ll} [14’5] - {l2}

5) v[5,5] = {l1,l2}

16 } (LZH — {ll,lg} 1)2[] — {ll,lz}

Input Relations

Alloc(var : V,heap : H)
Move(to : V, from :

Load(to : V,base : V, fld :
Store(base : 'V, fld : F, from :

FormalParam(method : M,arg : A,var :

< =3 =

<

Formal Return(method : M,var :

— O

Actual Param(invocation : I,arg : A,var :
Actual Return(invocation : I,var : V')
ThisVar(meth : M,this: V

HeapType(heap : H,type : T

LookUp(type : T, sig : S, methM

)
)
)
VirtualCall(base : V, sig : S,invo : I,inMeth : M)

ANZN~nI I <

Sy
Q

: the set of program variables

: the set of heap locations

: the set of fields

: the set of method identifiers

: the set of method signatures (names)
: the set of instructions

: the set of class types

: the set of natural numbers

: the set of contexts

: the set of heap contexts

Output Relations

VarPointsTo(var
FldPointsTo(baseH : H, fld
CallGraph(invo

VarPointsTo(var : V, ctx
FldPointsTo(baseH : H,heapCtx : HC, fld
CallGraph(invo : I, callerCtx

: V, heap : H)
: F heap : H)
: I,meth : M)

: C,heap : H, heapCtx : HC)
: Fyheap : H, heapCtx : HC)
: C,meth : M, calleeCtx : C)

Example of Context Sensitive Analysis

class A{}
class B{}
class C{
Object id(0Object v) {
return v;
}
void main(String[] args) {
A a = new AQ);//l1
b = new BQ);//l

B

A a2 = (A)id(a);//l3, queryl

B b2 = (B)id(b);//la, query2
}

VarPointsTo(a, [], I1, [])
VarPointsTo(b, [], I2, [])
CallGraph(ls, [], id, [I3])
CallGraph(ly, [], id, [l4])
VarPointsTo(v, [I3], 11, [])
VarPointsTo(v, [l4], I2, [])
VarPointsTo(a2, [], {1, [])
VarPointsTo(b2, [], l2, [])

Example of Context Sensitive Analysis

class A {}

public class Tmp {
static A assignA () {

return new A(Q); //11 VérPohﬂsTb(al,ﬂ,Il,U2D
} VarPointsTo(a2, [], 11, [13])
void main(String[] args) { CallGraph(12, [], assignA, [12])

A al = assignA();//12 CallGraph(13, [], assignA, [I3])

A a2 = assignA();//13

assert (al != a2);//query

}

Context Constructors

e Different choices of constructors yield different context sensitivity flavors

Record(heap : H,ctx : C') = newHCtx : HC
Merge(heap : H, hetx : HCinvo : I, ctz : C') = newCtx : C

® Record generates heap contexts

® Merge generates calling contexts

Analysis Rules

(1) Record(heap, ctx) = hctz,
VarPointsTo(var, ctx, heap, hctx) <

CallGraph(meth, ctx), Alloc(var, heap, meth)

—_))

(2) VarPointsTo(var, ctx, heap, hetx) +—
CallGraph(_,_, meth, ctz), Move(to, from, meth),
VarPointsTo(from,ctx, heap, hctx)

Analysis Rules

(3) FldPointsTo(baseH,baseHCtx, fld, heap, hetx) <
Store(base, fld, from,meth), VarPointsTo(from, ctx, heap, hctx),
VarPointsTo(base, ctx,baseH, base HCtx), CallGraph(_, _, meth, ctz)
(4) VarPointsTo(to, ctx, heap, hetx) <
Load(to, base, fld),VarPointsTo(base, ctx,baseH,base HCtx),

FldPointsTo(baseH,base HCtx, fld, heap, hetx), CallGraph(meth, ctx)

—_)

Analysis Rules

(5) Merge(heap, hctz, invo, callerCtx) = calleeCtex,
VarPointsTo(this, calleeCtx, heap, hetz),
CallGraph(invo, callerCtx,toMeth, calleeCtx)
VCall(base, sig, invo,inMeth), CallGraph(_, _,inMeth, callerCtzx),
VarPointsTo(base, callerCtx, heap, hctx),
HeapType(heap, heapT'), LookUp(heapT, sig,toMeth),
ThisVar(toMeth,this)

Analysis Rules

(6) VarPointsTo(param/’, calleeCtx, heap, hetx) <+
CallGraph(invo, callerCtx, meth, calleeCtx),
Formal Param(meth, n, param’, param), Actual Param(invo, n, param),

VarPointsTo(param, callerCtx, heap, hctx)

(7) VarPointsTo(return, callerCtxz, heap, hctx) <
CallGraph(invo, callerCtx, meth, calleeCtx),
Formal Return(meth, return), Actual Return(invo, return),

VarPointsTo(return, calleeCtx, heap, hetz)

Record and Merge for 1-Context Sensitivity

® Record and Merge for standard 1-context sensitivity, so-called 1-call-site sensitivity
(e.g., C:I,HC : 1), is as follows:

Record(heap, ctx) = ctx

Merge(heap, hctz, invo, callerCtz) = invo

Open Question

® Define suitable Record and Merge that perform well in practice.

Exercise

e Define Record and Merge for 1-context sensitivity that prove the queries.

class A{} class B{}

class C{

Object id(0Object v) {
return v;}

}

public class D {

void main(String[] args) {

A a =
B b
C c
A a2
B b2

new AQ);//L

new BQ);//l2

new C(Q);//l3
(A)c.id(a);//queryl
(B)c.id(b);//query2

Exercise

¢ Define Record and Merge for 2-context sensitivity that prove the queries.

class A{} class B{}
class C{
Object id(0bject v) {
return v;}
Object id1(0bject v) {
return id(v);}
}
public class D {
void main(String[] args) {
A a = new AQ;//l

B b = new BQO;//l
C c = new C(O);//ls
A a2 = (A)c.id(a);//queryl
B b2 = (B)c.id(b);//query2

Quiz

® Can we prove the queries with k-context sensitive analysis?

1 class A{} class B{}

2 class C{

3 Object id(int i, Object v) {
4 if (i > 0) {

5 return id(i-1,v);

6 } else {

7 return v;}}}

8 public class D {

9 void main(String[] args) {
10 int i = input();

11 A a=new AQ;//ly
12 B b = new BO;//l
13 C c = new CQO);//ls
14 A a2 = (A)c.id(i,a);//queryl
15 B b2 = (B)c.id(i,b);//query2

16 }}

Quiz

e Define Record and Merge for 1-context sensitivity that prove the queries.

1 class A{} class B{}
2 class C{
3 Object id(int i, Object v) {

4 if (i > 0) {

5 return id(i-1,v);

6 } else {

7 return v;}}}

8 public class D {

9 void main(String[] args) {
10 int i = input();

11 A a = new AQ;//ly

12 B b = new BQ);//l2

13 C c¢c = new CQO);//l3
14 A a2 = (A)c.id(i,a);//queryl
15 B b2 = (B)c.id(i,b);//query2

16 }}

Wrap-up: Context Sensitivity

e Context Insensitive Analysis: Merges all calling contexts, leading to imprecision
® Cannot distinguish different call sites

® Full Context Sensitivity: Distinguishes all calling contexts
® May not terminate (infinite contexts in recursive calls)

e K-limited Context Sensitivity: Abstracts contexts to ensure termination
® Keeps up to k context elements

