IC637 Program Analysis

Lecture 5 Review

Minseok Jeon

2025 Fall

Pointer Analysis

e Pointer analysis computes the set of memory locations (objects) that a pointer

variable may point to at runtime.

Object £(O){

}

Object gO{

}

void main() {

}

x = new AQ); //lh

return Xx;

y = new BQ); //l2

return y;

Object p
Object q

£0O;
g0

r—{h} y—={lk} p—={h} ¢—{k}

cf) Flow Sensitivity

® A flow-sensitive analysis maintains abstract states separately for each program point:

e.g.,
12:IZ:A()//11 12:1:—){[1}

2:2=DB()//l2 2z —{l}

® Pointer analysis is often defined flow-insensitively

l:2=A0//u
2:x=B()//la x—{l,l}

Constraint-based Analysis

® Pointer analysis is expressed as subset constraints. The analysis is to compute the
smallest solution of the constraints.

z=A()//h {1} C pts(x)
y=zx = pts(z) C pts(y)

® We use the Datalog language to express such constraints

Example

main O { //ma

a =

b
c
a.
d

AO; // I
=BQO; // 2

a;

= b;

c.f;

[S |

Alloc(a,li,m1)
Alloc(b,l2,m1)
Move(c,a,m1)
Store(a, f,b,m1)
Load(d,c, f,m1)

VarPointsTo(a,l1)
VarPointsTo(b,l2)
VarPointsTo(c,l1)
FldPointsTo(l, f,12)
VarPointsTo(d,l2)

Input Relations

® Input relations program (representation):

Alloc(var : V, heap : H,inMeth :
Move(to : V, from : V,inMeth :

Load(to : V,base : V, fld : F,inMeth :
Store(base : V, fld : F, from : V,inMeth :

FormalParam(method : M,arg : A,var :
Formal Return(method : M, var :
Actual Param(invocation : I,arg : A,var :

Actual Return(invocation : I, var :

VirtualCall(base : V, sig : S,invo : I,inMeth :
SpecialCall(base : V,invo : I,toMeth : M,inMeth :
StaticCall(invo : I,toMeth : M,inMeth :

SSSSS5=5S8

)
M)
M)

Z N~ TS

: the set of program variables

: the set of heap locations

: the set of fields

: the set of method identifiers

: the set of method signatures (names)
: the set of instructions

: the set of class types

: the set of natural numbers

Output Relations

® OQutput relations (analysis results):

VarPointsTo(var : V,heap : H)
FldPointsTo(baseH : H, fld : F, heap : H)
CallGraph(invo : I, meth : M)

Quiz

® Does pointer analysis always terminate? If so or not, why?

Analysis Rules

(1) VarPointsTo(var, heap) +
Alloc(var, heap, inMeth), CallGraph(_, inMeth)

(2) VarPointsTo(to, heap) <

Move(to, from, inMeth), VarPointsTo(from, heap), CallGraph(_, inMeth)

—

(3) FldPointsTo(baseH, fld, heap) <
Store(base, fld, from, inMeth), VarPointsTo(from, heap),
VarPointsTo(base, baseH), CallGraph(_, inMeth)

—

(4) VarPointsTo(to, heap) <
Load(to, base, fld, inMeth), VarPointsTo(base, baseH),
FldPointsTo(baseH, fld, heap), CallGraph(_, inMeth)

Analysis Rules

(5) VarPointsTo(this, heap), CallGraph(invo, toMeth) <
VirtualCall(base, sig, invo, inMeth),VarPointsTo(base, BaseH),
CallGraph(_, inMeth), HeapType(BaseH, type),
LookUp(type, sig, toMeth), ThisVar(toMeth, this)

(6) VarPointsTo(param’, heap) +
CallGraph(invo, meth), Formal Param(meth, n, param’),

Actual Param(invo, n, param),VarPointsTo(param, heap)

(7) VarPointsTo(return, heap)
CallGraph(invo, meth), Formal Return(meth, return’),

Actual Return(invo, return),VarPointsTo(return’, heap)

Analysis Rules

(8)CallGraph(invo, toMeth) «

StaticCall(invo, toMeth, inMeth), CallGraph(_, inMeth)

—

(9) VarPointsTo(this, heap), CallGraph(invo, toMeth) +
SpecialCall(base, invo, toMeth, inMeth), CallGraph(_, inMeth),
ThisVar(toMeth, this),VarPointsTo(base, heap)

Example 1 (Alloc)

® Compute the analysis result.

class A {

int value;

A(int value) {
this.value

}

class B {

String data;

= value;

B(String data) {
this.data

}
}

= data;

public class Alloc {
public static

A
A

B
B

objA1l
objA2

objB1
objB2

void main(Stringl[] args) {
new A(10);
new A(20);

= new B("Hello");

new B("World");

Example 2 (Move)

® Compute the analysis result.

class A {}
class B {}
public class Move {
public static void main(Stringl[] args) {
A objA = new AQ);
B objB = new B();

Object vi;
Object v2;

if (args.length > 0) {

vl = objB;

v2 = objA;
} else {

vl = objA;

v2 = objB;

Example 3 (Load)

® Compute the analysis result.

class A {
Object fld;
}

class B {
Object fld;
}

public class Load
public static

A a = new
B b = new
a.fld = b;
b.fld = a;
Object ol
Object o2

assert ol

{

void main(Stringl[] args) {
AQ;
BO;

a.fld;
b.fld;
02

"ol should not be the same object as

02",

Example 4 (Store)

® Compute the analysis result.

class A {
Object fld;
}

class B {
Object fld;
}

public class Store {
public static void main(String[] args) {
A a = new AQ;
a.fld = new B();
((B) (a.fld)).fld = new A(Q);

Example 5 (Static Call)

® Compute the analysis result.

class A {}
class B {}

public class StaticCall {
static Object id(Object o) { return o; }
public static void main(String[] args) {

A objAl = new AQ);

B objBl = new B();
A vi = (A) id(objAl);
B v2 = (B) id(objB1);

Example 6 (Special Call)

® Compute the analysis result.

class A {
Object fld;
A(Object value) {
this.fld = value;

}
}
class B {
Object fld;
B(Object value) {
this.fld = value;
}
}
class C{}

public class SpecialCall {
static Object id(Object o) { return o; }
public static void main(String[] args) {
C objC = new CQ);
A a = new A(objC);
B b = new B(objC);

Example 7 (Virtual Call)

® Compute the analysis result.

class A {}
class B {}

class C {
Object id(Object v){
return v;
}
}

public class VirtualCall {
public static void main(String[] args) {

A a = new AQ;
B b = new B();
C c = new CQ;

Object vl = c.id(a);
Object v2 = c.id(b);

assert vl != v2 : "vl should not be the same object as v2";

