
Union-Find (Disjoint Set)
Data Structures

Minseok Jeon
DGIST

November 2, 2025

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 1/47



Table of Contents

1. Introduction to Union-Find

2. Basic Implementation

3. Path Compression

4. Union by Rank

5. Union by Size

6. Complexity Analysis

7. Applications

8. Advanced Patterns

9. Summary

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 2/47



Introduction to Union-Find



What is Union-Find?
Union-Find (Disjoint Set) is a data structure that maintains dynamic connectivity
across disjoint sets.

Key Concepts:
• Disjoint Set: Collection of non-overlapping sets
• Representative: Each set has a representative (root) element
• Parent Array: Each element points to its parent
• Forest: Multiple trees, each representing a set

Core Operations:
• find(x): Find the representative of x’s set
• union(x, y): Merge the sets containing x and y
• connected(x, y): Check if x and y are in the same set

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 4/47



Visual Representation

Initial State (n=5):

0 1 2 3 4

Each element is its own set

After union(0,1) and union(2,3):

0

1

2

3

4

Three disjoint sets: {0,1}, {2,3}, {4}

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 5/47



Applications

Union-Find has numerous practical applications:

1. Kruskal’s Algorithm: Finding minimum spanning trees

2. Network Connectivity: Checking if nodes can communicate

3. Percolation: Modeling fluid flow through materials

4. Image Segmentation: Grouping similar pixels

5. Social Networks: Finding friend circles

6. Cycle Detection: Detecting cycles in undirected graphs

7. Dynamic Equivalence: Tracking equivalent elements

8. Number of Islands: Counting connected components in a grid

Key Advantage: Nearly O(1) operations with proper optimizations!

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 6/47



Basic Implementation



Naive Implementation

1 class UnionFind:
2 def __init__(self , n):
3 # Initially , each element is its own parent
4 self.parent = list(range(n))
5 self.count = n # Number of disjoint sets
6

7 def find(self , x):
8 """ Find root of element x"""
9 while self.parent[x] != x:

10 x = self.parent[x]
11 return x
12

13 def union(self , x, y):
14 """ Merge sets containing x and y"""
15 root_x = self.find(x)
16 root_y = self.find(y)
17

18 if root_x != root_y:
19 self.parent[root_x] = root_y
20 self.count -= 1
21

22 def connected(self , x, y):
23 """ Check if x and y are in same set """
24 return self.find(x) == self.find(y)

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 8/47



Example Usage

1 # Create Union -Find with 5 elements
2 uf = UnionFind (5)
3

4 # Union operations
5 uf.union(0, 1) # Merge {0} and {1}
6 uf.union(2, 3) # Merge {2} and {3}
7 uf.union(0, 2) # Merge {0,1} and {2,3}
8

9 # Check connectivity
10 print(uf.connected (1, 3)) # True (both in {0,1,2,3})
11 print(uf.connected (1, 4)) # False (4 is separate)
12 print(uf.count) # 2 sets: {0,1,2,3}, {4}

Problem: This naive implementation can be slow!
• Worst case: Linear chain of elements
• find operation: O(n) time
• union operation: O(n) timeMinseok Jeon Union-Find (Disjoint Set) November 2, 2025 9/47



Problem: Linear Chains

Worst Case Scenario:

0 1 2 3 4

Linear chain: find(4) requires 4 steps

Consequences:
• Sequential unions can create long chains
• Each find operation walks entire chain
• Multiple finds: O(n) each time
• Overall complexity: O(n) per operation

Solution: We need optimizations!

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 10/47



Path Compression



Path Compression Idea
Optimization 1: Path Compression

Key Insight:
• During find, we walk from x to root
• Why not make every node on path point directly to root?
• Future find operations become faster!

Before find(4):

0

1

2

3

4Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 12/47



Path Compression Effect
After find(4) with path compression:

0

1 2 3 4

All nodes now point directly to root!

Benefits:
• Tree becomes flatter
• Future find operations: O(1)
• Amortized complexity improves significantly

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 13/47



Path Compression Implementation
Recursive Implementation:

1 def find(self , x):
2 """ Find with path compression """
3 if self.parent[x] != x:
4 # Recursively find root and compress path
5 self.parent[x] = self.find(self.parent[x])
6 return self.parent[x]

Iterative Implementation:
1 def find_iterative(self , x):
2 """ Iterative find with path compression """
3 root = x
4 # Find root
5 while self.parent[root] != root:
6 root = self.parent[root]
7

8 # Compress path: point all nodes to root
9 while x != root:

10 next_parent = self.parent[x]
11 self.parent[x] = root
12 x = next_parent
13

14 return root

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 14/47



Path Halving Optimization

Path Halving: Point every other node to its grandparent (one-pass)

1 def find_path_halving(self , x):
2 """ Point every other node to its grandparent """
3 while self.parent[x] != x:
4 self.parent[x] = self.parent[self.parent[x]]
5 x = self.parent[x]
6 return x

Advantages:
• Single pass (no recursion or two passes)
• Simpler and more efficient
• Still achieves excellent amortized complexity
• Popular in competitive programming

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 15/47



Union by Rank



Union by Rank Idea
Optimization 2: Union by Rank

Problem with Naive Union:
• Always attach first tree to second
• Can create unbalanced trees
• Results in long chains

Solution: Union by Rank
• Rank: Upper bound on tree height
• Rule: Attach smaller rank tree under larger rank tree
• Benefit: Keeps trees balanced
• Trees grow logarithmically

Rank Update Rules:
• If ranks differ: Attach smaller under larger, no rank change
• If ranks equal: Attach either way, increase winner’s rank by 1Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 17/47



Union by Rank Example
Tree A (rank 1):

0

1

rank=1

Tree B (rank 2):

2

3 4

rank=2

After union(0, 2): Attach A under B (smaller rank under larger)

2

3 40

1

rank=2 (unchanged)

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 18/47



Union by Rank Implementation

1 class UnionFindRank:
2 def __init__(self , n):
3 self.parent = list(range(n))
4 self.rank = [0] * n # Initial rank is 0
5 self.count = n
6

7 def find(self , x):
8 if self.parent[x] != x:
9 self.parent[x] = self.find(self.parent[x])

10 return self.parent[x]
11

12 def union(self , x, y):
13 root_x = self.find(x)
14 root_y = self.find(y)
15

16 if root_x == root_y:
17 return False
18

19 # Attach smaller rank tree under larger rank tree
20 if self.rank[root_x] < self.rank[root_y ]:
21 self.parent[root_x] = root_y
22 elif self.rank[root_x] > self.rank[root_y ]:
23 self.parent[root_y] = root_x
24 else:
25 # Equal rank: attach either way , increase rank
26 self.parent[root_y] = root_x
27 self.rank[root_x] += 1
28

29 self.count -= 1
30 return True

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 19/47



Union by Size



Union by Size
Alternative: Union by Size

Idea:
• Track number of elements in each tree
• Attach smaller tree under larger tree
• Also keeps trees balanced

Comparison with Union by Rank:
• Rank: Upper bound on height (less accurate with path compression)
• Size: Exact count of elements (always accurate)
• Both achieve O(α(n)) complexity with path compression
• Size is more intuitive and provides useful information

Additional Benefits of Size:
• Can query component size: get_size(x)
• Track largest component: max_size
• Useful for many applications

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 21/47



Union by Size Implementation

1 class UnionFindSize:
2 def __init__(self , n):
3 self.parent = list(range(n))
4 self.size = [1] * n # Initial size is 1
5 self.count = n
6

7 def find(self , x):
8 if self.parent[x] != x:
9 self.parent[x] = self.find(self.parent[x])

10 return self.parent[x]
11

12 def union(self , x, y):
13 root_x = self.find(x)
14 root_y = self.find(y)
15

16 if root_x == root_y:
17 return False
18

19 # Attach smaller tree under larger tree
20 if self.size[root_x] < self.size[root_y ]:
21 self.parent[root_x] = root_y
22 self.size[root_y] += self.size[root_x]
23 else:
24 self.parent[root_y] = root_x
25 self.size[root_x] += self.size[root_y]
26

27 self.count -= 1
28 return True
29

30 def get_size(self , x):
31 """ Get size of set containing x"""
32 return self.size[self.find(x)]

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 22/47



Complexity Analysis



The Ackermann Function
Ackermann Function A(m, n): Grows extremely fast

1 def A(m, n):
2 if m == 0:
3 return n + 1
4 if n == 0:
5 return A(m - 1, 1)
6 return A(m - 1, A(m, n - 1))

Growth Rate:
• A(0, n) = n + 1
• A(1, n) = n + 2
• A(2, n) = 2n + 3
• A(3, n) = 2n+3 - 3
• A(4, n) = 22

2...

(n+3 times) - 3

A(4, 2) is already larger than the number of atoms in the universe!Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 24/47



Inverse Ackermann Function
Inverse Ackermann α(n): Grows extremely slowly

α(n) = minimum m such that A(m, m) ≥ n

Values of α(n):
• α(1) = 1
• α(3) = 2
• α(7) = 3
• α(2047) = 4
• α(22048 - 1) = 5

Practical Implication:
• For all practical n (even n = 1080), α(n) ≤ 5
• Effectively constant time!
• For n = 109, α(n) ≈ 4

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 25/47



Complexity Comparison

Operation Naive Path Comp Union Rank Both
Find O(n) O(log n)* O(log n) O(α(n))*
Union O(n) O(log n)* O(log n) O(α(n))*
Connected O(n) O(log n)* O(log n) O(α(n))*
Space O(n) O(n) O(n) O(n)

* Amortized complexity

Key Insights:
• Path compression alone: O(log n) amortized
• Union by rank alone: O(log n) worst case
• Both together: O(α(n)) amortized ≈ O(1)
• Space is always O(n)

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 26/47



Practical Performance

Example: 109 operations on 109 elements

Implementation Complexity Operations
Naive O(n) 1018

Path Compression O(log n) ∼ 3× 1010
Union by Rank O(log n) ∼ 3× 1010
Both Optimized O(α(n)) ∼ 4× 109

Speedup with both optimizations:
• vs Naive: ∼ 250 million times faster!
• vs Single optimization: ∼ 7.5 times faster
• Practically constant time per operation

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 27/47



Applications



Kruskal’s Minimum Spanning Tree
Problem: Find minimum spanning tree of weighted graph

1 def kruskal_mst(n, edges):
2 """
3 Find MST using Kruskal ’s algorithm
4 n: number of vertices
5 edges: list of (weight , u, v)
6 """
7 # Sort edges by weight
8 edges.sort()
9

10 uf = UnionFind(n)
11 mst = []
12 total_weight = 0
13

14 for weight , u, v in edges:
15 # If u and v not connected , add edge
16 if uf.union(u, v):
17 mst.append ((u, v, weight))
18 total_weight += weight
19

20 # MST complete when n-1 edges added
21 if len(mst) == n - 1:
22 break
23

24 return mst , total_weight

Time Complexity: O(E log E) for sorting + O(E α(V)) for Union-Find

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 29/47



Network Connectivity

1 class NetworkConnectivity:
2 """ Check if network is fully connected """
3 def __init__(self , n):
4 self.uf = UnionFind(n)
5

6 def add_connection(self , u, v):
7 """ Add connection between nodes u and v"""
8 self.uf.union(u, v)
9

10 def is_connected(self , u, v):
11 """ Check if u and v can communicate """
12 return self.uf.connected(u, v)
13

14 def is_fully_connected(self):
15 """ Check if all nodes are connected """
16 return self.uf.count == 1
17

18 def count_components(self):
19 """ Count number of separate networks """
20 return self.uf.count
21

22 # Example usage
23 network = NetworkConnectivity (5)
24 network.add_connection (0, 1)
25 network.add_connection (2, 3)
26 print(network.count_components ()) # 3: {0,1}, {2,3}, {4}
27 print(network.is_fully_connected ()) # False

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 30/47



Number of Islands
Problem: Count islands in 2D grid (’1’ = land, ’0’ = water)

1 def num_islands(grid):
2 """ Count islands in 2D grid """
3 if not grid:
4 return 0
5

6 rows , cols = len(grid), len(grid [0])
7 uf = UnionFind(rows * cols)
8

9 def get_id(r, c):
10 return r * cols + c
11

12 # Union adjacent land cells
13 for r in range(rows):
14 for c in range(cols):
15 if grid[r][c] == ’1’:
16 # Check right neighbor
17 if c + 1 < cols and grid[r][c + 1] == ’1’:
18 uf.union(get_id(r, c), get_id(r, c + 1))
19

20 # Check down neighbor
21 if r + 1 < rows and grid[r + 1][c] == ’1’:
22 uf.union(get_id(r, c), get_id(r + 1, c))
23

24 # Count unique roots for land cells
25 islands = set()
26 for r in range(rows):
27 for c in range(cols):
28 if grid[r][c] == ’1’:
29 islands.add(uf.find(get_id(r, c)))
30

31 return len(islands)

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 31/47



Cycle Detection
Problem: Detect cycle in undirected graph

1 def has_cycle(n, edges):
2 """ Check if undirected graph has cycle """
3 uf = UnionFind(n)
4

5 for u, v in edges:
6 # If u and v already connected , adding edge creates cycle
7 if uf.connected(u, v):
8 return True
9 uf.union(u, v)

10

11 return False
12

13 # Example: Triangle graph
14 edges = [(0, 1), (1, 2), (2, 0)]
15 print(has_cycle (3, edges)) # True

Why it works:
• In a tree with n nodes: exactly n-1 edges, no cycles
• Adding edge between already-connected nodes creates cycle
• Union-Find efficiently detects this condition

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 32/47



Friend Circles
Problem: Count number of friend circles (transitive friendships)

1 def find_circle_num(is_connected):
2 """
3 Count number of friend circles
4 is_connected[i][j] = 1 if person i and j are friends
5 """
6 n = len(is_connected)
7 uf = UnionFind(n)
8

9 for i in range(n):
10 for j in range(i + 1, n):
11 if is_connected[i][j] == 1:
12 uf.union(i, j)
13

14 return uf.count
15

16 # Example
17 is_connected = [
18 [1, 1, 0], # Person 0 friends with 0,1
19 [1, 1, 0], # Person 1 friends with 0,1
20 [0, 0, 1] # Person 2 friends with only 2
21 ]
22 print(find_circle_num(is_connected)) # 2 circles: {0,1}, {2}

Key Insight: Friendship is transitive - if A-B and B-C are friends, then A and C are in
same circle

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 33/47



Redundant Connection
Problem: Find edge that creates cycle in tree

1 def find_redundant_connection(edges):
2 """ Find edge that creates cycle in tree """
3 n = len(edges)
4 uf = UnionFind(n + 1)
5

6 for u, v in edges:
7 if not uf.union(u, v):
8 # Union failed: u and v already connected
9 # This edge creates a cycle

10 return [u, v]
11

12 return []
13

14 # Example: Tree edges with one extra
15 edges = [[1,2], [1,3], [2 ,3]]
16 print(find_redundant_connection(edges)) # [2,3]

Explanation:
• Process edges in order
• First two edges: 1-2, 1-3 form valid tree
• Third edge 2-3: nodes already connected via 1, creates cycle

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 34/47



Advanced Patterns



Complete Optimized Implementation

1 class UnionFind:
2 """Union -Find with all optimizations """
3 def __init__(self , n):
4 self.parent = list(range(n))
5 self.rank = [0] * n
6 self.count = n
7

8 def find(self , x):
9 """ Find with path compression """

10 if self.parent[x] != x:
11 self.parent[x] = self.find(self.parent[x])
12 return self.parent[x]
13

14 def union(self , x, y):
15 """ Union by rank """
16 root_x = self.find(x)
17 root_y = self.find(y)
18

19 if root_x == root_y:
20 return False
21

22 if self.rank[root_x] < self.rank[root_y ]:
23 self.parent[root_x] = root_y
24 elif self.rank[root_x] > self.rank[root_y ]:
25 self.parent[root_y] = root_x
26 else:
27 self.parent[root_y] = root_x
28 self.rank[root_x] += 1
29

30 self.count -= 1
31 return True

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 36/47



Union-Find with Size Tracking

1 class UnionFindWithSize:
2 """ Track size of each component """
3 def __init__(self , n):
4 self.parent = list(range(n))
5 self.size = [1] * n
6 self.count = n
7 self.max_size = 1 # Track largest component
8

9 def union(self , x, y):
10 root_x = self.find(x)
11 root_y = self.find(y)
12

13 if root_x == root_y:
14 return False
15

16 # Always attach smaller to larger
17 if self.size[root_x] < self.size[root_y ]:
18 self.parent[root_x] = root_y
19 self.size[root_y] += self.size[root_x]
20 self.max_size = max(self.max_size , self.size[root_y ])
21 else:
22 self.parent[root_y] = root_x
23 self.size[root_x] += self.size[root_y]
24 self.max_size = max(self.max_size , self.size[root_x ])
25

26 self.count -= 1
27 return True
28

29 def get_size(self , x):
30 """ Get size of component containing x"""
31 return self.size[self.find(x)]

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 37/47



Union-Find with Custom Data

1 class UnionFindCustom:
2 """Union -Find with custom merge function """
3 def __init__(self , n, merge_fn=None):
4 self.parent = list(range(n))
5 self.rank = [0] * n
6 self.data = [None] * n # Store custom data
7 self.merge_fn = merge_fn or (lambda a, b: a)
8 self.count = n
9

10 def set_data(self , x, data):
11 """ Set data for element x"""
12 self.data[x] = data
13

14 def get_data(self , x):
15 """ Get data for component containing x"""
16 return self.data[self.find(x)]
17

18 def union(self , x, y):
19 root_x = self.find(x)
20 root_y = self.find(y)
21

22 if root_x == root_y:
23 return False
24

25 # Merge data using custom function
26 merged_data = self.merge_fn(self.data[root_x],
27 self.data[root_y ])
28 # ... attach trees and store merged_data ...

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 38/47



Example: Component Sum Tracking

1 # Create Union -Find that tracks sum of each component
2 uf = UnionFindCustom (5, merge_fn=lambda a, b: a + b)
3

4 # Initialize with values 0, 1, 2, 3, 4
5 for i in range (5):
6 uf.set_data(i, i)
7

8 # Merge components
9 uf.union(0, 1) # Component sum: 0+1 = 1

10 uf.union(2, 3) # Component sum: 2+3 = 5
11

12 print(uf.get_data (0)) # 1 (sum of component {0,1})
13 print(uf.get_data (2)) # 5 (sum of component {2,3})
14 print(uf.get_data (4)) # 4 (sum of component {4})
15

16 uf.union(0, 2) # Merge: 1+5 = 6
17 print(uf.get_data (0)) # 6 (sum of component {0,1,2,3})

Use Cases:
• Track minimum/maximum in component
• Count properties across component
• Accumulate weights or costs

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 39/47



Summary



Summary: Union-Find Structure
Core Data Structure:
• Parent array representing forest of trees
• Each tree is a disjoint set
• Root of tree is representative of set

Core Operations:
• find(x): Find representative of x’s set
• union(x, y): Merge sets containing x and y
• connected(x, y): Check if x and y in same set

Key Optimizations:
• Path Compression: Flatten trees during find
• Union by Rank/Size: Keep trees balanced
• Together: Nearly O(1) operations!

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 41/47



Summary: Complexity

Configuration Time per Op Space
Naive O(n) O(n)
Path Compression only O(log n)* O(n)
Union by Rank only O(log n) O(n)
Both Optimizations O(α(n))* ≈ O(1) O(n)

* Amortized complexity

Practical Performance:
• α(n) ≤ 5 for all practical n
• Essentially constant time operations
• Linear space overhead
• Extremely efficient in practice

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 42/47



Summary: Applications
Common Applications:

1. Kruskal’s MST algorithm
2. Network connectivity problems
3. Percolation theory
4. Image processing / segmentation
5. Dynamic graph connectivity
6. Cycle detection in graphs
7. Finding connected components
8. Social network analysis

When to Use Union-Find:
• Need to group elements into disjoint sets
• Frequent connectivity queries
• Dynamic merging of groups
• Offline processing of relationships

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 43/47



Key Takeaways

1. Union-Find efficiently maintains disjoint sets

2. Simple parent array representation
3. Two key optimizations:

• Path compression (flatten on find)
• Union by rank/size (balance trees)

4. Together achieve O(α(n)) ≈ O(1) per operation

5. Extremely practical and widely applicable

6. Easy to implement, hard to beat performance

7. Essential for graph algorithms (Kruskal’s)

8. Versatile for connectivity problems

Remember: Always use both optimizations in practice!

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 44/47



Practice Problems
LeetCode Problems:
• 200. Number of Islands
• 547. Number of Provinces (Friend Circles)
• 684. Redundant Connection
• 685. Redundant Connection II
• 721. Accounts Merge
• 990. Satisfiability of Equality Equations
• 1319. Number of Operations to Make Network Connected
• 1579. Remove Max Number of Edges to Keep Graph Traversable

Advanced:
• Minimum Spanning Tree problems
• Dynamic connectivity with deletions
• Persistent Union-Find

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 45/47



Further Learning

Topics to Explore:
• Persistent Union-Find (immutable/versioned)
• Union-Find with rollback
• Weighted Union-Find (for shortest paths)
• Link-Cut Trees (more powerful, more complex)
• Applications in competitive programming

Resources:
• "Introduction to Algorithms" (CLRS) - Chapter 21
• "Algorithms" by Sedgewick & Wayne - Chapter 1.5
• Tarjan’s original papers on Union-Find analysis
• Competitive programming books (Halim, etc.)

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 46/47



Thank You!

Questions?

Union-Find: Simple, Elegant, Efficient

Minseok Jeon Union-Find (Disjoint Set) November 2, 2025 47/47


	Introduction to Union-Find
	Basic Implementation
	Path Compression
	Union by Rank
	Union by Size
	Complexity Analysis
	Applications
	Advanced Patterns
	Summary

