
Trees
Hierarchical Data Structures

Minseok Jeon
DGIST

November 2, 2025

Minseok Jeon Trees November 2, 2025 1/60



Outline

1. Introduction to Trees

2. Binary Trees

3. Binary Search Trees (BST)

4. Tree Traversals

5. Heaps

6. Balanced Trees

7. Real-World Applications

8. Complexity Analysis

9. Summary

Minseok Jeon Trees November 2, 2025 2/60



Introduction to Trees



What is a Tree?
Definition: A hierarchical data structure consisting of nodes connected by edges.

Key Properties:
• Exactly one path between any two nodes
• One designated root node at the top
• No cycles (acyclic graph)
• Each node has zero or more children

Tree Terminology:
• Root: The topmost node
• Parent: A node that has children
• Child: A node connected to a parent
• Leaf: A node with no children
• Height: Longest path from root to a leaf
• Depth: Distance from root to a node

Minseok Jeon Trees November 2, 2025 4/60



Basic Tree Structure

A

B

D E

C

F G

Root

Leaf Leaf Leaf Leaf

• Root: A
• Internal nodes: B, C
• Leaves: D, E, F, G
• Height: 2

Minseok Jeon Trees November 2, 2025 5/60



Why Use Trees?
Advantages:
• Natural hierarchy: File systems, organizational charts
• Efficient search: O(log n) in balanced trees
• Fast insertion/deletion: Compared to sorted arrays
• Flexible structure: Adapts to different data patterns

Common Applications:
• Database indexing (B-trees)
• File systems (directory trees)
• Expression parsing (syntax trees)
• Decision making (decision trees)
• Network routing
• Compression algorithms (Huffman trees)

Minseok Jeon Trees November 2, 2025 6/60



Binary Trees



Binary Trees
Definition: A tree where each node has at most two children (left and right).

10

5

3 7

15

12 20

Properties:
• Each node: at most 2 children
• Left child < Parent (in BST)
• Right child > Parent (in BST)

Minseok Jeon Trees November 2, 2025 8/60



Types of Binary Trees: Full Binary Tree
Full Binary Tree: Every node has either 0 or 2 children (no nodes with 1 child).

1

2

4 5

3

6 7

Characteristics:
• All internal nodes have exactly 2 children
• All leaves at same or adjacent levels
• Useful for expression trees

Minseok Jeon Trees November 2, 2025 9/60



Types of Binary Trees: Complete Binary Tree
Complete Binary Tree: All levels filled except possibly the last, which is filled from left
to right.

1

2

4 5

3

6

Characteristics:
• Used in heap data structures
• Can be efficiently stored in arrays
• Left-to-right filling at each level

Minseok Jeon Trees November 2, 2025 10/60



Types of Binary Trees: Perfect Binary Tree
Perfect Binary Tree: All internal nodes have 2 children and all leaves are at the same
level.

1

2

4 5

3

6 7

Properties:
• Total nodes = 2h+1 − 1 (h = height)
• All leaves at level h
• Maximally space-efficient

Minseok Jeon Trees November 2, 2025 11/60



Types of Binary Trees: Balanced vs Skewed

Balanced Binary Tree
Height difference ≤ 1 for all nodes

4

2

1 3

6

5 7

Height: O(log n)

Skewed Binary Tree
All nodes only have one child

1

2

3

4

5

Height: O(n)
Minseok Jeon Trees November 2, 2025 12/60



Binary Tree Implementation

1 class TreeNode:
2 def __init__(self , value):
3 self.value = value
4 self.left = None
5 self.right = None
6

7 class BinaryTree:
8 def __init__(self):
9 self.root = None

10

11 def insert(self , value):
12 if not self.root:
13 self.root = TreeNode(value)
14 else:
15 self._insert_recursive(self.root , value)
16

17 def _insert_recursive(self , node , value):
18 if value < node.value:
19 if node.left is None:
20 node.left = TreeNode(value)
21 else:
22 self._insert_recursive(node.left , value)
23 else:
24 if node.right is None:
25 node.right = TreeNode(value)
26 else:
27 self._insert_recursive(node.right , value)

Minseok Jeon Trees November 2, 2025 13/60



Binary Search Trees (BST)



Binary Search Tree (BST)

Definition: A binary tree where for every node:
• All values in left subtree < node value
• All values in right subtree > node value
• Both subtrees are also BSTs

50

30

20 40

70

60 80

All < 50 All > 50

Minseok Jeon Trees November 2, 2025 15/60



BST Search Operation
Algorithm: Start at root and compare target with current node.

50

30

20 40

70

60 80

Search for 40:
1. Start at 50: 40 < 50 → go left
2. At 30: 40 > 30 → go right
3. Found at 40!

Time Complexity: O(h) where h is height
• Best case (balanced): O(log n)
• Worst case (skewed): O(n)

Minseok Jeon Trees November 2, 2025 16/60



BST Search Implementation

1 def search(self , value):
2 """ Search for a value in the BST"""
3 return self._search_recursive(self.root , value)
4

5 def _search_recursive(self , node , value):
6 # Base case: empty tree or value found
7 if node is None or node.value == value:
8 return node
9

10 # Value is smaller: search left subtree
11 if value < node.value:
12 return self._search_recursive(node.left , value)
13

14 # Value is larger: search right subtree
15 return self._search_recursive(node.right , value)
16

17 # Iterative version
18 def search_iterative(self , value):
19 current = self.root
20 while current:
21 if value == current.value:
22 return current
23 elif value < current.value:
24 current = current.left
25 else:
26 current = current.right
27 return None

Minseok Jeon Trees November 2, 2025 17/60



BST Insert Operation

1 def insert(self , value):
2 """ Insert a value into the BST"""
3 if not self.root:
4 self.root = TreeNode(value)
5 else:
6 self._insert_recursive(self.root , value)
7

8 def _insert_recursive(self , node , value):
9 # Insert in left subtree

10 if value < node.value:
11 if node.left is None:
12 node.left = TreeNode(value)
13 else:
14 self._insert_recursive(node.left , value)
15 # Insert in right subtree
16 else:
17 if node.right is None:
18 node.right = TreeNode(value)
19 else:
20 self._insert_recursive(node.right , value)

Time Complexity: O(h) where h is height

Minseok Jeon Trees November 2, 2025 18/60



BST Delete Operation: Three Cases
Case 1: Node is a leaf → Simply remove it
Case 2: Node has one child → Replace with child
Case 3: Node has two children → Replace with:
• Inorder successor: Smallest value in right subtree
• Inorder predecessor: Largest value in left subtree

50

30

20 40

70

60 80

Delete 50 → Replace with 60 (successor)

Minseok Jeon Trees November 2, 2025 19/60



BST Delete Implementation

1 def delete(self , value):
2 self.root = self._delete_recursive(self.root , value)
3

4 def _delete_recursive(self , node , value):
5 if node is None:
6 return None
7

8 if value < node.value:
9 node.left = self._delete_recursive(node.left , value)

10 elif value > node.value:
11 node.right = self._delete_recursive(node.right , value)
12 else:
13 # Case 1: Leaf or one child
14 if node.left is None:
15 return node.right
16 if node.right is None:
17 return node.left
18

19 # Case 2: Two children - find inorder successor
20 successor = self._find_min(node.right)
21 node.value = successor.value
22 node.right = self._delete_recursive(node.right , successor.value)
23

24 return node
25

26 def _find_min(self , node):
27 while node.left:
28 node = node.left
29 return node

Minseok Jeon Trees November 2, 2025 20/60



Tree Traversals



Tree Traversal Overview
Traversal: Visiting all nodes in a specific order.

Four Main Types:
1. Inorder (Left-Root-Right): Produces sorted order in BST
2. Preorder (Root-Left-Right): Used for copying trees
3. Postorder (Left-Right-Root): Used for deleting trees
4. Level-order (Breadth-first): Level by level

1

2

4 5

3

6 7

Minseok Jeon Trees November 2, 2025 22/60



Inorder Traversal (Left-Root-Right)
Order: Left subtree → Root → Right subtree

1

2

4 5

3

6 7

Result: 4, 2, 5, 1, 6, 3, 7

Use Cases:
• Getting sorted order from BST
• Expression tree evaluation

Minseok Jeon Trees November 2, 2025 23/60



Inorder Traversal Implementation

1 def inorder(self):
2 """ Return list of values in inorder """
3 result = []
4 self._inorder_recursive(self.root , result)
5 return result
6

7 def _inorder_recursive(self , node , result):
8 if node:
9 # Left subtree

10 self._inorder_recursive(node.left , result)
11 # Root
12 result.append(node.value)
13 # Right subtree
14 self._inorder_recursive(node.right , result)
15

16 # Iterative version using stack
17 def inorder_iterative(self):
18 result , stack = [], []
19 current = self.root
20 while current or stack:
21 while current:
22 stack.append(current)
23 current = current.left
24 current = stack.pop()
25 result.append(current.value)
26 current = current.right
27 return result

Minseok Jeon Trees November 2, 2025 24/60



Preorder Traversal (Root-Left-Right)
Order: Root → Left subtree → Right subtree

1

2

4 5

3

6 7

Result: 1, 2, 4, 5, 3, 6, 7

Use Cases:
• Creating a copy of the tree
• Prefix expression of an expression tree
• Serializing a tree

Minseok Jeon Trees November 2, 2025 25/60



Preorder Traversal Implementation

1 def preorder(self):
2 """ Return list of values in preorder """
3 result = []
4 self._preorder_recursive(self.root , result)
5 return result
6

7 def _preorder_recursive(self , node , result):
8 if node:
9 # Root

10 result.append(node.value)
11 # Left subtree
12 self._preorder_recursive(node.left , result)
13 # Right subtree
14 self._preorder_recursive(node.right , result)
15

16 # Iterative version
17 def preorder_iterative(self):
18 if not self.root:
19 return []
20 result , stack = [], [self.root]
21 while stack:
22 node = stack.pop()
23 result.append(node.value)
24 if node.right:
25 stack.append(node.right)
26 if node.left:
27 stack.append(node.left)
28 return result

Minseok Jeon Trees November 2, 2025 26/60



Postorder Traversal (Left-Right-Root)
Order: Left subtree → Right subtree → Root

1

2

4 5

3

6 7

Result: 4, 5, 2, 6, 7, 3, 1

Use Cases:
• Deleting a tree (delete children before parent)
• Postfix expression of an expression tree
• Computing directory sizes in file system

Minseok Jeon Trees November 2, 2025 27/60



Postorder Traversal Implementation

1 def postorder(self):
2 """ Return list of values in postorder """
3 result = []
4 self._postorder_recursive(self.root , result)
5 return result
6

7 def _postorder_recursive(self , node , result):
8 if node:
9 # Left subtree

10 self._postorder_recursive(node.left , result)
11 # Right subtree
12 self._postorder_recursive(node.right , result)
13 # Root
14 result.append(node.value)
15

16 # Iterative version using two stacks
17 def postorder_iterative(self):
18 if not self.root:
19 return []
20 stack1 , stack2 = [self.root], []
21 while stack1:
22 node = stack1.pop()
23 stack2.append(node)
24 if node.left:
25 stack1.append(node.left)
26 if node.right:
27 stack1.append(node.right)
28 return [node.value for node in reversed(stack2)]

Minseok Jeon Trees November 2, 2025 28/60



Level-Order Traversal (Breadth-First)
Order: Visit nodes level by level, left to right

1

2

4 5

3

6 7

Level 0: 1
Level 1: 2, 3
Level 2: 4, 5, 6, 7

Result: 1, 2, 3, 4, 5, 6, 7

Use Cases:
• Finding shortest path in unweighted tree
• Level-wise processing
• Printing tree level by level

Minseok Jeon Trees November 2, 2025 29/60



Level-Order Traversal Implementation

1 from collections import deque
2

3 def level_order(self):
4 """ Return list of values in level -order """
5 if not self.root:
6 return []
7

8 result = []
9 queue = deque ([self.root])

10

11 while queue:
12 node = queue.popleft ()
13 result.append(node.value)
14

15 if node.left:
16 queue.append(node.left)
17 if node.right:
18 queue.append(node.right)
19

20 return result
21

22 # Level -by-level (returns list of lists)
23 def level_order_levels(self):
24 if not self.root:
25 return []
26 result , queue = [], deque([self.root])
27 while queue:
28 level = []
29 for _ in range(len(queue)):
30 node = queue.popleft ()
31 level.append(node.value)
32 if node.left: queue.append(node.left)
33 if node.right: queue.append(node.right)
34 result.append(level)
35 return result

Minseok Jeon Trees November 2, 2025 30/60



Heaps



Heap Data Structure

Definition: A complete binary tree satisfying the heap property.

Two Types:
• Max Heap: Parent ≥ children (root is maximum)
• Min Heap: Parent ≤ children (root is minimum)

Max Heap

100

80

40 50

90

30 60

Min Heap

10

20

40 50

30

60 70

Minseok Jeon Trees November 2, 2025 32/60



Heap Array Representation
Key Insight: Complete binary tree can be stored efficiently in an array.

Index Relationships:
• Parent of i: (i − 1)/2
• Left child of i: 2i + 1
• Right child of i: 2i + 2

100

80

40 50

90

30 60

Array: [100, 80, 90, 40, 50, 30, 60]
Indices: 0 1 2 3 4 5 6Minseok Jeon Trees November 2, 2025 33/60



Heap Insert Operation
Algorithm:

1. Add new element at the end (maintain complete tree property)
2. Heapify Up: Compare with parent and swap if needed
3. Repeat until heap property restored

1 def insert(self , value):
2 """ Insert value into max heap """
3 self.heap.append(value)
4 self._heapify_up(len(self.heap) - 1)
5

6 def _heapify_up(self , index):
7 parent = (index - 1) // 2
8

9 # Max heap: if current > parent , swap
10 if index > 0 and self.heap[index] > self.heap[parent ]:
11 self.heap[index], self.heap[parent] = \
12 self.heap[parent], self.heap[index]
13 self._heapify_up(parent)

Time Complexity: O(log n)

Minseok Jeon Trees November 2, 2025 34/60



Heap Extract Max/Min Operation
Algorithm:

1. Remove and return root (max/min element)
2. Replace root with last element
3. Heapify Down: Compare with children and swap with larger/smaller
4. Repeat until heap property restored

1 def extract_max(self):
2 if not self.heap:
3 return None
4

5 max_val = self.heap [0]
6 self.heap [0] = self.heap[-1]
7 self.heap.pop()
8 self._heapify_down (0)
9 return max_val

10

11 def _heapify_down(self , index):
12 largest = index
13 left = 2 * index + 1
14 right = 2 * index + 2
15

16 if left < len(self.heap) and self.heap[left] > self.heap[largest ]:
17 largest = left
18 if right < len(self.heap) and self.heap[right] > self.heap[largest ]:
19 largest = right
20

21 if largest != index:
22 self.heap[index], self.heap[largest] = \
23 self.heap[largest], self.heap[index]
24 self._heapify_down(largest)

Minseok Jeon Trees November 2, 2025 35/60



Heap Applications
Priority Queue:
• Task scheduling (OS process scheduling)
• Event-driven simulation
• Dijkstra’s shortest path algorithm

Heap Sort:
• Build max heap from array
• Repeatedly extract max
• O(n log n) time, O(1) space

Top-K Problems:
• Find K largest/smallest elements
• Maintain min/max heap of size K
• Streaming data scenarios

Median Finding:
• Two heaps: max heap for lower half, min heap for upper half
• Median is top of one heap or average of both tops

Minseok Jeon Trees November 2, 2025 36/60



Balanced Trees



Why Balanced Trees?
Problem with BST: Can degenerate to O(n) operations in worst case.

Worst Case BST

1

2

3

4

5

Height = n
Operations: O(n)

Balanced BST

3

2

1

4

5

Height = log n
Operations: O(log n)

Solution: Self-balancing trees (AVL, Red-Black)Minseok Jeon Trees November 2, 2025 38/60



AVL Trees
Definition: BST where height difference of left and right subtrees ≤ 1 for all nodes.

Balance Factor: height(left) - height(right)
• Must be -1, 0, or +1 for all nodes

30

20

10 25

40

35 50

BF=0

BF=0 BF=0

Properties:
• Height is always O(log n)
• All operations O(log n)
• More rotations than Red-Black trees

Minseok Jeon Trees November 2, 2025 39/60



AVL Tree Rotations

Four Rotation Cases:

1. Left-Left (LL)
Single right rotation

30
20

10

→ 20
10 30

3. Left-Right (LR)
Left rotate, then right rotate

2. Right-Right (RR)
Single left rotation

10
20

30

→ 20
10 30

4. Right-Left (RL)
Right rotate, then left rotate

Minseok Jeon Trees November 2, 2025 40/60



AVL Tree Rotation Implementation

1 def _rotate_right(self , y):
2 """ Right rotation """
3 x = y.left
4 T2 = x.right
5

6 x.right = y
7 y.left = T2
8

9 y.height = 1 + max(self._get_height(y.left),
10 self._get_height(y.right))
11 x.height = 1 + max(self._get_height(x.left),
12 self._get_height(x.right))
13 return x
14

15 def _rotate_left(self , x):
16 """ Left rotation """
17 y = x.right
18 T2 = y.left
19

20 y.left = x
21 x.right = T2
22

23 x.height = 1 + max(self._get_height(x.left),
24 self._get_height(x.right))
25 y.height = 1 + max(self._get_height(y.left),
26 self._get_height(y.right))
27 return y
28

29 def _get_balance(self , node):
30 if not node:
31 return 0
32 return self._get_height(node.left) - self._get_height(node.right)

Minseok Jeon Trees November 2, 2025 41/60



Red-Black Trees
Definition: BST with additional color property for balancing.

Properties:
1. Every node is either red or black
2. Root is always black
3. All leaves (NIL) are black
4. Red nodes have black children (no two red nodes in a row)
5. All paths from root to leaves have same number of black nodes

26

17

14 21

41

30 47
Minseok Jeon Trees November 2, 2025 42/60



Red-Black Trees vs AVL Trees

Feature AVL Tree Red-Black Tree
Balance Strictly balanced Approximately balanced
Height ≤ 1.44 log n ≤ 2 log n
Search Faster Slightly slower
Insert/Delete More rotations Fewer rotations
Use case Read-heavy Insert/delete-heavy
Examples Databases Java TreeMap, C++ map

Key Takeaway:
• AVL: Better for lookup-intensive applications
• Red-Black: Better for applications with frequent insertions/deletions

Minseok Jeon Trees November 2, 2025 43/60



Real-World Applications



Database Indexing
B-Trees and B+ Trees: Variants of balanced trees used in databases.

Why Trees for Databases?
• Fast search: O(log n)
• Efficient range queries
• Good disk I/O performance (nodes = disk blocks)
• Support for ordered traversal

B+ Tree Features:
• All data in leaf nodes
• Internal nodes only store keys
• Leaves linked for sequential access
• Used in: MySQL, PostgreSQL, SQLite

Example:
• Index on employee ID
• Fast lookups: SELECT * WHERE id = 12345
• Range queries: SELECT * WHERE id BETWEEN 1000 AND 2000

Minseok Jeon Trees November 2, 2025 45/60



Expression Parsing
Syntax Trees: Represent mathematical or code expressions.

Example: (3 + 5)× 2

×

+

3 5

2

Evaluation:
• Postorder traversal: 3, 5, +, 2, ×
• Result: (3 + 5) = 8, then 8× 2 = 16

Applications:
• Compilers and interpreters
• Calculators
• Abstract Syntax Trees (AST) in programming languages

Minseok Jeon Trees November 2, 2025 46/60



File Systems
Directory Structure: Trees represent hierarchical file organization.

/

home

user1 user2

etc

config

var

log tmp

Operations:
• Navigate directories: O(depth)
• List contents: Visit children
• Calculate directory size: Postorder traversal
• Search for files: DFS or BFS

Minseok Jeon Trees November 2, 2025 47/60



Decision Trees (Machine Learning)
Decision Trees: Tree-based models for classification and regression.

Age ≤ 30?

Income ≤ 50K?

No Yes

Credit > 700?

Yes No

Properties:
• Internal nodes: Decision rules
• Leaves: Predictions (class labels or values)
• Path from root to leaf: Decision path

Algorithms: ID3, C4.5, CART, Random Forests, Gradient Boosting
Minseok Jeon Trees November 2, 2025 48/60



Huffman Coding (Compression)
Huffman Tree: Optimal prefix-free binary code for data compression.

Example: Compress "AAABBC"

6

A:3

0

3

B:2

0

C:1

1

1

Encoding:
• A: 0, B: 10, C: 11
• "AAABBC" → 0 0 0 10 10 11 (10 bits vs 18 bits)

Used in: ZIP, JPEG, MP3
Minseok Jeon Trees November 2, 2025 49/60



Complexity Analysis



Tree Operations Complexity

Operation BST (avg) BST (worst) Balanced
Search O(log n) O(n) O(log n)
Insert O(log n) O(n) O(log n)
Delete O(log n) O(n) O(log n)
Find Min/Max O(log n) O(n) O(log n)
Traversal O(n) O(n) O(n)

Key Points:
• Unbalanced BST: Worst case O(n) when tree becomes skewed
• Balanced trees (AVL, Red-Black): Guaranteed O(log n)
• Traversals always O(n) - must visit every node

Minseok Jeon Trees November 2, 2025 51/60



Heap Operations Complexity

Operation Time Complexity
Insert O(log n)
Extract Max/Min O(log n)
Get Max/Min (peek) O(1)
Build Heap O(n)
Heapify O(log n)
Heap Sort O(n log n)

Space Complexity: O(n)

Note:
• Get max/min is O(1) - root element
• Build heap from array is O(n), not O(n log n)

Minseok Jeon Trees November 2, 2025 52/60



Space Complexity
Tree Storage:

Structure Space
Binary Tree (pointer-based) O(n)
Complete Binary Tree (array) O(n)
AVL Tree (with height) O(n)
Red-Black Tree (with color) O(n)
Heap (array-based) O(n)

Additional Space:
• Recursive traversals: O(h) stack space
• Iterative traversals with stack/queue: O(h) or O(w)

• h = height, w = maximum width
• Level-order traversal: O(w) for queue

Minseok Jeon Trees November 2, 2025 53/60



Summary



Key Concepts Recap
Binary Trees:
• Hierarchical structure with at most 2 children per node
• Types: Full, Complete, Perfect, Balanced, Skewed

Binary Search Trees:
• Ordered binary tree: left < root < right
• Operations: Search, Insert, Delete - O(h)
• Can degenerate to O(n) without balancing

Traversals:
• Inorder (sorted), Preorder (copy), Postorder (delete), Level-order

Heaps:
• Complete binary tree with heap property
• Priority queue, Heap sort, Top-K problems

Minseok Jeon Trees November 2, 2025 55/60



Key Concepts Recap (continued)
Balanced Trees:
• AVL: Strict balance, faster search
• Red-Black: Approximate balance, faster insert/delete
• Both guarantee O(log n) operations

Applications:
• Database indexing (B-trees, B+ trees)
• Expression parsing (syntax trees)
• File systems (directory trees)
• Machine learning (decision trees)
• Compression (Huffman coding)

Complexity:
• Balanced trees: O(log n) for search, insert, delete
• Heaps: O(log n) for insert/extract, O(1) for peek
• Traversals: Always O(n)

Minseok Jeon Trees November 2, 2025 56/60



When to Use Which Tree?

Use Case Tree Type
Fast search in sorted data BST, AVL, Red-Black
Priority queue Min/Max Heap
Frequent inserts/deletes Red-Black Tree
Lookup-heavy workload AVL Tree
Database indexing B-Tree, B+ Tree
Expression evaluation Syntax Tree
File system N-ary Tree
Decision making Decision Tree
Compression Huffman Tree
Range queries Segment Tree, Interval Tree

Minseok Jeon Trees November 2, 2025 57/60



Practice Problems
Basic:
• Implement inorder, preorder, postorder traversals
• Find height of a binary tree
• Check if a binary tree is a valid BST
• Find lowest common ancestor (LCA)

Intermediate:
• Serialize and deserialize a binary tree
• Convert sorted array to balanced BST
• Implement AVL tree with rotations
• Find kth smallest element in BST

Advanced:
• Implement Red-Black tree
• Morris traversal (constant space)
• Segment tree for range queries
• Trie for prefix matching

Minseok Jeon Trees November 2, 2025 58/60



Next Steps
Continue Learning:
• Advanced trees: Trie, Segment Tree, Fenwick Tree
• Graph algorithms (trees are special graphs)
• Dynamic programming with trees
• Practice on LeetCode, HackerRank

Resources:
• CLRS: Introduction to Algorithms
• GeeksforGeeks tree tutorials
• Visualgo.net for visualizations
• Project: Implement your own balanced tree library

Real-World Projects:
• Build a simple database with B-tree indexing
• Create an expression evaluator
• Implement file compression with Huffman coding
• Design a decision tree classifier

Minseok Jeon Trees November 2, 2025 59/60



Thank You!

Questions?

Trees: The Foundation of Hierarchical Thinking

Minseok Jeon Trees November 2, 2025 60/60


	Introduction to Trees
	Binary Trees
	Binary Search Trees (BST)
	Tree Traversals
	Heaps
	Balanced Trees
	Real-World Applications
	Complexity Analysis
	Summary

