
Tries (Prefix Trees)
Efficient Prefix-Based Data Structures

Minseok Jeon
DGIST

November 2, 2025

Minseok Jeon Tries (Prefix Trees) November 2, 2025 1/53



Outline

1. Introduction to Tries

2. Node Structure and Implementation

3. Core Operations

4. Prefix Queries and Autocomplete

5. Memory Optimization

6. Enhanced Tries with Metadata

7. Real-World Applications

8. Complexity Analysis

9. Summary

Minseok Jeon Tries (Prefix Trees) November 2, 2025 2/53



Introduction to Tries



What is a Trie?
Definition: A tree structure for efficient prefix-based queries.

Key Characteristics:
• Each node represents a character
• Path from root to node forms a string/prefix
• Children: Map from character to child node
• End marker: Flag indicating complete word

Also Known As:
• Prefix Tree
• Digital Tree
• Radix Tree (compressed variant)

Origin: Name comes from "retrieval"
Minseok Jeon Tries (Prefix Trees) November 2, 2025 4/53



Visual Example
Words: ["cat", "car", "card", "dog"]

root

c

a

t r

d

d

o

g

empty

Green nodes = end of word
Paths:
c-a-t = "cat"
c-a-r = "car"
c-a-r-d = "card"
d-o-g = "dog"

Minseok Jeon Tries (Prefix Trees) November 2, 2025 5/53



Why Use Tries?
Advantages:
• Fast prefix queries: O(m) where m = prefix length
• Shared prefixes: Memory efficient for common prefixes
• Predictable performance: No hash collisions
• Alphabetical ordering: Natural lexicographic order

Comparison with Hash Table:

Operation Hash Table Trie
Search O(1) avg O(m)
Insert O(1) avg O(m)
Prefix search O(n) O(m + k)
Ordered traversal O(n log n) O(n)
Space O(n) O(ALPHABET * n * m)

m = word length, k = results, n = number of words
Minseok Jeon Tries (Prefix Trees) November 2, 2025 6/53



Common Applications

Real-World Uses:
• Autocomplete: Search engines, text editors
• Spell checking: Word suggestions and corrections
• IP routing: Longest prefix matching in routers
• Dictionary: Fast word lookup and validation
• Phone directory: T9 predictive text
• DNA sequencing: Pattern matching in genomics

Minseok Jeon Tries (Prefix Trees) November 2, 2025 7/53



Node Structure and Implementation



Basic Trie Node Structure

1 class TrieNode:
2 def __init__(self):
3 self.children = {} # Map: char -> TrieNode
4 self.is_end_of_word = False
5

6 class Trie:
7 def __init__(self):
8 self.root = TrieNode ()

Node Components:
• children: Dictionary mapping characters to child nodes
• is_end_of_word: Boolean flag marking complete words

Space per node: ∼100+ bytes (dict overhead + bool)

Minseok Jeon Tries (Prefix Trees) November 2, 2025 9/53



Array-Based Implementation
For fixed alphabets (e.g., lowercase a-z):

1 class TrieNodeArray:
2 def __init__(self):
3 self.children = [None] * 26 # For lowercase a-z
4 self.is_end_of_word = False
5

6 def get_index(self , char):
7 return ord(char) - ord(’a’)
8

9 def get_child(self , char):
10 index = self.get_index(char)
11 return self.children[index]
12

13 def set_child(self , char , node):
14 index = self.get_index(char)
15 self.children[index] = node

Trade-offs:
• Pro: Faster access O(1), less memory overhead per node
• Con: Wastes space if sparse (26 pointers even if only 1-2 used)

Minseok Jeon Tries (Prefix Trees) November 2, 2025 10/53



Node with Parent Pointers
Enhanced structure for traversal:

1 class TrieNodeWithParent:
2 def __init__(self , char=’’, parent=None):
3 self.char = char
4 self.parent = parent
5 self.children = {}
6 self.is_end_of_word = False
7

8 def get_word(self):
9 """ Reconstruct word from this node """

10 word = []
11 node = self
12 while node.parent is not None:
13 word.append(node.char)
14 node = node.parent
15 return ’’.join(reversed(word))

Use cases:
• Word reconstruction without storing full strings
• Backtracking during searches
• Debugging and visualization

Minseok Jeon Tries (Prefix Trees) November 2, 2025 11/53



Core Operations



Insert Operation

1 def insert(self , word):
2 """ Insert word into trie - O(m) where m = word length """
3 node = self.root
4

5 for char in word:
6 if char not in node.children:
7 node.children[char] = TrieNode ()
8 node = node.children[char]
9

10 node.is_end_of_word = True

Algorithm:
1. Start at root
2. For each character in word:

• If child exists, move to it
• Otherwise, create new child node

3. Mark final node as end of word
Time Complexity: O(m) where m = length of word
Space Complexity: O(m) worst case (all new nodes)

Minseok Jeon Tries (Prefix Trees) November 2, 2025 13/53



Insert Visualization

Inserting "car" into trie with "cat":

Before:

root

c

a

t

Only "cat" exists

After insert("car"):

root

c

a

t r

Both "cat" and "car" exist

Key insight: Common prefix "ca" is shared between words

Minseok Jeon Tries (Prefix Trees) November 2, 2025 14/53



Search Operation

1 def search(self , word):
2 """ Search for exact word - O(m)"""
3 node = self.root
4

5 for char in word:
6 if char not in node.children:
7 return False
8 node = node.children[char]
9

10 return node.is_end_of_word

Examples:
• search("cat") → True (complete word)
• search("ca") → False (prefix but not word)
• search("cats") → False (doesn’t exist)

Important: Must check is_end_of_word flag!
Just reaching a node doesn’t mean the word exists.

Minseok Jeon Tries (Prefix Trees) November 2, 2025 15/53



Prefix Search (Starts With)

1 def starts_with(self , prefix):
2 """ Check if any word starts with prefix - O(m)"""
3 node = self.root
4

5 for char in prefix:
6 if char not in node.children:
7 return False
8 node = node.children[char]
9

10 return True # No need to check is_end_of_word

Difference from search:
• Don’t check is_end_of_word
• Just verify path exists

Examples with trie containing ["cat", "car", "card"]:
• starts_with("ca") → True
• starts_with("car") → True
• starts_with("dog") → False

Minseok Jeon Tries (Prefix Trees) November 2, 2025 16/53



Delete Operation

1 def delete(self , word):
2 """ Delete word from trie - O(m)"""
3 def _delete(node , word , index):
4 if index == len(word):
5 # Reached end of word
6 if not node.is_end_of_word:
7 return False # Word doesn ’t exist
8

9 node.is_end_of_word = False
10

11 # Return True if node has no children (can be deleted)
12 return len(node.children) == 0
13

14 char = word[index]
15 if char not in node.children:
16 return False # Word doesn ’t exist
17

18 child = node.children[char]
19 should_delete_child = _delete(child , word , index + 1)
20

21 if should_delete_child:
22 del node.children[char]
23 # Return True if current node can be deleted
24 return len(node.children) == 0 and not node.is_end_of_word
25

26 return False
27

28 _delete(self.root , word , 0)

Minseok Jeon Tries (Prefix Trees) November 2, 2025 17/53



Delete Visualization
Deleting "car" from trie with ["cat", "car", "card"]:

Before delete("car"):

root

c

a

t r

d

After delete("car"):

root

c

a

t r

d

Key points:
• Node ’r’ is NOT deleted (needed by "card")
• Only the is_end_of_word flag on ’r’ is set to false
• Nodes deleted only if they have no children and aren’t word endings

Minseok Jeon Tries (Prefix Trees) November 2, 2025 18/53



Prefix Queries and Autocomplete



Find All Words with Prefix

1 def find_words_with_prefix(self , prefix):
2 """ Return all words starting with prefix """
3 node = self.root
4

5 # Navigate to prefix node
6 for char in prefix:
7 if char not in node.children:
8 return []
9 node = node.children[char]

10

11 # Collect all words from this node
12 words = []
13 self._collect_words(node , prefix , words)
14 return words
15

16 def _collect_words(self , node , current_word , words):
17 """DFS to collect all words from node """
18 if node.is_end_of_word:
19 words.append(current_word)
20

21 for char , child in node.children.items():
22 self._collect_words(child , current_word + char , words)

Time Complexity: O(p + n) where p = prefix length, n = matching words

Minseok Jeon Tries (Prefix Trees) November 2, 2025 20/53



Prefix Query Example
Trie with words: ["cat", "car", "card", "care", "dog"]

root

c

a

t r

d e

d

o

g

find_words_with_prefix("car") → ["car", "card", "care"]
Yellow shows path to prefix, then DFS collects green endings

Minseok Jeon Tries (Prefix Trees) November 2, 2025 21/53



Autocomplete with Limit

1 def autocomplete(self , prefix , max_results =5):
2 """ Return top N autocomplete suggestions """
3 node = self.root
4

5 # Navigate to prefix
6 for char in prefix:
7 if char not in node.children:
8 return []
9 node = node.children[char]

10

11 # BFS to find closest words
12 from collections import deque
13 results = []
14 queue = deque ([(node , prefix)])
15

16 while queue and len(results) < max_results:
17 current , word = queue.popleft ()
18

19 if current.is_end_of_word:
20 results.append(word)
21

22 for char , child in sorted(current.children.items()):
23 queue.append ((child , word + char))
24

25 return results

Minseok Jeon Tries (Prefix Trees) November 2, 2025 22/53



Longest Common Prefix

1 def longest_common_prefix(self , words):
2 """ Find longest common prefix of all words """
3 if not words:
4 return ""
5

6 # Insert all words
7 for word in words:
8 self.insert(word)
9

10 # Traverse until branching or end
11 node = self.root
12 prefix = ""
13

14 while len(node.children) == 1 and not node.is_end_of_word:
15 char = next(iter(node.children))
16 prefix += char
17 node = node.children[char]
18

19 return prefix

Example:
• Input: ["flower", "flow", "flight"]
• Output: "fl"

Minseok Jeon Tries (Prefix Trees) November 2, 2025 23/53



Wildcard Search

1 def search_with_wildcard(self , pattern):
2 """ Search with ’.’ as wildcard for any character """
3 def dfs(node , index):
4 if index == len(pattern):
5 return node.is_end_of_word
6

7 char = pattern[index]
8

9 if char == ’.’:
10 # Try all children
11 for child in node.children.values ():
12 if dfs(child , index + 1):
13 return True
14 return False
15 else:
16 if char not in node.children:
17 return False
18 return dfs(node.children[char], index + 1)
19

20 return dfs(self.root , 0)

Examples:
• search_with_wildcard("c.r") matches "car"
• search_with_wildcard("c..") matches "cat", "car"

Minseok Jeon Tries (Prefix Trees) November 2, 2025 24/53



Memory Optimization



Memory Usage Analysis
Standard Trie Space Complexity:

For words ["cat", "car", "card"]:
• Nodes: root + c + a + t + r + d = 6 nodes
• Each node: dict (hash table) + bool ≈ 100+ bytes
• Total: ∼600 bytes for 3 words

Worst Case: No shared prefixes
Words: ["abc", "def", "ghi"]
• Nodes: 1 + 3*3 = 10 nodes
• Space: O(ALPHABET_SIZE × N × M)
• N = number of words, M = average length

Best Case: Many shared prefixes
Words: ["test", "testing", "tester"]
• Much better space efficiency due to sharing

Minseok Jeon Tries (Prefix Trees) November 2, 2025 26/53



Radix Tree (Compressed Trie)
Idea: Merge chains of single-child nodes

Standard Trie:

root

t

e

s

t

i

n

g

9 nodes

Radix Tree:

root

test

ing

3 nodes (67% reduction)

Trade-offs:
• Pro: O(N) nodes where N = number of words
• Con: More complex implementation (node splitting)

Minseok Jeon Tries (Prefix Trees) November 2, 2025 27/53



Radix Node Structure

1 class RadixNode:
2 def __init__(self , label=""):
3 self.label = label # String , not single char!
4 self.children = {}
5 self.is_end_of_word = False
6

7 class RadixTree:
8 def __init__(self):
9 self.root = RadixNode ()

Key Difference:
• Standard Trie: Each node stores one character
• Radix Tree: Each node stores a string (edge label)

Applications:
• Git uses radix trees internally
• Linux kernel routing tables
• Memory-efficient string storage

Minseok Jeon Tries (Prefix Trees) November 2, 2025 28/53



Space Optimization Techniques
1. Array-based for small alphabets
• Use fixed-size array instead of dictionary
• Trade: wastes space if sparse, but faster access

2. Bit packing for flags
• Pack multiple boolean flags into single integer
• Saves memory when nodes have many flags

3. Lazy initialization
• Don’t create children dict until needed
• self.children = None initially

4. Use radix tree for long common prefixes
• Significantly reduces node count
• Best for datasets with long shared prefixes

Minseok Jeon Tries (Prefix Trees) November 2, 2025 29/53



Enhanced Tries with Metadata



Frequency Trie
Store word frequencies for autocomplete ranking:

1 class FrequencyTrieNode:
2 def __init__(self):
3 self.children = {}
4 self.count = 0 # Number of times word inserted
5

6 class FrequencyTrie:
7 def __init__(self):
8 self.root = FrequencyTrieNode ()
9

10 def insert(self , word):
11 node = self.root
12 for char in word:
13 if char not in node.children:
14 node.children[char] = FrequencyTrieNode ()
15 node = node.children[char]
16 node.count += 1
17

18 def get_frequency(self , word):
19 node = self.root
20 for char in word:
21 if char not in node.children:
22 return 0
23 node = node.children[char]
24 return node.count

Minseok Jeon Tries (Prefix Trees) November 2, 2025 31/53



Top-K Autocomplete with Frequency

1 def top_k_with_prefix(self , prefix , k):
2 """Get top k most frequent words with prefix """
3 node = self.root
4

5 # Navigate to prefix
6 for char in prefix:
7 if char not in node.children:
8 return []
9 node = node.children[char]

10

11 # Collect all words with frequencies
12 words = []
13 self._collect_with_freq(node , prefix , words)
14

15 # Sort by frequency and return top k
16 words.sort(key=lambda x: x[1], reverse=True)
17 return [word for word , freq in words [:k]]
18

19 def _collect_with_freq(self , node , word , words):
20 if node.count > 0:
21 words.append ((word , node.count))
22

23 for char , child in node.children.items():
24 self._collect_with_freq(child , word + char , words)

Minseok Jeon Tries (Prefix Trees) November 2, 2025 32/53



Indexed Trie for Search Engines

1 class IndexedTrieNode:
2 def __init__(self):
3 self.children = {}
4 self.doc_ids = [] # List of document IDs
5

6 class SearchEngine:
7 def __init__(self):
8 self.trie = IndexedTrieNode ()
9 self.documents = {}

10

11 def add_document(self , doc_id , text):
12 """ Index document for search """
13 self.documents[doc_id] = text
14 words = text.lower().split()
15

16 for word in words:
17 node = self.trie
18 for char in word:
19 if char not in node.children:
20 node.children[char] = IndexedTrieNode ()
21 node = node.children[char]
22

23 if doc_id not in node.doc_ids:
24 node.doc_ids.append(doc_id)

Minseok Jeon Tries (Prefix Trees) November 2, 2025 33/53



Suffix Trie for Pattern Matching

1 class SuffixTrie:
2 """ Store all suffixes of a string for fast pattern matching """
3 def __init__(self , text):
4 self.root = TrieNode ()
5 self.text = text
6

7 # Insert all suffixes
8 for i in range(len(text)):
9 self._insert_suffix(text[i:], i)

10

11 def _insert_suffix(self , suffix , start_index):
12 node = self.root
13 for char in suffix:
14 if char not in node.children:
15 node.children[char] = TrieNode ()
16 node = node.children[char]
17 node.start_index = start_index
18

19 def find_pattern(self , pattern):
20 """ Find all occurrences of pattern in O(m + k)"""
21 node = self.root
22 for char in pattern:
23 if char not in node.children:
24 return []
25 node = node.children[char]
26

27 # Collect all start indices
28 indices = []
29 self._collect_indices(node , indices)
30 return indices

Minseok Jeon Tries (Prefix Trees) November 2, 2025 34/53



Real-World Applications



Spell Checker

1 class SpellChecker:
2 def __init__(self , dictionary):
3 self.trie = Trie()
4 for word in dictionary:
5 self.trie.insert(word.lower ())
6

7 def is_correct(self , word):
8 """ Check if word is spelled correctly """
9 return self.trie.search(word.lower ())

10

11 def suggest_corrections(self , word , max_distance =2):
12 """ Suggest corrections using edit distance """
13 suggestions = []
14

15 def dfs(node , current , remaining_edits):
16 if remaining_edits < 0:
17 return
18

19 if node.is_end_of_word and current:
20 suggestions.append(current)
21

22 # Try all possible edits ...
23 # (substitution , insertion , deletion)
24

25 dfs(self.trie.root , "", max_distance)
26 return suggestions [:5]

Minseok Jeon Tries (Prefix Trees) November 2, 2025 36/53



Spell Checker Example

Dictionary: ["cat", "car", "card", "care", "careful"]

Operations:
• is_correct("car") → True
• is_correct("cra") → False
• suggest_corrections("cra") → ["car", "care", "card"]

Edit Distance Techniques:
• Substitution: "cra" → "car" (distance = 1)
• Insertion: "cra" → "care" (distance = 1)
• Deletion: "crat" → "cat" (distance = 1)

Complexity: O(m × ALPHABET_SIZEd) where d = max distance

Minseok Jeon Tries (Prefix Trees) November 2, 2025 37/53



IP Routing Table

1 class IPRoutingTable:
2 """ Longest prefix matching for IP routing """
3 def __init__(self):
4 self.root = TrieNode ()
5

6 def add_route(self , ip_prefix , next_hop):
7 """ Add routing entry (e.g., "192.168.0.0/16") """
8 binary = self._ip_to_binary(ip_prefix)
9

10 node = self.root
11 for bit in binary:
12 if bit not in node.children:
13 node.children[bit] = TrieNode ()
14 node = node.children[bit]
15

16 node.next_hop = next_hop
17 node.is_end_of_word = True
18

19 def lookup(self , ip_address):
20 """ Find longest matching prefix """
21 binary = self._ip_to_binary(ip_address)
22 node = self.root
23 last_match = None
24

25 for bit in binary:
26 if bit not in node.children:
27 break
28 node = node.children[bit]
29 if node.is_end_of_word:
30 last_match = node.next_hop
31

32 return last_match

Minseok Jeon Tries (Prefix Trees) November 2, 2025 38/53



IP Routing Example
Routing table entries:
• 192.168.0.0/16 → Router A
• 192.168.1.0/24 → Router B
• 192.168.1.128/25 → Router C

Lookups (longest prefix match):
• 192.168.1.200 → Router B (/24 match)
• 192.168.1.150 → Router C (/25 match, longest!)
• 192.168.2.1 → Router A (/16 match)

Why Trie?
• Fast O(32) lookup for IPv4 (32 bits)
• Naturally finds longest prefix
• Efficient for large routing tables

Minseok Jeon Tries (Prefix Trees) November 2, 2025 39/53



Autocomplete System

1 class AutocompleteSystem:
2 """Google -style autocomplete with frequency ranking """
3 def __init__(self):
4 self.trie = FrequencyTrie ()
5 self.current_prefix = ""
6

7 def input(self , char):
8 """ Process one character input """
9 if char == ’#’:

10 # End of sentence , save it
11 self.trie.insert(self.current_prefix)
12 self.current_prefix = ""
13 return []
14

15 self.current_prefix += char
16

17 # Return top 3 suggestions
18 return self.trie.top_k_with_prefix(self.current_prefix , 3)

Usage:
• User types ’c’ → Show ["cat", "car", "card"]
• User types ’a’ → Show ["cat", "car", "card"]
• User types ’r’ → Show ["car", "card", "care"]
• User types ’#’ → Save "car", increment frequency

Minseok Jeon Tries (Prefix Trees) November 2, 2025 40/53



Word Break Problem

1 def word_break(s, word_dict):
2 """ Check if string can be segmented into dictionary words
3 Example: "leetcode" with ["leet", "code"] -> True
4 """
5 trie = Trie()
6 for word in word_dict:
7 trie.insert(word)
8

9 n = len(s)
10 dp = [False] * (n + 1)
11 dp[0] = True # Empty string
12

13 for i in range(1, n + 1):
14 node = trie.root
15 for j in range(i - 1, -1, -1):
16 if not dp[j]:
17 continue
18

19 char = s[j]
20 if char not in node.children:
21 break
22

23 node = node.children[char]
24

25 if node.is_end_of_word:
26 dp[i] = True
27 break
28

29 return dp[n]

Minseok Jeon Tries (Prefix Trees) November 2, 2025 41/53



File System Path Matching

1 class FileSystemTrie:
2 """ Efficient file path matching with wildcards """
3 def __init__(self):
4 self.root = TrieNode ()
5

6 def add_path(self , path):
7 """ Add file path like /home/user/file.txt """
8 parts = path.strip(’/’).split(’/’)
9 node = self.root

10

11 for part in parts:
12 if part not in node.children:
13 node.children[part] = TrieNode ()
14 node = node.children[part]
15

16 node.is_end_of_word = True
17

18 def find_files(self , pattern):
19 """ Find files matching pattern (e.g., /home /*/ file.txt)"""
20 parts = pattern.strip(’/’).split(’/’)
21 results = []
22

23 def dfs(node , index , current_path):
24 if index == len(parts):
25 if node.is_end_of_word:
26 results.append(current_path)
27 return
28

29 if parts[index] == ’*’:
30 # Wildcard matches any directory
31 for name , child in node.children.items():
32 dfs(child , index + 1, current_path + ’/’ + name)
33 else:
34 if parts[index] in node.children:
35 dfs(node.children[parts[index]], index + 1,
36 current_path + ’/’ + parts[index ])
37

38 dfs(self.root , 0, "")
39 return results

Minseok Jeon Tries (Prefix Trees) November 2, 2025 42/53



Complexity Analysis



Time Complexity Summary

Operation Time Complexity Notes
Insert O(m) m = word length
Search O(m) Exact word search
Delete O(m) Recursive cleanup
Prefix search O(p) p = prefix length
Find all with prefix O(p + n) n = matching words
Autocomplete (top k) O(p + k) k = results returned
Wildcard search O(m × bw ) w = wildcards, b = branching

Key Insight: Performance depends on word/prefix length, NOT total words!
This makes tries excellent for large dictionaries.

Minseok Jeon Tries (Prefix Trees) November 2, 2025 44/53



Space Complexity Summary
Standard Trie:
• Best case: O(m) where m = longest word (all words share prefix)
• Average case: O(ALPHABET_SIZE × n × m)
• Worst case: O(ALPHABET_SIZE × n × m) (no shared prefixes)

Radix Tree:
• O(n) nodes where n = number of words
• Much better space efficiency

Space Optimization Trade-offs:
Implementation Space Speed
Dictionary-based High Fast
Array-based (sparse) Very High Fastest
Array-based (dense) Medium Fastest
Radix tree Low Medium

Minseok Jeon Tries (Prefix Trees) November 2, 2025 45/53



Comparison with Other Data Structures

Feature Hash Table BST Trie
Insert O(1) O(log n) O(m)
Search O(1) O(log n) O(m)
Delete O(1) O(log n) O(m)
Prefix search O(n) O(n) O(p + k)
Sorted order No Yes Yes
Space O(n) O(n) O(n × m)
Collisions Yes No No

When to use Trie:
• Need prefix-based queries (autocomplete, spell check)
• Many words with common prefixes
• Need predictable performance (no hash collisions)
• Lexicographic ordering matters

Minseok Jeon Tries (Prefix Trees) November 2, 2025 46/53



Summary



Key Concepts Recap
Trie Fundamentals:
• Tree where each node = character
• Path from root = string/prefix
• Efficient prefix queries: O(m) not O(n)

Core Operations:
• Insert, Search, Delete: All O(m)
• Prefix search: O(p)
• Find all with prefix: O(p + n)

Variants:
• Dictionary-based (flexible alphabet)
• Array-based (fixed alphabet, faster)
• Radix tree (compressed, space-efficient)
• Frequency trie (ranking autocomplete)

Minseok Jeon Tries (Prefix Trees) November 2, 2025 48/53



Applications Recap
Major Use Cases:
• Autocomplete: Search engines, text editors
• Spell checking: Word processors
• IP routing: Network routers (longest prefix match)
• Text search: Pattern matching, substring search
• Dictionary: Fast word validation
• DNA sequencing: Genomic pattern matching

When NOT to use Trie:
• Simple exact-match lookups (use hash table)
• No prefix queries needed
• Memory is very limited
• Small, simple datasets

Minseok Jeon Tries (Prefix Trees) November 2, 2025 49/53



Practice Problems
Basic:
• Implement insert, search, starts_with operations
• Find longest common prefix of array of strings
• Count words with given prefix

Intermediate:
• Implement autocomplete with top-k results
• Word search with wildcards
• Design search autocomplete system (LeetCode 642)
• Word break problem using trie

Advanced:
• Implement radix tree with node splitting
• Design spell checker with edit distance
• Suffix tree construction and pattern matching
• Trie with frequency-based ranking

Minseok Jeon Tries (Prefix Trees) November 2, 2025 50/53



Implementation Tips
Best Practices:
• Use dictionary for variable alphabets (UTF-8, symbols)
• Use array for fixed alphabets (a-z, 0-9)
• Consider radix tree if memory is concern
• Add metadata (frequency, indices) for advanced features

Common Pitfalls:
• Forgetting to check is_end_of_word in search
• Not handling empty string correctly
• Memory leaks in delete operation
• Not considering case sensitivity

Optimization Strategies:
• Cache frequently accessed nodes
• Use lazy initialization for children
• Implement iterative versions to avoid recursion overhead
• Profile and optimize hot paths

Minseok Jeon Tries (Prefix Trees) November 2, 2025 51/53



Further Learning
Related Topics:
• Suffix Trees: All suffixes of a string
• Ternary Search Trees: Space-efficient alternative
• Patricia Trees: Practical Algorithm to Retrieve Information
• Aho-Corasick: Multiple pattern matching

Resources:
• Implement all operations from scratch
• LeetCode Trie problems (208, 211, 212, 642, 648)
• Real-world project: Build autocomplete system
• Study open-source implementations (Redis, Elasticsearch)

Projects:
• Search autocomplete with frequency ranking
• Spell checker with suggestions
• T9 predictive text system
• Simple search engine with trie indexing

Minseok Jeon Tries (Prefix Trees) November 2, 2025 52/53



Thank You!

Questions?

Tries: Mastering Prefix-Based Queries

Minseok Jeon Tries (Prefix Trees) November 2, 2025 53/53


	Introduction to Tries
	Node Structure and Implementation
	Core Operations
	Prefix Queries and Autocomplete
	Memory Optimization
	Enhanced Tries with Metadata
	Real-World Applications
	Complexity Analysis
	Summary

