Union-Find (Disjoint Set)

Data Structures

Minseok Jeon
DGIST

November 2, 2025

Table of Contents

Introduction to Union-Find
Basic Implementation

Path Compression

Union by Rank

Union by Size

Complexity Analysis
Applications

Advanced Patterns

© ©® N o gk W N

Summary

Introduction to Union-Find

What is Union-Find?

Union-Find (Disjoint Set) is a data structure that maintains dynamic connectivity
across disjoint sets.

Key Concepts:
® Disjoint Set: Collection of non-overlapping sets
* Representative: Each set has a representative (root) element
e Parent Array: Each element points to its parent

® Forest: Multiple trees, each representing a set

Core Operations:
e find(x): Find the representative of x's set
® union(x, y): Merge the sets containing x and y

® connected(x, y): Check if x and y are in the same set

Visual Representation

Initial State (n=5):

@© O & & ©

Each element is its own set

After union(0,1) and union(2,3):

6 ©

Three disjoint sets: {0,1}, {2,3}, {4}

Applications

Union-Find has numerous practical applications:

Kruskal’s Algorithm: Finding minimum spanning trees
Network Connectivity: Checking if nodes can communicate
Percolation: Modeling fluid flow through materials

Image Segmentation: Grouping similar pixels

Social Networks: Finding friend circles

Cycle Detection: Detecting cycles in undirected graphs
Dynamic Equivalence: Tracking equivalent elements

e B

Number of Islands: Counting connected components in a grid

Key Advantage: Nearly O(1) operations with proper optimizations!

Basic Implementation

Naive Implementation

1 class UnionFind:

2 def __init__(self, n):

3 # Initially, each element is its own parent
4 self .parent = list(range(n))

5 self .count = n # Number of disjoint sets
6

7 def find(self, x):

8 """Find root of element x"""

9 while self.parent([x] != x:

10 x = self.parent [x]

11 return Xx

12

13 def union(self, x, y):

14 """Merge sets containing x and y"""

15 root_x = self.find(x)

16 root_y = self.find(y)

17

18 if root_x != root_y:

io self .parent [root_x] =iroctly

© W N o U A W N R

O
N = O

Example Usage

Create Union-Find with 5 elements
uf = UnionFind (5)

Union operations

uf .union (0, 1) # Merge {0} and {1}

uf .union (2, 3) # Merge {2} and {3}

uf .union (0, 2) # Merge {0,1} and {2,3}

Check connectivity

print (uf.connected (1, 3)) # True (both in {0,1,2,3})
print (uf.connected(l, 4)) # False (4 is separate)
print (uf.count) # 2 sets: {0,1,2,3}, {4}

Problem: This naive implementation can be slow!
® \Worst case: Linear chain of elements
® find operation: O(n) time
® union operation: O(n) time

Problem: Linear Chains

Worst Case Scenario:

y (1) (o) (3)

@\ \ij(@(\E/\

Linear chain: find(4) requires 4 steps

Consequences:
® Sequential unions can create long chains
® Each find operation walks entire chain
® Multiple finds: O(n) each time
e Overall complexity: O(n) per operation

Solution: We need optimizations!

Path Compression

Path Compression Idea

Optimization 1: Path Compression

Key Insight:
® During find, we walk from x to root
® \Why not make every node on path point directly to root?
® Future find operations become faster!

Before find(4):

Path Compression Effect

After find(4) with path compression:

a

All nodes now point directly to root!

Benefits:
® Tree becomes flatter
® Future find operations: O(1)

® Amortized complexity improves significantly

[NG, R NGV N}

W N o a0 o~ w N

Path Compression Implementation

Recursive Implementation:

def

find (self, x):
"""Find with path compression"""
if self.parent[x] != x:
Recursively find root and compress path
self .parent [x] = self.find(self.parent[x])
return self.parent [x]

Iterative Implementation:

def

find_iterative (self, x):
"""Tterative find with path compression"""
root = x
Find root
while self.parent[root] != root:
root = self.parent[root]

Compress path: point all nodesteiLeot

Path Halving Optimization

Path Halving: Point every other node to its grandparent (one-pass)

1/ def find_path_halving(self, x):

2 """Point every other node to its grandparent"""
3 while self.parent[x] != x:

4 self .parent [x] = self.parent[self.parent[x]]
5 x = self.parent [x]

6 return x

Advantages:
® Single pass (no recursion or two passes)
® Simpler and more efficient
e Still achieves excellent amortized complexity

® Popular in competitive programming

Union by Rank

Union by Rank Idea

Optimization 2: Union by Rank

Problem with Naive Union:
® Always attach first tree to second
® Can create unbalanced trees
® Results in long chains

Solution: Union by Rank
® Rank: Upper bound on tree height
Rule: Attach smaller rank tree under larger rank tree
Benefit: Keeps trees balanced
Trees grow logarithmically

Rank Update Rules:
® |f ranks differ: Attach smaller under larger, no rank change
o If ranks equal: Attach either way, increase winner's rank by 1

Union by Rank Example

Tree A (rank 1):

@ rank=1
®
Tree B (rank 2):

e rank=2

After union(0, 2): Attach A under B (smaller rank under larger)

rank=2 (unchanged)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

19

Union by Rank Implementation

class UnionFindRank:

def

def

def

__init__(self, n):

self .parent = list(range(n))
self.rank = [0] * n # Initial rank is O

self.count = n

find (self, x):
if self.parent[x] != x:

self .parent [x] = self.find(self.parent[x])

return self.parent [x]
union(self, x, y):
root_x = self.find(x)

root_y = self.find(y)

if root_x == root_y:
return False

Attach smaller rank tree

anden

B
L

arger rank tree

Union by Size

Union by Size

Alternative: Union by Size

Idea:
® Track number of elements in each tree
e Attach smaller tree under larger tree
® Also keeps trees balanced

Comparison with Union by Rank:
® Rank: Upper bound on height (less accurate with path compression)
e Size: Exact count of elements (always accurate)
® Both achieve O(a(n)) complexity with path compression
® Size is more intuitive and provides useful information

Additional Benefits of Size:
e Can query component size: get_size(x)
® Track largest component: max_size

Union by Size Implementation

1 class UnionFindSize:

2 def __init__(self, n):

3 self .parent = list(range(n))

4 self.size = [1] * n # Initial size is 1
5 self.count = n

6

7 def find(self, x):

8 if self.parent[x] != x:

9 self .parent [x] = self.find(self.parent[x])
10 return self.parent [x]

11

12 def union(self, x, y):

13 root_x = self.find(x)

14 root_y = self.find(y)

15

16 if root_x == root_y:

17 return False

18
19 # Attach smaller tree underrilabgersctree

Complexity Analysis

o o o~ W N R

The Ackermann Function

Ackermann Function A(m, n): Grows extremely fast

def A(m, n):
if m ==
return n + 1
if n ==
return A(m - 1, 1)
return A(m - 1, A(m, n - 1))

Growth Rate:

* A(Obn)=n+1
A(l,n)=n+2
A(2,n)=2n+3
A(3,n) =2"3_3
A(4, n) = 22°" (n+3 times) - 3

A(4, 2) is already larger than the number of atoms.in the universe!

Inverse Ackermann Function

Inverse Ackermann a(n): Grows extremely slowly

a(n) = minimum m such that A(m, m) > n

Values of a(n):

e a(l)=1

® a(3)=2

® a(7)=3

°* a(2047) =4

° Ot(22048 _ 1) =5

Practical Implication:
® For all practical n (even n = 1089), a(n) < 5
® [ffectively constant time!
® Forn=10% a(n) ~ 4

Complexity Comparison

Operation | Naive | Path Comp | Union Rank Both
Find O(n) O(log n)* O(log n) O(a(n))*
Union O(n) | Of(log n)* O(log n) O(a(n))*
Connected | O(n) O(log n)* O(log n) O(a(n))*
Space O(n) O(n) O(n) O(n)

* Amortized complexity

Key Insights:
® Path compression alone: O(log n) amortized
® Union by rank alone: O(log n) worst case
e Both together: O(a(n)) amortized ~ O(1)
® Space is always O(n)

Practical Performance

Example: 10° operations on 10° elements

Implementation Complexity | Operations
Naive O(n) 10'8
Path Compression O(log n) | ~ 3 x 100
Union by Rank O(log n) | ~ 3 x 10'9
Both Optimized O(a(n)) | ~4x10°

Speedup with both optimizations:
® vs Naive: ~ 250 million times faster!
® vs Single optimization: ~ 7.5 times faster

® Practically constant time per operation

Applications

1

© 0w N o U A~ W N

S e =
N o o B~ W N R O

0

Kruskal’s Minimum Spanning Tree

Problem: Find minimum spanning tree of weighted graph

def kruskal_mst(n, edges):
Find MST using Kruskal’s algorithm
n: number of vertices
edges: list of (weight, u, v)
nnn
Sort edges by weight
edges.sort ()

uf = UnionFind(n)
mst = []
total_weight = 0

for weight, u, v in edges:
If u and v not connected, add edge
if uf.union(u, v):
mst .append ((u, v, weight))
+0o0tal weiocht += weiocht

Network Connectivity

1 class NetworkConnectivity:
"""Check if network is fully connected"""

© W N o U A~ W N

e B o S R T T =
© o N o o b~ W N K O

def

def

def

def

def

__init__(self, n):
self .uf = UnionFind(n)

add_connection(self, u, v):

"""Add connection between nodes u and v"""

self .uf .union(u, v)

is_connected (self, u, v):

"""Check if u and v can communicate"""

return self.uf.connected(u,

is_fully_connected(self):

V)

"""Check if all nodes are connected"""

return self.uf.count == 1

count_components (self):
"""Count number of separate

ne twor

1 mnn
e
RS

Number of Islands

Problem: Count islands in 2D grid ('1" = land, '0" = water)

1 def num_islands(grid):

© 0w N o U A~ W N

S e =
N o o B~ W N R O

0

"""Count islands in 2D grid"""
if not grid:
return O

rows, cols = len(grid), len(grid[0])
uf = UnionFind(rows * cols)

def get_id(r, c):
return r * cols + c

Union adjacent land cells
for r in range(rows):
for ¢ in range(cols):
if grid[r][c] == ’1’:
Check right neighbor
if ¢ + 1 < cols and grid[r][c + 1] ==
1f 1nion(cet q (7 Vet oeatr a4 (r

717:

c +

1))

Cycle Detection

Problem: Detect cycle in undirected graph

1 def has_cycle(n,

© 0w N o U A~ W N

=
= o

12
13
14

edges) :

"""Check if undirected graph has cycle"""
uf = UnionFind(n)

for u, v in edges:

If u and v already connected,

uf .union(u, v)

return False

Example: Triangle graph

edges = [(0,

v,

if uf.connected(u, v):
return True
1, 2), (2, 01l
True

15 print (has_cycle (3, edges))

ANIKy 1+ wnrvkkcs

adding edge creates cycle

Friend Circles

Problem: Count number of friend circles (transitive friendships)

1/ def find_circle_num(is_connected):

© 0w N o U A~ W N

e e i
w N = O

14

Count number of friend circles
is_connected[i][j] = 1 if person i and j are friends
n = len(is_connected)
uf = UnionFind(n)
for i in range(n):
for j in range(i + 1, n):
if is_connected[i][j] == 1:
uf .union (i, j)
return uf.count
Example

is_connected

r1

1

01

[

Perceson O Ffriend&" 7994 H

ot 3

Redundant Connection

Problem: Find edge that creates cycle in tree

1 def find_redundant_connection (edges):

"""Find edge that creates cycle in tree"""
n = len(edges)

uf = UnionFind(n + 1)

for u, v in edges:
if not uf.union(u, v):
Union failed: u and v already connected
This edge creates a cycle

© 0w N o U A~ W N

return [u, v]

=
= o

return []

-
N

13

14| # Example: Tree edges with one extra

15 edges = [[1,2], [1,3], [2,3]]

16 print (find_redundant_connection(edges)) # [2,3]

Advanced Patterns

© W N o U A W N R

e e T < O =
®w N o o hA W N R O

=
©

Complete Optimized Implementation

class UnionFind:
"""Union-Find with all optimizations"""
def __init__(self, n):
self .parent = list(range(n))
self .rank = [0] * n

self.count = n

def find(self, x):
"""Find with path compression"""
if self.parent[x] != x:
self .parent [x] = self.find(self.parent[x])
return self.parent [x]

def union(self, x, y):
nmnn UnlOn by rank" nn
root_x = self.find(x)
root_y = self.find(y)

if root_x == root_y:

© W N o U A W N R

e e T < O =
®w N o o hA W N R O

=
©

Union-Find with Size Tracking

class UnionFindWithSize:

"""Track size of each component"""

def

def

init__(self, n):
self .parent = list(range(n))

self.size = [1] * n
self.count = n
self .max_size = 1 # Track largest component

union(self, x, y):
root_x = self.find(x)
root_y = self.find(y)

if root_x == root_y:
return False

Always attach smaller to larger

if self.sizel[root_x] < self.sizel[root_y]:
self .parent [root_x] = root_y
self.sizel[root_y] +=Uself . si

oot_x]

© W N o U A W N R

e e T < O =
®w N o o hA W N R O

=
©

Union-Find with Custom Data

class UnionFindCustom:

"""Union-Find with custom merge function"""

def

def

def

def

__init__(self, n, merge_fn=None):
self .parent = list(range(n))
self.rank = [0] * n

a)

self.data = [None] * n # Store custom data
self .merge_fn = merge_fn or (lambda a, b:
self.count = n

set_data(self, x, data):

"""Set data for element x"""

self .datal[x] = data

get_data(self, x):

"""Get data for component containing x
return self.datalself.find(x)]

union(self, x, y):
root_x = self.find(x)

© W N o U h W N R

e e T =
N o o~ W N B O

Example: Component Sum Tracking

Create Union-Find that tracks sum of each component

uf = UnionFindCustom (5,
Initialize with values
for i in range(5):

uf .set_data(i, i)

Merge components

uf .union (0, 1) # Component sum:
uf .union(2, 3) # Component sum:

print (uf.get_data(0)) #
print (uf.get_data(2)) #
print (uf.get_data(4)) #

uf .union (0, 2) # Merge:
print (uf.get_data(0)) #

merge_fn=lambda a,
o, 1, 2, 3, 4
0+1 =1
2+3 = 5
1 (sum of component
5 (sum of component
4 (sum of component
1+56 = 6
6 (sum of component

b:

a + b)

{0,1})
{2,3H)
{41)

{0,1,2,3})

Summary

Summary: Union-Find Structure

Core Data Structure:
® Parent array representing forest of trees
® Each tree is a disjoint set
® Root of tree is representative of set

Core Operations:
e find(x): Find representative of x's set
® union(x, y): Merge sets containing x and y
® connected(x, y): Check if x and y in same set

Key Optimizations:
e Path Compression: Flatten trees during find
® Union by Rank/Size: Keep trees balanced
® Together: Nearly O(1) operations!

Summary: Complexity

Configuration Time per Op Space
Naive O(n) O(n)
Path Compression only O(log n)* O(n)
Union by Rank only O(log n) O(n)
Both Optimizations O(a(n)* ~ O(1) | O(n)

* Amortized complexity

Practical Performance:

a(n) < 5 for all practical n
Essentially constant time operations
Linear space overhead

Extremely efficient in practice

Summary: Applications

Common Applications:

1.

© N ot N

Kruskal's MST algorithm
Network connectivity problems
Percolation theory

Image processing / segmentation
Dynamic graph connectivity
Cycle detection in graphs
Finding connected components
Social network analysis

When to Use Union-Find:

Need to group elements into disjoint sets
Frequent connectivity queries

Dynamic merging of groups

Offline processing of relationships

Key Takeaways

1. Union-Find efficiently maintains disjoint sets
2. Simple parent array representation

3. Two key optimizations:

® Path compression (flatten on find)
® Union by rank/size (balance trees)

Together achieve O(a(n)) ~ O(1) per operation
Extremely practical and widely applicable

Easy to implement, hard to beat performance
Essential for graph algorithms (Kruskal's)

®© N o ot

Versatile for connectivity problems

Remember: Always use both optimizations in practice!

Practice Problems

LeetCode Problems:

200.
547.
684.
685.
721.
990.

Number of Islands

Number of Provinces (Friend Circles)
Redundant Connection

Redundant Connection Il

Accounts Merge

Satisfiability of Equality Equations

1319. Number of Operations to Make Network Connected
1579. Remove Max Number of Edges to Keep Graph Traversable

Advanced:

® Minimum Spanning Tree problems

® Dynamic connectivity with deletions
® Persistent Union-Find

Further Learning

Topics to Explore:

® Persistent Union-Find (immutable/versioned)
Union-Find with rollback
Weighted Union-Find (for shortest paths)

Link-Cut Trees (more powerful, more complex)

Applications in competitive programming

Resources:
® "Introduction to Algorithms" (CLRS) - Chapter 21
® "Algorithms" by Sedgewick & Wayne - Chapter 1.5

® Tarjan's original papers on Union-Find analysis

Competitive programming books (Halim, etc.)

Thank Youl

Questions?

Union-Find: Simple, Elegant, Efficient

	Introduction to Union-Find
	Basic Implementation
	Path Compression
	Union by Rank
	Union by Size
	Complexity Analysis
	Applications
	Advanced Patterns
	Summary

