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Neural Network result

* GNN is the dominant graph machine learning method

X arXiv
’ https://arxiv.org» cs

Semi- Superwed ISS|f|cat|on with Graph Convolutional ..

TN Kipf M2 20163297|  }

Classification with Graph Convo

— Access Paper: View a PDF of the paper titled Semi-Supervised
utional Networks, by Thomas N. Kipf and 1 other ...
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Interpretable
Machine Learning

The value of why IS growmg fast

A correct predlctlon only partlally solves your u |
problem. The model must also explain why. f,
- Molnar [2022]
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Graph Classification

Graph data Neural Network result

GNN Explanation Explanations
Technique (e.g., key subgraph)

Two key limitations
* Additional (expensive) explanation cost is required

* [he explanations are not guaranteed to be correct



Graph data

i Programs
{ Descriptions

NOde DeSCI’iptiOl‘lS (SV = node x <$>?
! Edge Descriptions Jg ::= edge (x,x) <¢>’

| Target Symbols
) Intervals

| Real Numbers

! Variables

— Pl AXGL Classification result

& correct explanation

Graph Description Language (GDL) ¢_

P == target t P =D*xT
o) ::=5vl5E D =Dy WwDg
Dy = X X ®¢

D = XXX X P

T =Xw((XXxX)w{e}

¢ =(RW{-00}) X (RW {co})
R

X

t :=node x | edge (x,x) | graph
¢ ==[n",n’]

n :=0.20.7|6/[-8 ...

x ==x|ylz]...
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{( [([_00’0'5]898[_00’ 00]8 ) l: 08))

(({I=e. o0l J>{(1-00:5D) 2 0.7),

((=p); 1, 0.0)}

Our model
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n2: (2, [([—oo,oo]))—)(([—oo,O.S])])
n3: (1, ((-0.051))>{(I=c0, 1)) )
n4: (2, (b >((1-=05)] )

Classification &
Explanation
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{( 8[_m’0'5]>]_>[<[_m’m]8 ) l: 08))

(({I=e. o0l J>{(1-00:5D) 2 0.7),

((=p); 1, 0.0)}

Our model
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nOde y < [_ 0 ,0-5] > %\ <[—00,0-5]>j—>[([—00, oo]>J .’ Ta rget
target node X

, no 00, \

The GDL program is describing:

i “Nodes having a predecessor whose feature value is equal or less than 0.5” |
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| Such nodes will be |
| classiﬁed into label | |
| node x ([—o00,00]) | A\ N v
| nodey ([—00,0.5]) < 0005])]—>£([—oo 1)) | 1 0.8)< Score of the program is 0. 8
edge (),’ X) , S ———
target node X

The GDL program is describing:

i “Nodes having a predecessor whose feature value is equal or less than 0.5” |
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The GDL program is describing:

| | “Nodes having a predecessor whose feature value is equal or less than 0.5” |

Classn‘"catlon Explanatlon

N v

lllllllllllllllllllllllllllllllllllllllllllll

| (s, 1, 0.), nl: (L (=09 >(Cmsi))
n3: (I,

(—-00,0.51) | ({0, 1)) )
n3

Classification &

Graph data Our model .
Explanation
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The GDL program is describing:

“Nodes having a successor whose feature value is equal or less than 0.5

n2

n2: 2, ([=0, ]) |[—=>|{[—0,0.5])
D o (ghm e, p OEDED
OMT
n4 n3 n4: (2’ (([—00, 00])]—)[([—00,0.5])] )

Classification &
Explanation

Graph data Our model
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Classification  Explanation

N v

lllllllllllllllllllllllllllllllllllllllllllll
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up 0 EED-=)

n3: (I, ((t-0.051)->{(I=0, D)) )
n4: (2, (=00, 001} > (([- 0,05 )

| “Nodes having a feature” |

Model classifies nodes with a better scored one

17



| O = label | |
O = label 2 |
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Graph data
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* No additional explanation cost

* Explanations are guaranteed to be correct

{( 6[_00’0'5]8_)[([_00’ °°]>J ) l) 08);

(({I=e. o0l J>{(1-00:5D) 2 0.7),

((=p); 1, 0.0)}

Our model
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n2: (2’ 8[—00, oo]))—)[([—oo,O.S])j)
n3: (1, ((-0.051))>{(I=c0, 1)) )
n4: (2, (=00, 1) |>(([-0.0.51)) )

Classification &
Explanation



Classification Explanation

N v

{( (=os) (=) , 1,0.8), el: (I | (=050 >t D))
(-),2,07), | W (1, =ZD-=D)
- (2. (=0, o)) —>[(1=0,05)
(===, 1,0.0) 3: (2, (o) et
Graph data Our model Classification &
P (edge classification) Explanation
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, node x {[—00,0.5])
| nodey ([—c0,00]) |

| edge (x,)
target edge (x y)

j node x {[—00, 00])

node y ([—00,0.5])

i edge (X’ Y) !
| target edge (X, y)

(= =R
=), 2,0.7),
(E=D =D, 1,00)

nodex ([ 00, oo])
| node y ([—o0, o0])
| edge (x,y)

j target edge (X, Y)



Classification Explanation

N v

{( (=os) (=) , 1,0.8), el: (I | (=050 >t D))
(-),2,07), | W (1, =ZD-=D)
- (2. (=0, o)) —>[(1=0,05)
(===, 1,0.0) 3: (2, (o) et
Graph data Our model Classification &
P (edge classification) Explanation
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node x ([—00,0.5])
| nodey ([—o0,]) }

| edge (xy)
| target graph

(o)1), 1,0.8),
((E==)}>{E==0), 2,0.0)}

Our model
(graph classification)
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N b
» G: ('I’ [([—00,0.5])]—>[<[—00,°°]>] )

Classification &
Explanation
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Graph data

Quality of the programs
determines the accuracy

{( [([_00’0'5]89[([_00’00]8 ) l, OS))

(({I=e. o0l J>{(1-00:5D) 2 0.7),

((=p); 1, 0.0)}

Our model
(node classification)
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| Accuracy : 1.0 |

nl: (1, (<[—oo,0.5]—>[<[—oo,oo]>j)
2: 2, B {=))
n3: (1, ((-0.051))>{(I=c0, 1)) )
n4: (2, ({I=s 00D )—>{(-.05) )

Classification &
Explanation



n4 n3

Graph data

Quality of the programs
determines the accuracy

{( [r=00, 1) ((1-051] , 1, 0.8),

( 6[_00’0'5]))_)8[_00’ 00]83 2) 07) )

((=p); 1, 0.0)}

Our model
(node classification)
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| Accuracy : 0.0 |

nl: (2, (<[—oo,0.5]—>[<[—oo,oo]>j)
n2: (1, ({=s0,000) | —>(((-0.0.51) )
n3: (2, ((-.05)]->({-w, D) )
n4: (1, (s b)->{(-x05D) )

Classification &
Explanation



Training data

Learning Learning objective:
algorithm Learn high-quality GDL programs

nl n2
< {( (=05n)>{IE==) , 1, 0.8), nl: (1, (Co0s)->{(E b))
\

n2: (2, [{=c0.00l) |->{([-0.0.5)
» ([([—oo,oo])J—>(([—oo,O.5])J, 2, 07), ( [ ] [ ))

—> n3: (I, [([—m,0.5])]—>[([_00,00]8)
([([—00,00])), 1, OO)}
n4 n3

n4: (2, [([—oo,oo]>j—>[<[—oo,o.5]>] )

Classification &

Graph data Our model .
Explanation
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Training data | Top-down learning algorithm |

Bottom-up learning algorithm |

Learning Learning objective:
algorithm Learn high-quality GDL programs

nl n2
< {( (=05n)>{IE==) , 1, 0.8), nl: (1, (Co0s)->{(E b))
\

n2: (2, [{=c0.00l) |->{([-0.0.5)
» ([([—oo,oo])J—>(([—oo,O.5])J, 2, 07), ( [ ] [ ))

—> n3: (I, [([—m,0.5])]—>[([_00,00]8)
([([—00,00])), 1, OO)}
n4 n3

n4: (2, [([—oo,oo]>j—>[<[—oo,o.5]>] )

Classification &

Graph data Our model .
Explanation

20



GDL Program Learning Algorithm

Target node = nl
Training graph : .<— Q label |

Learning Objective

Generate a GDL program that includes the target node nl and
precisely describes the nodes belong to the label | ()
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Top-down Learning Algorithm

Target node = nl
Training graph : .<— Q label |

(1) Starts from the most general program U ——
([—00,00]) |§ Score:04 |<C —‘{ /|
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Top-down Learning Algorithm

Target node = nl

Training graph : <— O label |

| [inl,n3}] 'i\
I{n1,n3}| + I

| Score :0.66 | | Score :0.0



Top-down Learning Algorithm

Target node = nl

Training graph : .<— Q label |

(1) Starts from the most general program [ {[—o0, c0]) |< Score 04

(2) Enumerate possible specified programs and choose a better scored one.

([—00, 0]}

([~00,00]) | < Score:0.66 |

(3) Repeat (2) until no better program is enumerated

(4) Return the current program

(((=e0.co) J>{{Ee0ieoll] , label 1, 0.66)



Bottom-up Learning Algorithm

Target node =
Training graph : <— .

(1) Starts from the most specific program

R D T e

node v] ([| o | 0]) i
| node v2 ([0.0,0.0])
| node v3 ([0.0,0.0]) |
| node v4 ([0.0,0.0]) |
{ edge (v2,vl)
edge (v2, v3)

i edge (v4,v3)

| target node vl

< Score:0.5 |
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Bottom-up Learning Algorithm

Target node =
Training graph : <— .

(1) Starts from the most specific program

@) <« (7. 0) {0« ([T

(2) Enumerate possible generalized programs and choose an equal or better scored one
({00, 101) «—f(10.0, 0.01] —>{10.0,00)) 4 Score : 0.5 ﬂ

32

< Score:0.5 |




Bottom-up Learning Algorithm

Target node =
Training graph : .<— Q label |

(1) Starts from the most specific program
@)« (o-00) >0}« (110 107} Seore 105

(2) Enumerate possible generalized programs and choose an equal or better scored one

T () { e

(3) Repeat (2) until all the enumerated programs have lower score

(4) Return the current program ( {[=90,00])] < ([~ . ])|, label |, 0.66)



Target node = nl
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| Target node = n2
‘ ‘ {( -<_ [<[—°°’ °°]>] » 1,0.66),

Ay e @ 2000}

\l' Target node = n3
p ([E=20) < ((—=.1), 1,0.66) ¢

&

N

)
C P u ]

T Target node = n4

Training graph

Learned model
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Target node = nl

b v
2 y o 2 S = " . . e
AR ) PR VL, ORI St o
N -
‘

(B <« (i==.=1), 1,0.66),

T Target node = n2
(o)< (E5S0), 2,066), ¥
/P (EB D<=, 1,066),

A (o @206

\l' Target node = n3
p (BB« (=), 1,0.66)¢
_w((E=sD], 1,00) )

Learned model

T Target node = n4

Training graph

Default triple
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Accuracy Comparison

GCN GAT CHEBYNET JKNET GRAPHSAGE GIN DGCN | PL4XGL
MUTAG |80.0+0.0 89.0+2.2 86.0+4.1 68.0+7.5 78.0+44 91.0+54 N/A [100.0+0.0
BBBP 83.6+1.4 82.3+1.6 84.6+1.0 85.6+1.9 86.6+0.9 86.2+14 N/A | 86.8+0.0
BACE 78.4+2.8 52.4+3.3 78.9+14 79.9+1.9 79.8+0.8 80.9+0.4 N/A | 80.9+0.0
HIV 96.4+0.0 96.4+0.0 96.8+0.2 96.8+0.1 96.9+0.2 96.8+0.1 N/A N/A
BA-SHAPES [95.1+0.6 76.8+2.3 97.1+0.0 94.3+0.0 97.1+0.0 92.0+1.1 95.1+0.7 | 95.7+0.0
TREE-CYCLES|97.7+0.0 90.9+0.0 100.0+0.0 98.9+0.0 100.0+0.0 93.2+0.0 99.2+0.5 |{100.0+0.0
WISCONSIN [64.0+0.0 49.6+3.1 86.4+39 64.8+1.5 92.8+2.9 56.0+0.0 96.0+0.0| 88.0+0.0
TEXAS 67.7+5.3 50.0+0.0 87.7+2.1 68.8+4.3 86.6+2.6 50.0+0.0 86.6+2.6| 83.3+0.0
CORNELL |58.9+2.6 61.1+0.0 81.0+6.5 61.1+0.0 87.7+2.1 61.1+0.0 86.6+2.6 | 88.8+0.0
CoRra 85.6+0.3 86.4+1.8 86.5+5.2 84.9+3.5 86.3+3.2 86.7+0.0 83.2+5.9 | 80.0+ 0.0
CITESEER |75.2+0.0 74.3+0.7 79.1+0.9 73.7+4.2 75.9+2.3 75.2+0.0 71.3+6.0 | 63.8+ 0.0
PuBMED [82.8+1.1 84.7+1.2 88.7+1.0 83.2+0.4 88.0+0.4 86.1+0.6 85.1+0.6| 81.4+0.0

36




Molecule datasets (graph classification)

GCN GAT CHEBYNET JKNET GRAPHSAGE GIN DGCN | PL4XGL
~1/80.0£0.0 89.0+2.2 86.0+4.1 68.0+7.5 78.0+4.4 91.0+54 N/A [100.0+0.0)
183.6+1.4 82.3+1.6 84.6+1.0 85.6+1.9 86.6+0.9 86.2+1.4 N/A |86.8+0.0
1|78.4+2.8 52.443.3 78.9+14 79.9+1.9 79.840.8 80.9+0.4 N/A }80.9+0.0 ]

PL4XGL shows the best accuracy |
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Cost Comparison

 Our approach is fast if explanation cost is included

’5150- —— GNN 4 SUBGRAPHX ’E\MO' —— GNN + SUBGRAPHX
— PL4XGL ~— 120 PLAXGL
2 125- 1
O O 100 -
O 100- >
) T 380+
s 75 -
© © 60
- -
= 50 S 40-
- -
5 > J/l/ o 20
< | | | | | < -
0 50 100 150 200 0 25 50 75 100 125 150
# produced explanations # produced explanations

Training + classification + explanation cost




Explainability Comparison

Our approach provides correct & simple explanations

MUTAG BACE

Explanations are correct

051 —— SUBGRAPHX SUBGRAPHX
0.4-

0.4-
.' _,? .4?0.3-
O .2 0.2
Ll 0.2 LL

0.1- 0.1

PLAXGL PLAXGL
0.0 0.0 -
0.2 0.3 0.4 0.5 0.6 0.7 03 04 05 06 07 08 09
Sparsity | Sparsity

The explanations are simple
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GDL Program vs Subgraph

e GDL is a strictly more expressive than subgraph in graph pattern description

)= =  (e)-=(e)]

subgraph pattern GDL program

(e0)~(en) = {E)~(9 - (9~

D
GDL program subgraph patterns
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Automatic Feature
Generation for Data-Driven
Static Analysis

S
Q‘dges
Y 1 Improving GDL &

Synthesis Algorithms

Graph Description Language
P =6 target ¢

O u==0y | Ok

Node Descriptions Jy ::= node x <$>?
Edge Descriptions Of ::= edge (x,x) <$>?

Target Symbols t :=node x | edge (x,x) | graph

Programs
Descriptions

Intervals ¢ ==1[n’,n’]
Real Numbers n :=0.2|0.7|6|-8...
Variables x ==x|ylz]...

41
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xplainable Graph
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)
Improving GNN
Using GDL
OO
N GDL-based
Graph Data-mining

O

<c¥
GDL-based
GNN Explanation




