Tries (Prefix Trees)

Efficient Prefix-Based Data Structures

Minseok Jeon
DGIST

November 2, 2025

Outline

Introduction to Tries

Node Structure and Implementation
Core Operations

Prefix Queries and Autocomplete
Memory Optimization

Enhanced Tries with Metadata
Real-World Applications
Complexity Analysis

© ©® N o gk W N

Summary

Introduction to Tries

What is a Trie?

Definition: A tree structure for efficient prefix-based queries.

Key Characteristics:

Each node represents a character

Path from root to node forms a string/prefix

Children: Map from character to child node

End marker: Flag indicating complete word

Also Known As:
® Prefix Tree
® Digital Tree
® Radix Tree (compressed variant)

Origin: Name comes from "retrieval"

Visual Example

Words: ["cat", "car", "card", "dog"]

Green nodes = end of word

Paths:
c-a-t = "cat"
c-a-r = "car"

c-a-r-d = "card"
d-o-g = "dog"

Why Use Tries?

Advantages:

Fast prefix queries: O(m) where m = prefix length
Shared prefixes: Memory efficient for common prefixes
Predictable performance: No hash collisions

Alphabetical ordering: Natural lexicographic order

Comparison with Hash Table:

Operation Hash Table Trie

Search 0O(1) avyg O(m)

Insert O(1) avyg O(m)

Prefix search O(n) O(m + k)
Ordered traversal | O(n log n) O(n)

Space O(n) O(ALPHABET * n * m)

m = word length, k = results, n = number of words

Common Applications

Real-World Uses:

® Autocomplete: Search engines, text editors

Spell checking: Word suggestions and corrections

IP routing: Longest prefix matching in routers
® Dictionary: Fast word lookup and validation

Phone directory: T9 predictive text

DNA sequencing: Pattern matching in genomics

Node Structure and Implementation

Basic Trie Node Structure

class TrieNode:
def __init__(self):
self.children = {} # Map: char -> TrieNode
self.is_end_of_word = False

class Trie:
def init__(self):

self . root = TrieNode ()

Node Components:
® children: Dictionary mapping characters to child nodes

® is_end_of_word: Boolean flag marking complete words

Space per node: ~100+ bytes (dict overhead + bool)

Array-Based Implementation

For fixed alphabets (e.g., lowercase a-z):

1 class TrieNodeArray:

12

2 def __init__(self):

3 self.children = [None] * 26 # For lowercase a-z
4 self.is_end_of_word = False
5

6 def get_index(self, char):

7 return ord(char) - ord(’a’)
8

9 def get_child(self, char):

10 index = self.get_index (char)
11 return self.children[index]
13 def set_child(self, char, node):
14 index = self.get_index (char)

15 self.children[index] = node

Node with Parent Pointers

Enhanced structure for traversal:

11class TrieNodeWithParent:

10

11

12

13

14

15

def

def

__init__(self, char=’’, parent=None):
self.char = char

self . parent = parent

self.children = {}
self.is_end_of_word = False

get_word (self):

"""Reconstruct word from this node"""

word = []

node = self

while node.parent is not None:
word . append (node . char)
node = node.parent

return ’’.join(reversed (word))

Core Operations

Insert Operation

1 def insert(self, word):

2 """Insert word into trie - 0(m) where m = word length"""
3 node = self.root
4
5 for char in word:
6 if char not in node.children:
7 node.children[char] = TrieNode ()
8 node = node.children [char]
9
10 node.is_end_of_word = True
Algorithm:

1. Start at root
2. For each character in word:
® |f child exists, move to it

® QOtherwise, create new child node
) | N, I P o R I I e |

Insert Visualization

Inserting "car" into trie with "cat":

Before: After insert("car"):

Only "cat" exists Both "cat" and "car" exist

Key insight: Common prefix "ca" is shared between words

Search Operation

1 def

search(self, word):
"""Search for exact word - O(m)"""
node = self.root

for char in word:
if char not in node.children:
return False
node = node.children [char]

return node.is_end_of_word

Examples:
® search("cat") — (complete word)
® search("ca") — False (prefix but not word)
® search("cats") — False (doesn't exist)

bovrovvudmeades Miier+ ~lhAa~l, = o~ e A € e £l A

Prefix Search (Starts With)

1 def starts_with(self, prefix):

2 """Check if any word starts with prefix - O(m)"""
3 node = self.root

4

5 for char in prefix:

6 if char not in node.children:

7 return False

8 node = node.children [char]

9

10 return True # No need to check is_end_of_word

Difference from search:
® Don't check is_end_of_word
® Just verify path exists

Examples with trie containing ["cat", "car", "card"]:

P S T TR IS T 4 | B | T N

© W N o U A W N R

e e T < O =
®w N o o hA W N R O

=
©

Delete Operation

def delete(self, word):
"""Delete word from trie - O(m)"""
def _delete(node, word, index):
if index == len(word):

Reached end of word
if not node.is_end_of_word:

return False # Word doesn’t exist

node.is_end_of_word = False

Return True if node has no
return len(node.children) ==

char = word[index]
if char not in node.children:

return False # Word doesn’t

child = node.children[char]

children (can be deleted)
0

exist

should_delete_child = _delete(child, word, index + 1)

Delete Visualization

Deleting "car" from trie with ["cat", "car", "card"]:

Before delete("car"): After delete("car"):
© (©)
() ()
©® O ® O
Key points:

® Node 'r" is NOT deleted (needed by "card")
®..Only the is_end_of_word flag on 'r'-isrset to-false

Prefix Queries and Autocomplete

© W N o U A W N R

e e T < O =
®w N o o hA W N R O

=
©

Find All Words with Prefix

Q.
0]
h

def

find_words_with_prefix(self, prefix):
"""Return all words starting with prefix"""
node = self.root

Navigate to prefix node
for char in prefix:
if char not in node.children:
return []
node = node.children[char]

Collect all words from this node

words = []

self. _collect_words(node, prefix, words)
return words

_collect_words (self, node, current_word, words):

"""DFS to collect all words from node"""
if node.is_end_of_word:
words . append (current_word)

Prefix Query Example

Trie with words: ["cat", "car", "card", "care", "dog"]

find_words_with_prefix("car") — ["car".."card", "care"

Autocomplete with Limit

1 def autocomplete(self, prefix, max_results=5):

© W N o U A~ W N

e e T < O =
®w N o o hA W N R O

=
©

"""Return top N autocomplete suggestions"""
node = self.root

Navigate to prefix
for char in prefix:
if char not in node.children:
return []
node = node.children[char]

BFS to find closest words
from collections import deque
results = []

queue = deque ([(node, prefix)])

while queue and len(results) < max_results:
current , word = queue.popleft ()

if current.is_end_of_word:

Longest Common Prefix

1 def longest_common_prefix(self, words):

2

3

4

5

10

11

12

13

14

15

16

"""Find longest common prefix of all words

nnn

if not words:
return

Insert all words

for word in words:

self .insert (word)

Traverse until branching or end

node = self.root

prefix = ""

while len(node.children) == 1 and not node.is_end_of_word:
char = next(iter (node.children))

prefix += char

node

node.children [char]

-
Q.
0]

h

Wildcard Search

search_with_wildcard (self, pattern):

"""Search with ’.’ as wildcard for any character
def dfs(node, index):

© W N o U A~ W N

e e T < O =
®w N o o hA W N R O

=
©

if index == len(pattern):
return node.is_end_of_word

char = pattern[index]

if char == 7.7:
Try all children
for child in node.children.values():
if dfs(child, index + 1):
return True
return False
else:
if char not in node.children:
return False

return dfs(node.children[char], index + 1)

Memory Optimization

Memory Usage Analysis

Standard Trie Space Complexity:

For words ["cat", "car", "card"]:
® Nodes: root + c+a+t+r+ d =06 nodes
® Each node: dict (hash table) + bool ~ 100+ bytes
® Total: ~600 bytes for 3 words

Worst Case: No shared prefixes

Words: ["abc", "def", "ghi"]
e Nodes: 1 + 3*3 = 10 nodes
® Space: O(ALPHABET SIZE x N x M)
® N = number of words, M = average length

Best Case: Many shared prefixes
Words: ["test", "testing", "tester"]
® Much better space efficiency due to sharing

Radix Tree (Compressed Trie)

Idea: Merge chains of single-child nodes

Standard Trie: Radix Tree:

3 nodes (67% reduction)

CECEREHE)

O A~ A~

Radix Node Structure

class RadixNode:
def __init__(self, label=""):
self.label = label # String, not single char!
self.children = {}
self.is_end_of_word = False

class RadixTree:
def init__(self):

self .root = RadixNode ()

Key Difference:
e Standard Trie: Each node stores one character
® Radix Tree: Each node stores a string (edge label)

Applications:
® Git uses radix trees internally

P T T T e e

Space Optimization Techniques

1. Array-based for small alphabets
® Use fixed-size array instead of dictionary
® Trade: wastes space if sparse, but faster access

2. Bit packing for flags
® Pack multiple boolean flags into single integer
® Saves memory when nodes have many flags

3. Lazy initialization
® Don't create children dict until needed
® self.children = None initially

4. Use radix tree for long common prefixes
® Significantly reduces node count
® Best for datasets with long shared prefixes

Enhanced Tries with Metadata

Frequency Trie

Store word frequencies for autocomplete ranking:

1 class FrequencyTrieNode:

2 def __init__(self):
3 self.children = {}
4 self.count = 0 # Number of times word inserted

5
6 class FrequencyTrie:

7 def __init__(self):

8 self .root = FrequencyTrieNode ()

9

10 def insert(self, word):

11 node = self.root

12 for char in word:

13 if char not in node.children:

14 node.children [char] = FrequencyTrieNode ()
15 node = node.children[char]

16 node.count += 1

Top-K Autocomplete with Frequency

1 def top_k_with_prefix(self, prefix, k):

"""Get top k most frequent words with prefix
node = self.root

Navigate to prefix
for char in prefix:
if char not in node.children:
return []
node = node.children[char]

© W N o U A~ W N

=
= o

Collect all words with frequencies
words = []
self. _collect_with_freq(node, prefix, words)

T S
g r W N

Sort by frequency and return top k
words .sort (key=lambda x: x[1], reverse=True)
return [word for word, freq in words[:k]]

=R e
®w ~N O

defo_collect_with_freq(self, node, word, words) :

=
©

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

19

Indexed Trie for Search Engines

class IndexedTrieNode:

def

__init__(self):
self.children = {}
self .doc_ids = [] # List of document IDs

class SearchEngine:

def

def

__init__(self):
self.trie = IndexedTrieNode ()
self .documents = {}

add_document (self, doc_id, text):
"""Tndex document for search"""
self.documents [doc_id] = text
words = text.lower ().split ()

for word in words:
node = self.trie
for char in word:
if char not in node: children:

© W N o U A W N R

e e T < O =
®w N o o hA W N R O

=
©

Suffix Trie for Pattern Matching

class SuffixTrie:
"""Store all suffixes of a string for fast pattern matching
def __init__(self, text):

self .root = TrieNode ()
self.text = text

Insert all suffixes
for i in range(len(text)):
self._insert_suffix(text[i:], i)

def _insert_suffix(self, suffix, start_index):
node = self.root
for char in suffix:
if char not in node.children:
node.children[char] = TrieNode ()
node = node.children[char]
node.start_index = start_index

def find_pattern(self, pattern)-

Real-World Applications

© W N o U A~ W N

10
11
12
13
14
15
16
17
18

Spell Checker

class SpellChecker:

def

def

def

__init__(self, dictionary):

self.trie = Trie()

for word in dictionary:
self.trie.insert (word.lower ())

is_correct (self, word):
"""Check if word is spelled correctly"""
return self.trie.search(word.lower ())

suggest_corrections(self, word, max_distance=2):
mnn

"""Suggest corrections using edit distance
suggestions = []

def dfs(node, current, remaining_edits):
if remaining_edits < 0:

return

if node.is_end_of_wordicand current:

Spell Checker Example

1

Dictionary: ["cat", "car", "card", "care", "careful"]

Operations:
® is_correct("car") —
® is_correct("cra") — False

® suggest_corrections("cra") — ["car", "care", "card"]

Edit Distance Techniques:
® Substitution: "cra" — "car" (distance = 1)
¢ Insertion: "cra" — "care" (distance = 1)
® Deletion: "crat" — "cat" (distance = 1)

Complexity: O(m x ALPHABET _SIZEY) where d = max distance

IP Routing Table

1 class IPRoutingTable:

© W N o U A~ W N

e e T < O =
®w N o o hA W N R O

=
©

"""Longest prefix matching for IP routing

def

def

def

__init__(self):
self .root = TrieNode ()

add_route (self, ip_prefix, next_hop):
"""Add routing entry (e.g., "192.168.0.0/16")"""
binary = self._ip_to_binary(ip_prefix)

node = self.root
for bit in binary:
if bit not in node.children:
node.children[bit] = TrieNode ()
node = node.children[bit]

node .next_hop = next_hop
node.is_end_of_word = True

lookup (self, ip_address):

IP Routing Example

Routing table entries:
® 192.168.0.0/16 — Router A
® 192.168.1.0/24 — Router B
® 192.168.1.128/25 — Router C

Lookups (longest prefix match):
® 192.168.1.200 — Router B (/24 match)
® 192.168.1.150 — Router C (/25 match, longest!)
® 192.168.2.1 — Router A (/16 match)

Why Trie?
® Fast O(32) lookup for IPv4 (32 bits)
® Naturally finds longest prefix
e Efficient for large routing tables

Autocomplete System

1 class AutocompleteSystem:
"""Google-style autocomplete with frequency ranking"""
def __init__(self):

self.trie = FrequencyTrie ()
self . current_prefix = ""

def input (self, char):
"""Process one character input"""
if char == ’#’:
End of sentence, save it

© W N o U A~ W N

=
= o

self .trie.insert (self.current_prefix)

-
N

self.current_prefix = ""
return []

P <
o b~ W

self . current_prefix += char

e
~N o

Return top 3 suggestions

-
e

return self.trie.top_k_with_prefix(self.current_prefix,

3)

Word Break Problem

1 def word_break (s, word_dict):

"""Check if string can be segmented into dictionary words
Example: "leetcode" with ["leet", "code"] -> True

nnn

trie = Trie()

for word in word_dict:
trie.insert (word)

© W N o U A~ W N

n = len(s)
dp = [False]l * (n + 1)
dp[0] = True # Empty string

e e
w N = O

for i in range(l, n + 1):
node = trie.proot

[
SIS

for j in range(i - 1, -1, -1):
if not dpl[jl:
continue

e~ S
© o ~N O

char = s[j]

File System Path Matching

1 class FileSystemTrie:

© W N o U A~ W N

e e T < O =
®w N o o hA W N R O

=
©

"""Efficient file path matching with wildcards"""

def

def

def

__init__(self):
self .root = TrieNode ()

add_path(self, path):

"""Add file path like /home/user/file.txt"""
parts = path.strip(’/?).split(’/’)

node = self.root

for part in parts:
if part not in node.children:
node.children[part] = TrieNode ()
node = node.children[part]

node.is_end_of_word = True

find_files(self, pattern):

"""EFind files matching patternfesg., /home/*/file.txt) "N

Complexity Analysis

Time Complexity Summary

Operation Time Complexity Notes

Insert O(m) m = word length
Search O(m) Exact word search
Delete O(m) Recursive cleanup
Prefix search O(p) p = prefix length

Find all with prefix O(p + n) n = matching words
Autocomplete (top k) O(p + k) k = results returned
Wildcard search O(m x b%) w = wildcards, b = branching

Key Insight: Performance depends on word/prefix length, NOT total words!
This makes tries excellent for large dictionaries.

Space Complexity Summary

Standard Trie:
® Best case: O(m) where m = longest word (all words share prefix)
® Average case: O(ALPHABET _SIZE x n x m)
® Worst case: O(ALPHABET SIZE x n x m) (no shared prefixes)

Radix Tree:
® O(n) nodes where n = number of words
® Much better space efficiency

Space Optimization Trade-offs:

Implementation Space Speed
Dictionary-based High Fast

Array-based (sparse) | Very High | Fastest
Array-based (dense) Medium | Fastest
Radix tree Low Medium

Comparison with Other Data Structures

When to use Trie:

Feature Hash Table BST Trie
Insert O(1) O(log n) O(m)
Search 0(1) O(log n) O(m)
Delete O(1) O(log n) O(m)
Prefix search O(n) O(n) O(p + k)
Sorted order No Yes Yes
Space O(n) O(n) O(n x m)
Collisions Yes No No

Many words with common prefixes

Lexicographic ordering matters

Need prefix-based queries (autocomplete, spell check)

Need predictable performance (no hash collisions)

Summary

Key Concepts Recap

Trie Fundamentals:
® Tree where each node = character
® Path from root = string/prefix
e Efficient prefix queries: O(m) not O(n)

Core Operations:
® Insert, Search, Delete: All O(m)
® Prefix search: O(p)
e Find all with prefix: O(p + n)

Variants:
® Dictionary-based (flexible alphabet)
® Array-based (fixed alphabet, faster)
® Radix tree (compressed, space-efficient)
® Frequency trie (ranking autocomplete)

Applications Recap

Major Use Cases:

® Autocomplete: Search engines, text editors

Spell checking: Word processors

IP routing: Network routers (longest prefix match)
® Text search: Pattern matching, substring search
® Dictionary: Fast word validation

DNA sequencing: Genomic pattern matching

When NOT to use Trie:
e Simple exact-match lookups (use hash table)
® No prefix queries needed
® Memory is very limited

Small, simple datasets

Practice Problems

Basic:
® |mplement insert, search, starts with operations
® Find longest common prefix of array of strings
e Count words with given prefix

Intermediate:
® |mplement autocomplete with top-k results
® \Word search with wildcards
® Design search autocomplete system (LeetCode 642)
® \Nord break problem using trie

Advanced:

Implement radix tree with node splitting
Design spell checker with edit distance

Suffix tree construction and pattern matching

[}
[}
[}
® Trie with frequency-based ranking

Implementation Tips

Best Practices:
e Use dictionary for variable alphabets (UTF-8, symbols)
e Use array for fixed alphabets (a-z, 0-9)
e Consider radix tree if memory is concern
® Add metadata (frequency, indices) for advanced features

Common Pitfalls:
® Forgetting to check is_end_of_word in search
® Not handling empty string correctly
® Memory leaks in delete operation
® Not considering case sensitivity

Optimization Strategies:
® (Cache frequently accessed nodes
® Use lazy initialization for children
® |mplement iterative versions to avoid recursion overhead

= YL e o e e i e

Further Learning

Related Topics:

Suffix Trees: All suffixes of a string

® Ternary Search Trees: Space-efficient alternative

e Patricia Trees: Practical Algorithm to Retrieve Information
® Aho-Corasick: Multiple pattern matching

Resources:
® |mplement all operations from scratch
LeetCode Trie problems (208, 211, 212, 642, 648)
Real-world project: Build autocomplete system
Study open-source implementations (Redis, Elasticsearch)

Projects:
® Search autocomplete with frequency ranking
® Spell checker with suggestions
® T9 predictive text system

- e ol | L T JR T R

Thank Youl

Questions?

Tries: Mastering Prefix-Based Queries

	Introduction to Tries
	Node Structure and Implementation
	Core Operations
	Prefix Queries and Autocomplete
	Memory Optimization
	Enhanced Tries with Metadata
	Real-World Applications
	Complexity Analysis
	Summary

