
IC637 Program Analysis
Lecture 1: Introduction to Program Analysis

Minseok Jeon

2025 Fall

Minseok Jeon IC637 Program Analysis 2025 Fall 1/42

Outline

1. Program Analysis & Limitation

2. Basic Principle

3. Testing

4. Verification

5. Static Analysis

6. Summary

Minseok Jeon IC637 Program Analysis 2025 Fall 2/42

Program Analysis & Limitation

Program Analysis

• Program analysis aims to reason about program behavior (e.g., bugs) automatically.

program

Program Analyzer
Bugs in the program

• Question: If there is a perfect program analyzer, how does it work?

Minseok Jeon IC637 Program Analysis 2025 Fall 4/42

Program Analysis

• Question: is it possible to develop a perfect program analyzer that always figures
out all the bugs (i.e., sound) and all the figured out bugs are always actual bugs
(i.e., complete)?

Minseok Jeon IC637 Program Analysis 2025 Fall 5/42

Fundamental Limitation

• The Halting problem is not computable (i.e., undecidable).
230 A. M. TUKING [Nov. 12,

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. TURING.

[Received 28 May, 1936.—Read 12 November, 1936.]

The "computable" numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite means.
Although the subject of this paper is ostensibly the computable numbers.
it is almost equally easy to define and investigate computable functions
of an integral variable or a real or computable variable, computable
predicates, and so forth. The fundamental problems involved are,
however, the same in each case, and I have chosen the computable numbers
for explicit treatment as involving the least cumbrous technique. I hope
shortly to give an account of the relations of the computable numbers,
functions, and so forth to one another. This will include a development
of the theory of functions of a real variable expressed in terms of com-
putable numbers. According to my definition, a number is computable
if its decimal can be written down by a machine.

In §§ 9, 10 I give some arguments with the intention of showing that the
computable numbers include all numbers which could naturally be
regarded as computable. In particular, I show that certain large classes
of numbers are computable. They include, for instance, the real parts of
all algebraic numbers, the real parts of the zeros of the Bessel functions,
the numbers IT, e, etc. The computable numbers do not, however, include
all definable numbers, and an example is given of a definable number
which is not computable.

Although the class of computable numbers is so great, and in many
Avays similar to the class of real numbers, it is nevertheless enumerable.
In § 81 examine certain arguments which would seem to prove the contrary.
By the correct application of one of these arguments, conclusions are
reached which are superficially similar to those of Gbdelf. These results

f Godel, " Uber formal unentscheidbare Satze der Principia Mathematica und ver-
•vvandter Systeme, I " . Monatsheftc Math. Phys., 38 (1931), 173-198.

• https://www.cs.virginia.edu/ robins/Turing_Paper_1936.pdf

Minseok Jeon IC637 Program Analysis 2025 Fall 6/42

https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf

Fundamental Limitation

• It is impossible to develop an exact program analyzer.
• Proof

1. The Halting problem1 is not computable (i.e., undecidable).
2. If we have an exact analyzer that soundly and completely finds error, we can solve the

Halting problem with the analyzer.

program

Halt

Run forever

(program; true + 1) Exact Analyzer

error

safe

• Rice’s theorem (1951): every non-trivial property of the language of a Turing
machine is undecidable.

1https://en.wikipedia.org/wiki/List_of_undecidable_problems
Minseok Jeon IC637 Program Analysis 2025 Fall 7/42

https://en.wikipedia.org/wiki/List_of_undecidable_problems

Tradeoff

• Three desirable properties
• Soundness : all program behaviors (e.g., bugs) are captured.

(If a program has a bug, a analyzer reports it.)
• Completeness : only (possible) program behaviors are captured.

(If a complete analyzer reports a bug, the program has the bug.)
• Automation : the analyzer can be run automatically without human intervention.

• Achieving all the three properties is generally infeasible:

completesound

automatic

completesound

automatic

completesound

automatic

e.g., verifier e.g., testing e.g., static analysis

Minseok Jeon IC637 Program Analysis 2025 Fall 8/42

Basic Principle

Basic Principle

• How can we reason about the program behavior?
• Observe the program behavior by executing the program.

• Report errors found during the execution
• When no error is found, report "verified".

• Three types of program execution:
• Concrete execution
• Symbolic execution
• Abstract execution
• and their combinations, e.g., concolic execution

• Question: is there any other way to reason about the program behavior?

Minseok Jeon IC637 Program Analysis 2025 Fall 10/42

Testing

Program Analysis Based on Concrete Execution

• Basic concept: execute the program with concrete inputs, analyzing individual
program behavior separately.

x : ?
y : ?

int double (int v) {
return v * 2;

}
void main(int x, int y) {

int z = double (y);
if (x == z){

if (x > y){
Error;

}
}
return 0;

}

Error!

Minseok Jeon IC637 Program Analysis 2025 Fall 12/42

Random Testing/Fuzzing

• Goal: Find bugs by generating random inputs and executing the program
• Key idea: Generate many test cases automatically without manual effort

• Advantages:
• Simple to implement and understand
• Can find unexpected bugs
• Requires no program analysis or understanding
• Scales well to large programs

• Challenges:
• Low probability of hitting specific conditions
• No systematic path exploration
• May miss bugs requiring precise input combinations

Minseok Jeon IC637 Program Analysis 2025 Fall 13/42

Random Testing Example

1 int double (int v) {
2 return v * 2;
3 }
4 void main(int x, int y) {
5 int z = double (y);
6 if (x == z){
7 if (x > y){
8 Error;
9 }

10 }
11 return 0;
12 }

Random input generation:
• Generate random values for x and y
• Execute program with these inputs
• Check if error condition is reached

Bug condition: x = 2×y AND x > y
• Requires: x = 2×y and x > y
• This means: 2×y > y, so y > 0
• Example: x=4, y=2 or x=6, y=3

Minseok Jeon IC637 Program Analysis 2025 Fall 14/42

Random Testing Example

1 int double (int v) {
2 return v * 2;
3 }
4 void main(int x, int y) {
5 int z = double (y);
6 if (x == z){
7 if (x > y){
8 Error;
9 }

10 }
11 return 0;
12 }

Probability of finding the bug:
• Need: x = 2×y AND x > y
• If x, y ∈ [1, 100], possible pairs = 10,000
• Valid bug-triggering pairs: (2,1), (4,2),

(6,3), ..., (100,50)
• Total valid pairs: 50
• Probability = 0.5%

Expected trials to find bug:
• Expected trials = 1/0.005 = 200 attempts
• Challenge: Very low success rate for

specific conditions

Minseok Jeon IC637 Program Analysis 2025 Fall 15/42

Types of Fuzzing

• Black-box fuzzing: randomly generate inputs and execute the program.
• White-box fuzzing: analyze program code in detail and generate inputs.
• Grey-box fuzzing: roughly analyze program behavior and generate inputs.

Minseok Jeon IC637 Program Analysis 2025 Fall 16/42

Symbolic Execution

• Goal: Analyze all possible execution paths systematically
• Key idea: Use symbolic variables instead of concrete values
• Path constraints: Collect conditions that must be true for each path
• Advantages: Complete path coverage, precise bug detection
• Challenges: Path explosion, complex constraint solving

Minseok Jeon IC637 Program Analysis 2025 Fall 17/42

Symbolic Execution: Step-by-Step Example

1 int double (int v) {
2 return v * 2;
3 }
4 void main(int x, int y) {
5 int z = double (y);
6 if (x == z){
7 if (x > y){
8 Error;
9 }

10 }
11 return 0;
12 }

Initial state:
• x = α (symbolic)
• y = β (symbolic)
• Path constraint: true

After line 5 (z = double(y)):
• x = α, y = β, z = 2 × β

• Path constraint: true

At first if-condition (x == z):
• Path 1: α = 2 × β (true branch)
• Path 2: α ̸= 2 × β (false branch)

Minseok Jeon IC637 Program Analysis 2025 Fall 18/42

Symbolic Execution: Step-by-Step Example

1 int double (int v) {
2 return v * 2;
3 }
4 void main(int x, int y) {
5 int z = double (y);
6 if (x == z){
7 if (x > y){
8 Error;
9 }

10 }
11 return 0;
12 }

Path 1: α = 2 × β (x == z is true)
• Continue to second if-condition: x > y
• Path 1a: α = 2 × β ∧ α > β

• Path 1b: α = 2 × β ∧ α ≤ β

Path 2: α ̸= 2 × β (x == z is false)
• Skip inner if, go to return 0
• Final constraint: α ̸= 2 × β

Bug found in Path 1a:
• Constraint: α = 2 × β ∧ α > β

• Example solution: x=4, y=2 (4 = 2×2 and
4 > 2)

Minseok Jeon IC637 Program Analysis 2025 Fall 19/42

Symbolic Execution Tree

Start: x=α, y=β

pc=true

x=α, y=β, z=2β

pc: α = 2β

Error!
pc:α = 2β ∧ α > β

x > y

return 0
pc:α = 2β ∧ α ≤ β

x ≤ y

x = z

return 0
pc:α ̸= 2β

x ̸= z

• Three execution paths identified systematically
• One path leads to error: α = 2β ∧ α > β

• Concrete test case: x=4, y=2 triggers the error

Minseok Jeon IC637 Program Analysis 2025 Fall 20/42

Symbolic Execution

• Question: what is a limitation of symbolic execttion? Write an example that
symbolic execution is hard to find a bug.

Minseok Jeon IC637 Program Analysis 2025 Fall 21/42

Concolic Testing Example

• Limitation of symbolic execution

1 int foo(int v) {
2 return hash(v);
3 }
4 void main(int x, int y) {
5 int z = foo(y);
6 if (x == z){
7 if (x > y + 10){
8 Error;
9 }

10 }
11 return 0;
12 }

Start: x=α, y=β

pc=true

x=α, y=β, z=hash(β)
pc: α = hash(β)

Error!
pc:α =hash(β)∧

α > β + 10

x > y+10

return 0
pc:α = hash()β)∧

α ≤ β

x ≤ y+10

x = z

return 0
pc:α ̸= hash(β)

x ̸= z

Minseok Jeon IC637 Program Analysis 2025 Fall 22/42

Combination: Concolic Testing

• Concolic testing is a hybrid approach that combines symbolic execution and
concrete execution

• Key idea: Start with concrete inputs, then use symbolic execution to explore new
paths

• Advantages: Handles complex operations (like hash functions) that pure symbolic
execution struggles with

Minseok Jeon IC637 Program Analysis 2025 Fall 23/42

Concolic Testing Example

1 int foo(int v) {
2 return hash(v);
3 }
4 void main(int x, int y) {
5 int z = foo(y);
6 if (x == z){
7 if (x > y + 10){
8 Error;
9 }

10 }
11 return 0;
12 }

Problem with symbolic execution:
• Cannot reason about hash(v)
• Path explosion
• Complex constraints

Concolic solution:
• Execute with concrete values
• Track symbolic constraints
• Generate new inputs systematically

Minseok Jeon IC637 Program Analysis 2025 Fall 24/42

Concolic Testing Example

1 int foo(int v) {
2 return hash(v);
3 }
4 void main(int x, int y) {
5 int z = foo(y);
6 if (x == z){
7 if (x > y + 10){
8 Error;
9 }

10 }
11 return 0;
12 }

Iteration 1: Start with x=5, y=3
• Execute: z = hash(3) = 42 (concrete)
• Symbolic: z = hash(β)
• Path taken: x ̸= z (5 ̸= 42)
• Path constraint: α ̸= hash(β)
• Generate new input: Solve α = hash(β)

where hash(3) = 42

Iteration 2: x=42, y=3 (hash(3)=42)
• Execute: z = hash(3) = 42
• Path taken: x = z, and x > y+10 (42 > 13)
• Result: Error found!

Minseok Jeon IC637 Program Analysis 2025 Fall 25/42

Use Cases

• Symbolic execution/Concolic testing is good at finding tricky bugs

(Concolic Testing with Adaptively Changing Search Heuristics. FSE 2019)

Minseok Jeon IC637 Program Analysis 2025 Fall 26/42

Use Cases

• AFL (https://github.com/google/AFL):
• OSS-Fuzz (https://github.com/google/oss-fuzz):

Minseok Jeon IC637 Program Analysis 2025 Fall 27/42

https://github.com/google/AFL
https://github.com/google/oss-fuzz

Verification

Symbolic Verification

• Represent program behavior and property as a formula in logic
• Use SMT solver to check if the formula is satisfiable

program P

Property Φ

Verifier

UNSA
T

SAT

Verified

Counter example

SMT()P ∧ ¬Φ

Minseok Jeon IC637 Program Analysis 2025 Fall 29/42

Symbolic Verification

1 int f(bool a) {
2 x = false; y = false;
3 if (a) {
4 x = true;
5 }
6 if (a){
7 y = true;
8 }
9 assert(x == y);

10 }

Verification condition:

((a ∧ x) ∨ (¬a ∧ ¬x))∧
((a ∧ y) ∨ (¬a ∧ ¬y))∧

¬(x == y)

SMT solver: unsatisfiable!

Minseok Jeon IC637 Program Analysis 2025 Fall 30/42

Symbolic Verification

1 int f(bool a, bool b) {
2 x = false; y = false;
3 if (a) {
4 x = true;
5 }
6 if (b){
7 y = true;
8 }
9 assert(x == y);

10 }

Verification condition:

((a ∧ x) ∨ (¬a ∧ ¬x))∧
((b ∧ y) ∨ (¬b ∧ ¬y))∧

¬(x == y)

SMT solver:
satisfiable when a = true and b = false

Minseok Jeon IC637 Program Analysis 2025 Fall 31/42

Limitation

• What is the verification condition?

1 i = 0;
2 j = 0;
3 while
4 (i < 10){
5 i++;
6 j++;
7 }
8 assert(i - j == 0);

Minseok Jeon IC637 Program Analysis 2025 Fall 32/42

Challenge: Loop Invariant

• Property that holds at the beginning of every loop iterations

1 i = 0;
2 j = 0;
3 while @(i == j)
4 (i < 10){
5 i++;
6 j++;
7 }
8 assert(i - j == 0);

• Infinitely many loop invariants exist for a loop. Need to find a strong one that can
prove the given property.

Minseok Jeon IC637 Program Analysis 2025 Fall 33/42

Use Cases

• The Dafny programming language used in Amazon

2

2https://dafny.org/
Minseok Jeon IC637 Program Analysis 2025 Fall 34/42

Static Analysis

Program Analysis based on Abstract Execution (Static
Analysis)

• Basic idea: execute the program with abstract inputs, analyzing all program
behaviors simultaneously.

Minseok Jeon IC637 Program Analysis 2025 Fall 36/42

Principles of Abstract Interpretation
30 × 12 + 11 × 9 = ?

• Dynamic analysis (testing): 459
• Static analysis: a variety of answers

• “integer”, “odd integer”, “positive integer”, “400≤n≤500”, “etc”
• Static analysis process:

• Choose abstract value (domain), e.g., V̂ = {⊤, e, o, ⊥}
• Define the program execution in terms of abstract values:

×̂ ⊤ e o ⊥
⊤
e
o
⊥

+̂ ⊤ e o ⊥
⊤
e
o
⊥

• Execute the program:
e ×̂ e +̂ o ×̂ o = ?

Minseok Jeon IC637 Program Analysis 2025 Fall 37/42

Principles of Abstract Interpretation

• By contrast to testing, static analysis can prove the absence of bugs:

void main(int x){
y = x * 12 + 9 * 11;
assert (y % 2 == 1);

}

• Instead, static analysis may produce false alarms:

void main (int x) {
y = x + x;
assert (y % 2 == 0);

}

Minseok Jeon IC637 Program Analysis 2025 Fall 38/42

Principles of Abstract Interpretation

• Quiz: is there an abstract domain that can prove the safety of the following
program?

divide (a, b) {
return a / b;// safe?

}
main(x, y) {

if (y == 0) {
return -1;

}
z = divide (x, y);
return 0;

}

Minseok Jeon IC637 Program Analysis 2025 Fall 39/42

Use CasesUse Cases

Hakjoo Oh AAA616 2024 Fall, Lecture 1 September 3, 2024 24 / 25

Minseok Jeon IC637 Program Analysis 2025 Fall 40/42

Summary

Summary: Program Analysis

• Each approach has its own strengths and weaknesses: e.g.,

Method Automatic Sound Complete

Random Testing

Symbolic Execution

Verification

Static Analysis

...

Minseok Jeon IC637 Program Analysis 2025 Fall 42/42

	Program Analysis & Limitation
	Basic Principle
	Testing
	Verification
	Static Analysis
	Summary

