IC637 Program Analysis

Lecture 1: Introduction to Program Analysis

Minseok Jeon

2025 Fall

Outline

1. Program Analysis & Limitation
2. Basic Principle

3. Testing

4. Verification

5. Static Analysis

6. Summary

Program Analysis & Limitation

Program Analysis

® Program analysis aims to reason about program behavior (e.g., bugs) automatically.

Program Analyzer |—> ,m\

Bugs in the program

program

® Question: If there is a perfect program analyzer, how does it work?

Program Analysis

® Question: is it possible to develop a perfect program analyzer that always figures
out all the bugs (i.e., sound) and all the figured out bugs are always actual bugs
(i.e., complete)?

Fundamental Limitation

® The Halting problem is not computable (i.e., undecidable).

ov. 12,

® https://www.cs.virginia.edu/ robins/Turing_Paper_1936.pdf

https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf

Fundamental Limitation

® |t is impossible to develop an exact program analyzer.
® Proof

1. The Halting problem* is not computable (i.e., undecidable).
2. If we have an exact analyzer that soundly and completely finds error, we can solve the
Halting problem with the analyzer.

1

> Halt

error

safe |
—>»Run forever

e Rice's theorem (1951): every non-trivial property of the language of a Turing
machine is undecidable.

program > (program; true + 1) =3 Exact Analyzer

https://en.wikipedia.org/wiki/List_of _undecidable_problems

https://en.wikipedia.org/wiki/List_of_undecidable_problems

Tradeoff

® Three desirable properties
® Soundness : all program behaviors (e.g., bugs) are captured.
(If a program has a bug, a analyzer reports it.)

® Completeness : only (possible) program behaviors are captured.
(If a complete analyzer reports a bug, the program has the bug.)

® Automation : the analyzer can be run automatically without human intervention.
® Achieving all the three properties is generally infeasible:

automatic automatic automatic

sound complete sound complete sound complete

e.g., testing e.g., static analysis

Basic Principle

Basic Principle

® How can we reason about the program behavior?

® Observe the program behavior by executing the program.

® Report errors found during the execution
® When no error is found, report "verified".
® Three types of program execution:
® Concrete execution
Symbolic execution
Abstract execution
and their combinations, e.g., concolic execution

® Question: is there any other way to reason about the program behavior?

Testing

Program Analysis Based on Concrete Execution

e Basic concept: execute the program with concrete inputs, analyzing individual
program behavior separately.

int double (int v) {
return v * 2;

}

void main(int x, int y) {
int z = double(y);

: if (x == z){
y:? — if (x> y){ — > Error!
Error;
}
}

return O;

Random Testing/Fuzzing

Goal: Find bugs by generating random inputs and executing the program

Key idea: Generate many test cases automatically without manual effort

¢ Advantages:
® Simple to implement and understand
® Can find unexpected bugs
® Requires no program analysis or understanding
® Scales well to large programs
¢ Challenges:

® |ow probability of hitting specific conditions
® No systematic path exploration
® May miss bugs requiring precise input combinations

© 0o N o O A~ W N R

=R
N = O

Random Testing Example

int double(int v) {
return v * 2;
}
void main(int x, int y) {
int z = double(y);
if (x == z){
if (x > y){
Error;
}
}

return O0;

Random input generation:
® Generate random values for x and y
® Execute program with these inputs

® Check if error condition is reached

Bug condition: x = 2xy AND x >y
® Requires: x = 2xy and x >y
® This means: 2xy >y, soy > 0
® Example: x=4, y=2 or x=6, y=3

© 0o N o O A~ W N R

=R e
No= O

Random Testing Example

int double(int v) {

}

return v *x 2;

void main(int x, int y) {

int z = double(y);

if (x == z){
if (x > A
Error;
}
}

return O;

Probability of finding the bug:
® Need: x =2xy AND x >y
e If x, y € [1, 100], possible pairs = 10,000
e Valid bug-triggering pairs: (2,1), (4,2),
(6,3), ..., (100,50)
® Total valid pairs: 50
¢ Probability = 0.5%

Expected trials to find bug:
® Expected trials = 1/0.005 = 200 attempts

® Challenge: Very low success rate for
specific conditions

Types of Fuzzing

¢ Black-box fuzzing: randomly generate inputs and execute the program.
¢ White-box fuzzing: analyze program code in detail and generate inputs.

® Grey-box fuzzing: roughly analyze program behavior and generate inputs.

Symbolic Execution

Goal: Analyze all possible execution paths systematically

Key idea: Use symbolic variables instead of concrete values

Path constraints: Collect conditions that must be true for each path

Advantages: Complete path coverage, precise bug detection

Challenges: Path explosion, complex constraint solving

© O N o oA W N R

=
= O

-
N

Symbolic Execution: Step-by-Step Example

int double(int v) {
return v *x 2;
}
void main(int x, int y) {
int z = double(y);
if (x == z){
if (x > y){
Error;
}
}
return O;
}

Initial state:
® x = a (symbolic)
® y = (3 (symbolic)
® Path constraint: true

After line 5 (z = double(y)):
e x=q,y=0,z=2xp
® Path constraint: true

At first if-condition (x == z):

e Path 1: o =2 x [(true branch)
® Path 2: o # 2 x (3 (false branch)

© 0o N o O A~ W N R

=R
N = O

Symbolic Execution: Step-by-Step Example

int double(int v) {
return v * 2;
}
void main(int x, int y) {
int z = double(y);
if (x == z){
if (x > y){
Error;
}
}
return O;
}

Path 1: o« =2 x § (x == z is true)
e Continue to second if-condition: x >y
® Pathla: a=2xp8Aa>p
® Pathlb: a=2xg8Aa <

Path 2: o # 2 x 3 (x == z is false)
® Skip inner if, go to return 0

® Final constraint: a #£2 x (8

Bug found in Path 1la:
® Constraint: a =2 x SAa>f

® Example solution: x=4, y=2 (4 = 2x2 and
4>2)

Symbolic Execution Tree

Start: x=q, y=0

pc=true
X=1z X # z
x=a, y=03, z=2 return 0
pc: a =23 pc:a # 208
x>y x <y
Error! return 0

pca=28ANa>f

pca=20ANa<pf

® Three execution paths identified systematically
® One path leads to error: « =26 ANa >

e Concrete test case: x=4, y=2 triggers the error

Symbolic Execution

® Question: what is a limitation of symbolic execttion? Write an example that
symbolic execution is hard to find a bug.

Concolic Testing Example

e | imitation of symbolic execution

=

int foo(int v) {
return hash(v);

}
void main(int x, int y) {
int z = foo(y);
if (x == z){
if (x >y + 10){
Error;
}
}

return O;

Start: x=a, y=08

pc=true
X =1z X # z
x=a, y=f, z=hash(p) return 0
pc: a = hash(5) pc:a # hash(3)
x > y+10 x < y+10
Error! return 0
pc:a =hash(8)A pc:a = hash()3)A
a>fB+10 a<p

Combination: Concolic Testing

e Concolic testing is a hybrid approach that combines symbolic execution and
concrete execution

e Key idea: Start with concrete inputs, then use symbolic execution to explore new
paths

e Advantages: Handles complex operations (like hash functions) that pure symbolic
execution struggles with

Concolic Testing Example

1lint foo(int v) {

2 return hash(v);

3|}

4/void main(int x, int y) {
5 int z = foo(y);

6 if (x == z){

7 if (x >y + 10){
8 Error;

9 }

10 }

11 return O;

12|}

Problem with symbolic execution:
® Cannot reason about hash(v)
® Path explosion

® Complex constraints

Concolic solution:
® Execute with concrete values
® Track symbolic constraints

® Generate new inputs systematically

© O N o O A~ W N R

=
=)

-
N

Concolic Testing Example

int foo(int v) {
return hash(v);
}
void main(int x, int y) {
int z = foo(y);
if (x == z)A{
if (x >y + 1004
Error;
}
}
return O;
}

Iteration 1: Start with x=5, y=3

Execute: z = hash(3) = 42 (concrete)
Symbolic: z = hash(/3)

Path taken: x # z (5 # 42)

Path constraint: a # hash(/3)

Generate new input: Solve a = hash(/3)
where hash(3) = 42

Iteration 2: x=42, y=3 (hash(3)=42)

Execute: z = hash(3) = 42
Path taken: x = z, and x > y+10 (42 > 13)

Result: Error found!

Use Cases

® Symbolic execution/Concolic testing is good at finding tricky bugs

Benchmarks Versions Error Types Bug-Triggering Inputs
8.1" Non-termination K1!1000100100111110(
vim Abnormal-termination H:w>>'"'\ [press ‘Enter’]
57 Segmentation fault =ipI\-9~qOqw
Non-termination v(ipaprq&T$T
4.2.1* Memory-exhaustion '+E_Q$h+w$8==++$6E8#"
gawk 303 Abnormal-termination ' f[I[I[I[ICyI*/#["
Non-termination '$gPE2A=-E-2"20+$=": /2/H#[""
3.1* Abnormal-termination ' \(\)\1%2%?\ | \Wx\1Wx"
grep Segmentation fault NODNTA*@\ 2\ 1%\ +x\? "
22 Segmentation fault R AV EAYQOARANES 3
Non-termination I\ ({FrHRR\)R\ Hx\TH\+'
sed 1.17 Segmentation fault '{:};:C;b"

(Concolic Testing with Adaptively Changing Search Heuristics. FSE 2019)

Use Cases

e AFL (https://github.com/google/AFL):
® 0OSS-Fuzz (https://github.com/google/oss-fuzz):

Trophies

As of May 2025, OSS-Fuzz has helped identify and fix over 13,000 vulnerabilities and 50,000 bugs across 1,000
projects.

https://github.com/google/AFL
https://github.com/google/oss-fuzz

Verification

Symbolic Verification

® Represent program behavior and property as a formula in logic

® Use SMT solver to check if the formula is satisfiable

program P K s Verified
2
O

T§>\\“

SMT(P A ~®)

Property @ Counter example

Symbolic Verification

1lint f(bool a) {

2 x = false; y = false;
3 if (a) {

4 X = true;

5 }

6 if (a){

7 y = true;

8 }

9 assert(x == y);

10| }

Verification condition:

((a ANx)V (ma A —x))A
((aAy)V (ma A —y))A

~a==1)

SMT solver: unsatisfiable!

Symbolic Verification

© ® N O U A W N =

-
o

int f(bool a,

x = false; y
if (a) A

X = true;
by
if (b){

y = true;
X

assert(x == y);

bool b) {

= false;

Verification condition:

((a Nx)V (ma A —x))A
((bAY)V (=bA=y))A

SMT solver:
satisfiable when a = true and b = false

Limitation

® \What is the verification condition?

11i = 0;

2(j = 0;
3lwhile

4 (i < 1001
5 i++;
6 j++;
¥

assert(i - j == 0);

© 0~

Challenge: Loop Invariant

® Property that holds at the beginning of every loop iterations

11i = 0;
21j = 0;

3l while Q(i == j)
4 (i < 1001

5 i++;

6 jt+s

7|}

8

assert(i - j == 0);

e Infinitely many loop invariants exist for a loop. Need to find a strong one that can
prove the given property.

Use Cases

® The Dafny programming language used in Amazon

The Dafny Programming and Verification Language

Dafny is a verification-aware programming language that has native « Install (or just use the VS Code extension)
D afny support for recording specifications and is equipped with a static « Zulip channel to ask questions about Dafny

program verifier. By blending sophisticated automated reasoning with « Reference Manual and User Guide

familiar programming idioms and tools, Dafny empowers developers to * Resources for Users

write provably correct code (w.r.t. specifications). It also compiles * Blog

Dafny code to familiar development environments such as C#, Java, ¢ YouTube channel

Contribute on GitHub
Documentation snapshots

JavaScript, Go and Python (with more to come) so Dafny can integrate with your existing
workflow. Dafny makes rigorous verification an integral part of development, thus reducing
costly late-stage bugs that may be missed by testing.

.
5
]
I
3
g
S,
I
o
<
0
c
@
D
=3
=
o
-]
16
=
=
ng
(3
23
(7]

In addition to a verification engine to check implementation against specifications, the Dafny
ecosystem includes several compilers, plugins for common software development IDEs, a LSP-
based Language Server, a code formatter, a reference manual, tutorials, power user tips, books,
the experiences of professors teaching Dafny, and the accumulating expertise of industrial
projects using Dafny.

2https://dafny.org/

Static Analysis

Program Analysis based on Abstract Execution (Static
Analysis)

e Basic idea: execute the program with abstract inputs, analyzing all program
behaviors simultaneously.

Principles of Abstract Interpretation

30 x 12 4+11 x9=7

® Dynamic analysis (testing): 459
e Static analysis: a variety of answers

® “integer”, “odd integer”, “positive integer”, “400<n<500", “etc”
e Static analysis process:

® Choose abstract value (domain), e.g., V = {T,e 0, L}
® Define the program execution in terms of abstract values:

x| TlelolL||F+]Tlelol|L
T T
e e
o o
L 1

® Execute the program:

Principles of Abstract Interpretation

® By contrast to testing, static analysis can prove the absence of bugs:

void main(int x){
y = x *x 12 + 9 *x 11;
assert (y % == 1);

® |nstead, static analysis may produce false alarms:

void main (int x) {
y = x + X;
assert (y % 2 == 0);

Principles of Abstract Interpretation

® Quiz: is there an abstract domain that can prove the safety of the following
program?

divide(a, b) {
return a / b;//safe?

}
main(x, y) {
if (y == 0) {
return -1;
}

z = divide(x, y);
return O;

}

Use Cases

D01:10.1145/3338112

Key lelsonl for designing static analyses tools
o find bugs in of millions

integrated in the workflow used by se-

Do1:10.1145/3180720

of fixes of security and privacy bugs,out-

For a static analysis project to succeed,

BY DINO DISTEFANO, MANUEL FAHNDRICH,
FRANCESCO LOGOZZO0, AND PETER W. O'HEARN

Scaling Static
Analyses
at Facebook

|— Infer

STATIC ANALYSIS TOOLS are programs that examine, and
attempt to draw conclusions about, the source of other
programs without running them. At Facebook, we
have been investing in advanced static analysis tools
that employ reasoning techniques similar to thos
from program verification. The tools we describe in
this article (Infer and Zoncolan) target issues related
to crashes and to the security of our services, they
perform sometimes complex rci\am\mgspanmng

used al Facebook for such vulnerabill-
ties. We will describe the human and
technical challenges encountered and
1 we have learned in developing

and deploying these analyses.
There has been a tremendous

forand esuls o, using echniques
similar
Seredat e ede of e sescurch Hern
ture, not only simple techniques that
are much easier to make scale. Our
goal is to complement other reports
oniadutl e anayiand formal
thods,"*"*+ and we hope that such
perspectives can provide input both 0
future research and to further indus-
trial use of static analysis
Next, e discuss the thre dimen-
sions that drive bugs that
er, people and actoncamissed
bugs. The remainder of the article de-
scribes our experience developingand
deploying the analyses, their impact,
and the techniques that underpin our
tools.

Context for Static
Ay s Pk

Bugs that Matter. We use staic analysisto
proentbuga ot would affct o prod
s, and we rely on our engineers'judg-
ment as el as data from production to

‘many procedures o files, and they are nto
engineering workflows in a way that attempts to bnug
value while minimizing friction.

These tools run on code modifications, participating
as bots during the code review process. Infer targets
our mobile apps as well as our backend C++ code,
codebases with 10s of millions of lines; it has seen
over 100 thousand reported issues fixed by developers
before code reaches production. Ioncolan targets the
100-million lines of Hack code, and is

key insights

= Aovance stasc anayi teciques
periorming deep reaso

oreacoscamsesiato
industil codsbases, for exampte, vith

= Stati anslyses should strike a batance
betuween mizsed bug:

Srcat revewn, s nporant ta tehng

must feel they benefit from
and enjoy using

BY CAITLIN SADOWSKI, EDWARD AFTANDILIAN, ALEX EAGLE,
LIAM MILLER-CUSHON, AND CIERA JASPAN

Lessons

from Building
Static Analysis
Tools at Google

SOFTWARE BUGS cosT developers and software
companics a great deal of time and money. For example,
in 2014, a bug in a widely used SSL implementation
(“goto fail”) caused it to accept invalid SSL certificates,
and a bug related to date formatting caused a large-scale
‘Twitter outage. Such bugs are often statically detectable
andare, in fact, obvious upon reading the code or
documentation yet still make it into production software.
Previous work has reported on experience applying
bug-detection tools to production software."
Although there are many such success stories for
developers using static analysis tools, there are also
reasons engineers do not always use static analysis
tools or ignore their warnings,*# including:

44444444

Not ntegated. The tool is not inc-
srted inothedevloper s workflowor
takes toolong to run;

Notactionable. The warnings are not
actionable;

Not trustworthy. Users do not trust
the results du

edbugis theoretially possible, but the
problem does not actually manifest in
praci

B key insights

* St sur hotpeon
he developer and lstn o thele tesdhack.

= Caretul developer workflow ntegration
s koy for stati anaysi too adopion.

= Stndc sy tots sl by
cromdsourcing anatyss devlopment

4

Summary

Summary: Program Analysis

® Each approach has its own strengths and weaknesses: e.g.,

Method

Automatic

Sound

Complete

Random Testing

Symbolic Execution

Verification

Static Analysis

	Program Analysis & Limitation
	Basic Principle
	Testing
	Verification
	Static Analysis
	Summary

