
IC637 Program Analysis
Lecture 4: Octagon Domain

Minseok Jeon

2025 Fall

Minseok Jeon IC637 Program Analysis 2025 Fall 1/42

Review: Interval Domain

• Interval Domain: Abstract domain Ẑ = {⊥} ∪ {[l, u] | l, u ∈ Z∪ {−∞,∞}, l ≤ u}
• Partial order: ⊥ ⊑ x, [l1, u1] ⊑ [l2, u2] iff l2 ≤ l1 and u1 ≤ u2

• Join: [l1, u1] ⊔ [l2, u2] = [min(l1, l2), max(u1, u2)]
• Meet: [l1, u1] ⊓ [l2, u2] = [max(l1, l2), min(u1, u2)] if overlap, ⊥ otherwise

• Worklist Algorithm: Iterative fixed-point computation
• Widening phase: Apply widening at loop headers until convergence
• Narrowing phase: Apply narrowing to refine results

• Widening & Narrowing: Essential for termination in infinite domains
• Widening (∇): Extrapolates to infinity to ensure convergence
• Narrowing (△): Refines over-approximations from widening
• Widening with thresholds: Uses predefined values to improve precision

• Key Insight: Balance between precision and scalability (e.g., termination)
Minseok Jeon IC637 Program Analysis 2025 Fall 2/42

Example

• Describe the result of the interval analysis:
1. without widening
2. with widening/narrowing

void main (){
int x = 0;
while (x != 10) {

x = x + 1;
}

}

x = 0

x != 10 x == 10

x = x + 1

Minseok Jeon IC637 Program Analysis 2025 Fall 3/42

Discussion

• Give an example program that cannot be precisely analyzed by interval domain.

Minseok Jeon IC637 Program Analysis 2025 Fall 4/42

Relational Abstract Domains

• Intervals vs Octacons vs Polyhedra
• Intervals vs. Octagons vs. Polyhedra

Relational Abstract Domains

81

int a[10];
x = 0; y = 0;

while (x < 9) {
 x++; y++;
}

a[y] = 0;

• Focus: Core idea of the Octagon domain*

Octagon analysis

Interval analysis

x : [9,9]
y : [9,9]
x × y : [0,0]
x + y : [18,18]

 x : [9,9]
y : [0,̂]

*Antoine Miné. The Octagon Abstract Domain. https://arxiv.org/abs/cs/0703084

Minseok Jeon IC637 Program Analysis 2025 Fall 5/42

The Octagon Domain

• Focus: Core idea of the Octagon domain

void main(){

 int a[10];

 x = 0; y = 0;

 while (x < 9) {

 x++; y++;

 }

 a[y] = 0;

}

Octagon analysis :

 Interval analysis :

x : [9,9]
y : [9,9]
x− y : [0,0]
x + y : [18,18]

x : [9,9]
y : [0,]∞

Minseok Jeon IC637 Program Analysis 2025 Fall 6/42

Difference Bound Matrix (DBM)

• (N + 1)× (N + 1) matrix (N : number of variables) e.g.,

0 x y

0 0− 0 x− 0 y − 0
x 0− x x− x y − x

y 0− y x− y y − y

• Example

0 x y

0 0 10 10
x 0 0 0
y 0 0 0

⇐⇒

0 ≤ x ≤ 10
0 ≤ y ≤ 10
y − x ≤ 0
x− y ≤ 0

0 x y

0 0 10 ∞
x −1 0 −1
y 0 1 0

⇐⇒

1 ≤ x ≤ 10
0 ≤ y

y − x ≤ −1
x− y ≤ 1

Minseok Jeon IC637 Program Analysis 2025 Fall 7/42

Difference Bound Matrix (DBM)

• A DBM represents a set of program states (N-dim points)

γ


 0 10 ∞
−1 0 −1
0 1 0


 = {(x, y) | 1 ≤ x ≤ 10, 0 ≤ y, y − x ≤ −1, x− y ≤ 1}

γ


 0 5 ∞
∞ 0 −1
0 2 0


 =

• Quiz: find a matrix M such that γ(M) = ∅
• Question: can two different DBMs represent the same set of points?

Minseok Jeon IC637 Program Analysis 2025 Fall 8/42

Difference Bound Matrix (DBM)

• A DBM can also be represented by a directed graph

0 x y

0 0 4 3
x −1 0 +∞
y −1 1 0

⇐⇒

0

x y

4 3
−1 −1

1

∞
0 x y

0 0 10 ∞
x −1 0 −1
y 0 1 0

⇐⇒

Minseok Jeon IC637 Program Analysis 2025 Fall 9/42

Difference Bound Matrix (DBM)

• Two different DBMs can represent the same set of points

γ

+∞ 4 3
−1 +∞ +∞
−1 1 +∞

 = γ

 0 5 3
−1 +∞ +∞
−1 1 +∞



• How can we check if two DBMs represent the same set of points?

Minseok Jeon IC637 Program Analysis 2025 Fall 10/42

Difference Bound Matrix (DBM)

• Closure (normalization) via the Floyd-Warshall algorithm

Difference Bound Matrix (DBM)

84

• Two different DBMs can represent the same set of points

+× 4 3
̂1 +× +×
̂1 1 +×

*

= [
0 4 3

̂1 0 2
̂1 1 0] 0

x y

4
̂1 3

̂1

1
2

0

0 0

0 5 3
̂1 +× +×
̂1 1 +×

*

= [
0 4 3

̂1 0 2
̂1 1 0]

• Closure (normalization) via the Floyd-Warshall algorithm

λ
+× 4 3
̂1 +× +×
̂1 1 +×

= λ
0 5 3

̂1 +× +×
̂1 1 +×

for n = 0 to n− 1 do
dist[n][n] = 0

for k = 0 to n− 1 do
for i = 0 to n− 1 do

for j = 0 to n− 1 do
dist[i][j]← min(dist[i][j], dist[i][k] + dist[k][j])

Minseok Jeon IC637 Program Analysis 2025 Fall 11/42

Fixed Point Computation with Widening

int x = 0;
int y = 0;
while (x <= 9) {

x = x + 1;
y = y + 1;

}

x = 0

y = 0

x ≤ 9 x > 9

x = x + 1

y = y + 1

Minseok Jeon IC637 Program Analysis 2025 Fall 12/42

Fixed Point Computation with Widening/Narrowing

y = 0

x <= 9 x > 9

x = x + 1

x = 0

y = y + 1

×

×

×

×

×

×

×

1. Remove information about x:

[
0 ̂ ̂
̂ 0 ̂
̂ ̂ 0] ⊤ [

0 ̂ ̂̂ ̂ ̂
̂ ̂ 0]

86

[
0 ̂ ̂
̂ 0 ̂
̂ ̂ 0]

[
0 0 ̂
0 0 ̂
̂ ̂ 0]

Fixed Point Comp. with Widening

Minseok Jeon IC637 Program Analysis 2025 Fall 13/42

Fixed Point Computation with Widening/Narrowing

y = 0

x <= 9 x > 9

x = x + 1

x = 0

y = y + 1

×

×

×

×

×

×

×

2. Add constraint “x=0”:

[
0 ̂ ̂̂ ̂ ̂
̂ ̂ 0] ⊤ [

0 0 ̂
0 ̂ ̂
̂ ̂ 0]

x = 0 − x ⊥ 0 ⊔ 0 ∞ 0 ⊥ x ⊔ 0

87

[
0 0 ̂
0 0 ̂
̂ ̂ 0]

[
0 ̂ ̂
̂ 0 ̂
̂ ̂ 0]

Fixed Point Comp. with Widening

Minseok Jeon IC637 Program Analysis 2025 Fall 14/42

Fixed Point Computation with Widening/Narrowing

y = 0

x <= 9 x > 9

x = x + 1

x = 0

y = y + 1

×

×

×

×

×

×

×

3. Normalize the resulting state:

[
0 0 ̂
0 ̂ ̂
̂ ̂ 0]

*
= [

0 0 ̂
0 0 ̂
̂ ̂ 0]

88

[
0 0 ̂
0 0 ̂
̂ ̂ 0]

[
0 ̂ ̂
̂ 0 ̂
̂ ̂ 0]

Fixed Point Comp. with Widening

Minseok Jeon IC637 Program Analysis 2025 Fall 15/42

Fixed Point Computation with Widening/Narrowing

y = 0

x <= 9 x > 9

x = x + 1

x = 0

y = y + 1

×

×

×

×

×

×

1. Remove information about y:

[
0 0 ̂
0 0 ̂
̂ ̂ 0] ⊤ [

0 0 ̂
0 0 ̂̂ ̂ ̂]

[
0 0 0
0 0 0
0 0 0]

89

[
0 0 ̂
0 0 ̂
̂ ̂ 0]

[
0 ̂ ̂
̂ 0 ̂
̂ ̂ 0]

Fixed Point Comp. with Widening

Minseok Jeon IC637 Program Analysis 2025 Fall 16/42

Fixed Point Computation with Widening/Narrowing

y = 0

x <= 9 x > 9

x = x + 1

x = 0

y = y + 1

×

×

×

×

×

×

2. Add constraint “y=0”:

[
0 0 ̂
0 0 ̂̂ ̂ ̂] ⊤ [

0 0 0
0 0 ̂
0 ̂ ̂]

90

[
0 0 ̂
0 0 ̂
̂ ̂ 0]

[
0 ̂ ̂
̂ 0 ̂
̂ ̂ 0]

[
0 0 0
0 0 0
0 0 0]

Fixed Point Comp. with Widening

Minseok Jeon IC637 Program Analysis 2025 Fall 17/42

Fixed Point Computation with Widening/Narrowing

y = 0

x <= 9 x > 9

x = x + 1

x = 0

y = y + 1

×

×

×

×

×

×

3. Normalize the resulting state:

[
0 0 0
0 0 ̂
0 ̂ ̂]

*
= [

0 0 0
0 0 0
0 0 0]

91

[
0 0 ̂
0 0 ̂
̂ ̂ 0]

[
0 ̂ ̂
̂ 0 ̂
̂ ̂ 0]

[
0 0 0
0 0 0
0 0 0]

Fixed Point Comp. with Widening

Minseok Jeon IC637 Program Analysis 2025 Fall 18/42

Fixed Point Computation with Widening/Narrowing

y = 0

x <= 9 x > 9

x = x + 1

x = 0

y = y + 1

×

×

×

×

[
0 0 0
0 0 0
0 0 0][

0 0 0
0 0 0
0 0 0]

[
0 0 0
0 0 0
0 0 0]

92

[
0 0 ̂
0 0 ̂
̂ ̂ 0]

[
0 ̂ ̂
̂ 0 ̂
̂ ̂ 0]

Fixed Point Comp. with Widening

Minseok Jeon IC637 Program Analysis 2025 Fall 19/42

Fixed Point Computation with Widening/Narrowing

y = 0

x <= 9 x > 9

x = x + 1

x = 0

y = y + 1

×

×

×

[
0 0 0
0 0 0
0 0 0]

[
0 0 0
0 0 0
0 0 0]

0 min(0,9) 0
0 0 0
0 0 0

= [
0 0 0
0 0 0
0 0 0]

[
0 0 0
0 0 0
0 0 0]

93

[
0 0 ̂
0 0 ̂
̂ ̂ 0]

[
0 ̂ ̂
̂ 0 ̂
̂ ̂ 0]

Fixed Point Comp. with Widening

Minseok Jeon IC637 Program Analysis 2025 Fall 20/42

Fixed Point Computation with Widening/Narrowing

y = 0

x <= 9 x > 9

x = x + 1

x = 0

y = y + 1

×

×

[
0 0 0
0 0 0
0 0 0]

[
0 0 0
0 0 0
0 0 0]

[
0 0 0
0 0 0
0 0 0]

x ̂ x⊤ − c ⊥ x ̂ x⊤ − c + 1
x⊤ ̂ x − c ⊥ x⊤ ̂ x − c ̂ 1

[
0 0 0
0 0 0
0 0 0] ⊥ [

0 1 0
̂1 0 ̂1
0 1 0]

[
0 0 0
0 0 0
0 0 0]

94

[
0 0 ⊔
0 0 ⊔
⊔ ⊔ 0]

[
0 ⊔ ⊔
⊔ 0 ⊔
⊔ ⊔ 0]

Fixed Point Comp. with Widening

Minseok Jeon IC637 Program Analysis 2025 Fall 21/42

Fixed Point Computation with Widening/Narrowing

y = 0

x <= 9 x > 9

x = x + 1

x = 0

y = y + 1

×

[
0 0 0
0 0 0
0 0 0]

[
0 0 0
0 0 0
0 0 0]

[
0 0 0
0 0 0
0 0 0]

[
0 1 0

̂1 0 ̂1
0 1 0]

[
0 1 1

̂1 0 0
̂1 0 0]

[
0 0 0
0 0 0
0 0 0]

95

[
0 0 ⊤
0 0 ⊤
⊤ ⊤ 0]

[
0 ⊤ ⊤
⊤ 0 ⊤
⊤ ⊤ 0]

Fixed Point Comp. with Widening

Minseok Jeon IC637 Program Analysis 2025 Fall 22/42

Fixed Point Computation with Widening/Narrowing

y = 0

x <= 9 x > 9

x = x + 1

x = 0

y = y + 1

×
[

0 0 0
0 0 0
0 0 0]

[
0 0 0
0 0 0
0 0 0]

[
0 1 0

̂1 0 ̂1
0 1 0]

[
0 1 1

̂1 0 0
̂1 0 0]

[
0 0 0
0 0 0
0 0 0] ⊤ [

0 1 1
̂1 0 0
̂1 0 0] = [

0 1 1
0 0 0
0 0 0]

1. Compute output by joining inputs:

[
0 − −
0 0 0
0 0 0]

[
0 − −
0 0 0
0 0 0]

96

[
0 0 −
0 0 −
− − 0]

[
0 − −
− 0 −
− − 0]

Fixed Point Comp. with Widening

Minseok Jeon IC637 Program Analysis 2025 Fall 23/42

Fixed Point Computation with Widening/Narrowing

y = 0

x <= 9 x > 9

x = x + 1

x = 0

y = y + 1

×

[
0 ̂ ̂
0 0 0
0 0 0]

[
0 0 0
0 0 0
0 0 0]

[
0 0 0
0 0 0
0 0 0]

[
0 1 0

⊤1 0 ⊤1
0 1 0]

[
0 1 1

⊤1 0 0
⊤1 0 0]

[
0 0 0
0 0 0
0 0 0] − [

0 1 1
0 0 0
0 0 0] = [

0 ̂ ̂
0 0 0
0 0 0]

2. Apply widening with old output:

[
0 ̂ ̂
0 0 0
0 0 0]

97

[
0 0 ̂
0 0 ̂
̂ ̂ 0]

[
0 ̂ ̂
̂ 0 ̂
̂ ̂ 0]

Fixed Point Comp. with Widening

Minseok Jeon IC637 Program Analysis 2025 Fall 24/42

Fixed Point Computation with Widening/Narrowing

y = 0

x <= 9 x > 9

x = x + 1

x = 0

y = y + 1

×

[
0 ̂ ̂
0 0 0
0 0 0]

[
0 0 0
0 0 0
0 0 0]

[
0 0 0
0 0 0
0 0 0]

[
0 1 0

⊤1 0 ⊤1
0 1 0]

[
0 1 1

⊤1 0 0
⊤1 0 0]

[
0 0 0
0 0 0
0 0 0] − [

0 ̂ ̂
0 0 0
0 0 0]

3. Check if fixed point is reached:

[
0 ̂ ̂
0 0 0
0 0 0]

98

[
0 0 ̂
0 0 ̂
̂ ̂ 0]

[
0 ̂ ̂
̂ 0 ̂
̂ ̂ 0]

Fixed Point Comp. with Widening

Minseok Jeon IC637 Program Analysis 2025 Fall 25/42

Fixed Point Computation with Widening/Narrowing

y = 0

x <= 9 x > 9

x = x + 1

x = 0

y = y + 1

×

[
0 ̂ ̂
0 0 0
0 0 0]

[
0 ̂ ̂
0 0 0
0 0 0] ⊤

0 9 ̂
0 0 0
0 0 0

[
0 0 0
0 0 0
0 0 0]

[
0 1 0

−1 0 −1
0 1 0]

[
0 1 1

−1 0 0
−1 0 0] [

0 ̂ ̂
0 0 0
0 0 0]

1. Add constraint “x <= 9”:

0 9 9
0 0 0
0 0 0

99

[
0 0 ̂
0 0 ̂
̂ ̂ 0]

[
0 ̂ ̂
̂ 0 ̂
̂ ̂ 0]

Fixed Point Comp. with Widening

Minseok Jeon IC637 Program Analysis 2025 Fall 26/42

Fixed Point Computation with Widening/Narrowing

y = 0

x <= 9 x > 9

x = x + 1

x = 0

y = y + 1

×

[
0 ̂ ̂
0 0 0
0 0 0]

0 9 ̂
0 0 0
0 0 0

⊤
0 9 9
0 0 0
0 0 0

[
0 0 0
0 0 0
0 0 0]

[
0 1 0

−1 0 −1
0 1 0]

[
0 1 1

−1 0 0
−1 0 0] [

0 ̂ ̂
0 0 0
0 0 0]

2. Normalize the resulting state:

0 9 9
0 0 0
0 0 0

100

[
0 0 ̂
0 0 ̂
̂ ̂ 0]

[
0 ̂ ̂
̂ 0 ̂
̂ ̂ 0]

Fixed Point Comp. with Widening

Minseok Jeon IC637 Program Analysis 2025 Fall 27/42

Fixed Point Computation with Widening/Narrowing

y = 0

x <= 9 x > 9

x = x + 1

x = 0

y = y + 1

×

[
0 ̂ ̂
0 0 0
0 0 0] [

0 0 0
0 0 0
0 0 0]

[
0 1 1

⊤1 0 0
⊤1 0 0] [

0 ̂ ̂
0 0 0
0 0 0]

0 9 9
0 0 0
0 0 0

0 10 9
⊤1 0 ⊤1
0 1 0

101

[
0 0 ̂
0 0 ̂
̂ ̂ 0]

[
0 ̂ ̂
̂ 0 ̂
̂ ̂ 0]

Fixed Point Comp. with Widening

Minseok Jeon IC637 Program Analysis 2025 Fall 28/42

Fixed Point Computation with Widening/Narrowing

y = 0

x <= 9 x > 9

x = x + 1

x = 0

y = y + 1

×

[
0 ̂ ̂
0 0 0
0 0 0] [

0 0 0
0 0 0
0 0 0]

[
0 ̂ ̂
0 0 0
0 0 0]

0 9 9
0 0 0
0 0 0

0 10 9
⊤1 0 ⊤1
0 1 0

[
0 10 10

⊤1 0 0
⊤1 0 0]

102

[
0 0 ̂
0 0 ̂
̂ ̂ 0]

[
0 ̂ ̂
̂ 0 ̂
̂ ̂ 0]

Fixed Point Comp. with Widening

Minseok Jeon IC637 Program Analysis 2025 Fall 29/42

Fixed Point Computation with Widening/Narrowing

y = 0

x <= 9 x > 9

x = x + 1

x = 0

y = y + 1

×

[
0 ̂ ̂
0 0 0
0 0 0] [

0 0 0
0 0 0
0 0 0]

[
0 ̂ ̂
0 0 0
0 0 0]

0 9 9
0 0 0
0 0 0

0 10 9
⊤1 0 ⊤1
0 1 0

[
0 10 10

⊤1 0 0
⊤1 0 0]

[
0 0 0
0 0 0
0 0 0] − [

0 10 10
⊤1 0 0
⊤1 0 0] = [

0 10 10
0 0 0
0 0 0]

1. Compute output by joining inputs:

103

[
0 0 ̂
0 0 ̂
̂ ̂ 0]

[
0 ̂ ̂
̂ 0 ̂
̂ ̂ 0]

Fixed Point Comp. with Widening

Minseok Jeon IC637 Program Analysis 2025 Fall 30/42

Fixed Point Computation with Widening/Narrowing

y = 0

x <= 9 x > 9

x = x + 1

x = 0

y = y + 1

×

[
0 ̂ ̂
0 0 0
0 0 0] [

0 0 0
0 0 0
0 0 0]

[
0 ̂ ̂
0 0 0
0 0 0]

0 9 9
0 0 0
0 0 0

0 10 9
⊤1 0 ⊤1
0 1 0

[
0 10 10

⊤1 0 0
⊤1 0 0]

[
0 ̂ ̂
0 0 0
0 0 0] − [

0 10 10
0 0 0
0 0 0] = [

0 ̂ ̂
0 0 0
0 0 0]

2. Apply widening with old output:

104

[
0 0 ̂
0 0 ̂
̂ ̂ 0]

[
0 ̂ ̂
̂ 0 ̂
̂ ̂ 0]

Fixed Point Comp. with Widening

Minseok Jeon IC637 Program Analysis 2025 Fall 31/42

Fixed Point Computation with Widening/Narrowing

y = 0

x <= 9 x > 9

x = x + 1

x = 0

y = y + 1

×

[
0 ̂ ̂
0 0 0
0 0 0] [

0 0 0
0 0 0
0 0 0]

[
0 ̂ ̂
0 0 0
0 0 0]

0 9 9
0 0 0
0 0 0

0 10 9
⊤1 0 ⊤1
0 1 0

[
0 10 10

⊤1 0 0
⊤1 0 0]

[
0 ̂ ̂
0 0 0
0 0 0] − [

0 ̂ ̂
0 0 0
0 0 0]

3. Check if fixed point is reached

105

[
0 0 ̂
0 0 ̂
̂ ̂ 0]

[
0 ̂ ̂
̂ 0 ̂
̂ ̂ 0]

Fixed Point Comp. with Widening

Minseok Jeon IC637 Program Analysis 2025 Fall 32/42

Fixed Point Computation with Widening/Narrowing

y = 0

x <= 9 x > 9

x = x + 1

x = 0

y = y + 1

[
0 × ×
0 0 0
0 0 0] [

0 0 0
0 0 0
0 0 0]

[
0 × ×
0 0 0
0 0 0]

0 9 9
0 0 0
0 0 0

0 10 9
̂1 0 ̂1
0 1 0

[
0 10 10

̂1 0 0
̂1 0 0]

[
0 × ×

̂10 0 0
̂10 0 0]

1. Add constraint “x>9”
x > 9 ⊤ 0 ̂ x − ̂ 10

[
0 × ×
0 0 0
0 0 0] ⊥ [

0 × ×
̂10 0 0

0 0 0]

106

[
0 0 ×
0 0 ×
× × 0]

[
0 × ×
× 0 ×
× × 0]

Fixed Point Comp. with Widening

Minseok Jeon IC637 Program Analysis 2025 Fall 33/42

Fixed Point Computation with Widening/Narrowing

y = 0

x <= 9 x > 9

x = x + 1

x = 0

y = y + 1

[
0 × ×
0 0 0
0 0 0] [

0 0 0
0 0 0
0 0 0]

[
0 × ×
0 0 0
0 0 0]

0 9 9
0 0 0
0 0 0

0 10 9
̂1 0 ̂1
0 1 0

[
0 10 10

̂1 0 0
̂1 0 0]

[
0 × ×

̂10 0 0
̂10 0 0]

2. Normalize the resulting state:

[
0 × ×

̂10 0 0
0 0 0] ⊤ [

0 × ×
̂10 0 0
̂10 0 0]

107

[
0 0 ×
0 0 ×
× × 0]

[
0 × ×
× 0 ×
× × 0]

Fixed Point Comp. with Widening

Minseok Jeon IC637 Program Analysis 2025 Fall 34/42

Fixed Point Computation with Widening/Narrowing

y = 0

x <= 9 x > 9

x = x + 1

x = 0

y = y + 1

[
0 10 10
0 0 0
0 0 0] [

0 0 0
0 0 0
0 0 0]

[
0 10 10
0 0 0
0 0 0]

0 9 9
0 0 0
0 0 0

0 10 9
×1 0 ×1
0 1 0

[
0 10 10

×1 0 0
×1 0 0]

[
0 ̂ ̂

×10 0 0
×10 0 0]

[
0 0 0
0 0 0
0 0 0] ⊤ [

0 10 10
×1 0 0
×1 0 0] = [

0 10 10
0 0 0
0 0 0]

1. Compute output by joining inputs:

Fixed Point Comp. with Narrowing

108

[
0 0 ̂
0 0 ̂
̂ ̂ 0]

[
0 ̂ ̂
̂ 0 ̂
̂ ̂ 0]

Minseok Jeon IC637 Program Analysis 2025 Fall 35/42

Fixed Point Computation with Widening/Narrowing

y = 0

x <= 9 x > 9

x = x + 1

x = 0

y = y + 1

[
0 0 0
0 0 0
0 0 0]

0 9 9
0 0 0
0 0 0

0 10 9
×1 0 ×1
0 1 0

[
0 10 10

×1 0 0
×1 0 0]

[
0 ̂ ̂

×10 0 0
×10 0 0]

[
0 ̂ ̂
0 0 0
0 0 0] ⊤ [

0 10 10
0 0 0
0 0 0] = [

0 10 10
0 0 0
0 0 0]

2. Apply narrowing with old output:

[
0 10 10
0 0 0
0 0 0]

[
0 10 10
0 0 0
0 0 0]

109

[
0 0 ̂
0 0 ̂
̂ ̂ 0]

[
0 ̂ ̂
̂ 0 ̂
̂ ̂ 0]

Fixed Point Comp. with Narrowing

Minseok Jeon IC637 Program Analysis 2025 Fall 36/42

Fixed Point Computation with Widening/Narrowing

y = 0

x <= 9 x > 9

x = x + 1

x = 0

y = y + 1

[
0 0 0
0 0 0
0 0 0]

0 9 9
0 0 0
0 0 0

0 10 9
×1 0 ×1
0 1 0

[
0 10 10

×1 0 0
×1 0 0]

[
0 ̂ ̂

×10 0 0
×10 0 0]

[
0 ̂ ̂
0 0 0
0 0 0] ⊤ [

0 10 10
0 0 0
0 0 0]

3. Check if fixed point is reached:

[
0 10 10
0 0 0
0 0 0]

[
0 10 10
0 0 0
0 0 0]

110

[
0 0 ̂
0 0 ̂
̂ ̂ 0]

[
0 ̂ ̂
̂ 0 ̂
̂ ̂ 0]

Fixed Point Comp. with Narrowing

Minseok Jeon IC637 Program Analysis 2025 Fall 37/42

Fixed Point Computation with Widening/Narrowing

y = 0

x <= 9 x > 9

x = x + 1

x = 0

y = y + 1

[
0 0 0
0 0 0
0 0 0]

0 9 9
0 0 0
0 0 0

0 10 9
×1 0 ×1
0 1 0

[
0 10 10

×1 0 0
×1 0 0]

[
0 10 10

×10 0 0
×10 0 0]

[
0 10 10
0 0 0
0 0 0]

[
0 10 10
0 0 0
0 0 0]

111

[
0 0 ̂
0 0 ̂
̂ ̂ 0]

[
0 ̂ ̂
̂ 0 ̂
̂ ̂ 0]

Fixed Point Comp. with Narrowing

Minseok Jeon IC637 Program Analysis 2025 Fall 38/42

Motivating Example

//a >= 0; b >= 0;
int q = 0;
int r = a;
while (r >= b) {

r = r - b;
q = q + 1;

}
assert (q >= 0);
assert (r >= 0);

q = 0

r = a

r ≥ b r < b

r = r − b

q = q + 1

Minseok Jeon IC637 Program Analysis 2025 Fall 39/42

Static Analysis Use Cases: Infer

• https://github.com/facebook/infer/

• Running Infer: e.g.,
• infer capture – make
• infer analyze

Minseok Jeon IC637 Program Analysis 2025 Fall 40/42

https://github.com/facebook/infer/

Infer’s Intermediate Language

• https://github.com/facebook/infer/blob/main/infer/src/IR/Sil.mli

Minseok Jeon IC637 Program Analysis 2025 Fall 41/42

https://github.com/facebook/infer/blob/main/infer/src/IR/Sil.mli

Summary

• Static Analysis Principles
• Choose appropriate abstract domains (intervals, octagons, polyhedra)
• Balance precision vs. scalability

• Interval Domain
• Simple non-relational domain: [l, u] bounds
• Widening/narrowing for fixed-point computation
• Limited expressiveness for relational properties

• Octagon Domain
• Relational domain using Difference Bound Matrices (DBM)
• Constraints: ±xi ± xj ≤ c
• Floyd-Warshall algorithm for closure/normalization

• Practical Tools
• Facebook Infer: Industrial static analyzer

Minseok Jeon IC637 Program Analysis 2025 Fall 42/42

