Trees

Hierarchical Data Structures

Minseok Jeon
DGIST

November 2, 2025

Outline

Introduction to Trees
Binary Trees

Binary Search Trees (BST)
Tree Traversals

Heaps

Balanced Trees
Real-World Applications
Complexity Analysis

© ©® N o gk W N

Summary

Introduction to Trees

What is a Tree?

Definition: A hierarchical data structure consisting of nodes connected by edges.

Key Properties:
® Exactly one path between any two nodes
® One designated root node at the top
® No cycles (acyclic graph)
® Fach node has zero or more children

Tree Terminology:
® Root: The topmost node
® Parent: A node that has children
® Child: A node connected to a parent
® Leaf: A node with no children
® Height: Longest path from root to a leaf
® Depth: Distance from root to a node

Basic Tree Structure

® Root: A

Root

Leaf Leaf Leaf Leaf

Why Use Trees?

Advantages:

Natural hierarchy: File systems, organizational charts

Efficient search: O(log n) in balanced trees

Fast insertion/deletion: Compared to sorted arrays

Flexible structure: Adapts to different data patterns

Common Applications:
® Database indexing (B-trees)
® File systems (directory trees)
® Expression parsing (syntax trees)
® Decision making (decision trees)

Network routing
e Compression algorithms (Huffman trees)

Binary Trees

Binary Trees

Definition: A tree where each node has at most two children (left and right).

Properties:

® Each node: at most 2 children
® |Left child < Parent (in BST)
® Right child > Parent (in BST)

Types of Binary Trees: Full Binary Tree

Full Binary Tree: Every node has either 0 or 2 children (no nodes with 1 child).

Characteristics:
® All internal nodes have exactly 2 children
® All leaves at same or adjacent levels
® Useful for expression trees

Types of Binary Trees: Complete Binary Tree

Complete Binary Tree: All levels filled except possibly the last, which is filled from left

to right.

Characteristics:
® Used in heap data structures
® (Can be efficiently stored in arrays
® | eft-to-right filling at each level

Types of Binary Trees: Perfect Binary Tree

Perfect Binary Tree: All internal nodes have 2 children and all leaves are at the same

level.

Properties:
e Total nodes = 21 — 1 (h = height)
e All leaves at level h
® Maximally space-efficient

Types of Binary Trees: Balanced vs Skewed

Balanced Binary Tree Skewed Binary Tree
Height difference < 1 for all nodes All nodes only have one child

Height: O(log n)

Height: O(n)

Binary Tree Implementation

11class TreeNode:

10

11

12

13

14

15

16

def

__init__(self, value):
self .value = value
self.left = None

self .right = None

class BinaryTree:

def

def

def

__init__(self):
self .root = None

insert (self, value):
if not self.root:
self.root = TreeNode (value)
else:
self._insert_recursive (self.root,

_insert_recursive (self, node, value):

value)

Binary Search Trees (BST)

Binary Search Tree (BST)

Definition: A binary tree where for every node:
e All values in left subtree < node value
e All values in right subtree > node value

® Both subtrees are also BSTs

BST Search Operation

Algorithm: Start at root and compare target with current node.

Search for 40:

1 Chravd+ ~+CN- A0 -~ CN o~ | ~Fr

1

10

11

12

13

14

15

16

BST Search Implementation

def

def

search(self, value):
"""Search for a value in the BST"""

return self._search_recursive (self.root,

_search_recursive (self, node, value):
Base case: empty tree or value found

if node is
return

Value is
if value <

return

Value is

None or node.value == value:
node

smaller: search left subtree
node.value:

value)

self._search_recursive (node.left, value)
larger: search right subtree
return self._search_recursive(node.right, value)

wni# Iterative version

1

10

11

12

13

14

15

16

BST Insert Operation

def

def

insert (self, value):

"""Tnsert a value into the BST"""

if not self.root:
self.root = TreeNode (value)

else:
self._insert_recursive(self .root,

_insert_recursive (self, node, value):
Insert in left subtree
if value < node.value:
if node.left is None:
node.left = TreeNode(value)
else:

value)

self._insert_recursive (node.left, value)

Insert in right subtree
else:
if node.right is None:

BST Delete Operation: Three Cases

Case 1: Node is a leaf — Simply remove it
Case 2: Node has one child — Replace with child
Case 3: Node has two children — Replace with:
® Inorder successor: Smallest value in right subtree
® Inorder predecessor: Largest value in left subtree

1

© o N o o »

10
11
12
13
14
15
16
17
18

BST Delete Implementation

def

def

delete (self, value):

self .root = self._delete_recursive(self.root, value)
_delete_recursive (self, node, value):
if node is None:

return None
if value < node.value:

node.left = self._delete_recursive(node.left, value)
elif value > node.value:

node.right = self._delete_recursive(node.right, value)
else:

Case 1: Leaf or one child

if node.left is None:
return node.right

if node.right is None:
return node.left

Case 2: Two children - findirdinorder successor

Tree Traversals

Tree Traversal Overview

Traversal: Visiting all nodes in a specific order.

Four Main Types:

1.
2. Preorder (Root-Left-Right): Used for copying trees
3.

4. Level-order (Breadth-first): Level by level

Inorder (Left-Root-Right): Produces sorted order in BST

Postorder (Left-Right-Root): Used for deleting trees

Inorder Traversal (Left-Root-Right)

Order: Left subtree — Root — Right subtree

Result: 4, 2,5, 1,6, 3,7

Use Cases:
® (etting sorted order from BST

® Expression tree evaluation

Inorder Traversal Implementation

1 def inorder (self):

2 """Return list of values in inorder"""

3 result = []

4 self._inorder_recursive (self.root, result)
5 return result

7.def _inorder_recursive(self, node, result):
8 if node:

9 # Left subtree

10 self._inorder_recursive (node.left, result)
11 # Root

12 result.append(node.value)

13 # Right subtree

14 self._inorder_recursive (node.right, result)

15
16| # Iterative version using stack
17.def inorder_iterative(self):

Preorder Traversal (Root-Left-Right)

Order: Root — Left subtree — Right subtree

Result: 1,2, 4,5,3,6,7

Use Cases:
® (Creating a copy of the tree
® Prefix expression of an expression tree
® Serializing a tree

Preorder Traversal Implementation

1 def preorder(self):

2 """Return list of values in preorder""'

3 result = []

4 self . _preorder_recursive (self.root, result)
5 return result

7 def _preorder_recursive (self, node, result):

8 if node:

9 # Root

10 result.append(node.value)

11 # Left subtree

12 self . _preorder_recursive (node.left, result)
13 # Right subtree

14 self . _preorder_recursive (node.right, result)

15
16| # Iterative version
17.def preorder_iterative (self):

Postorder Traversal (Left-Right-Root)

Order: Left subtree — Right subtree — Root

Result: 4,5, 2,6,7,3,1

Use Cases:
e Deleting a tree (delete children before parent)
® Postfix expression of an expression tree
e Computing directory sizes in file system

Postorder Traversal Implementation

1 def postorder (self):

2 """Return list of values in postorder"""

3 result = []

4 self . _postorder_recursive (self.root, result)
5 return result

7 def _postorder_recursive(self, node, result):

8 if node:

9 # Left subtree

10 self . _postorder_recursive (node.left, result)
11 # Right subtree

12 self . _postorder_recursive (node.right, result)
13 # Root

14 result.append(node.value)

15
16| # Iterative version using two stacks
17.def postorder_iterative (self):

Level-Order Traversal (Breadth-First)

Order: Visit nodes level by level, left to right

Level O: 1

0 Level 1: 2, 3
Level 2: 4, 5,6, 7

Result: 1, 2,3,4,5,6,7

Use Cases:
® Finding shortest path in unweighted tree

Level-Order Traversal Implementation

1 from collections import deque

10

11

12

13

14

15

16

def level_order (self):

"""Return list of values in level -order"""
if not self.proot:
return []

result = []
queue = deque ([self.root])

while queue:
node = queue.popleft ()
result.append(node.value)

if node.left:
queue . append (node.left)
if node.right:

Heaps

Heap Data Structure

Definition: A complete binary tree satisfying the heap property.

Two Types:
® Max Heap: Parent > children (root is maximum)

¢ Min Heap: Parent < children (root is minimum)

Max Heap Min Heap

Heap Array Representation

Key Insight: Complete binary tree can be stored efficiently in an array.

Index Relationships:
® Parent of i: (/ —1)/2
o Left child of i: 2/ + 1
® Right child of i: 2/ + 2

Array: [100, 80, 90, 40, 50, 30, 60]
Indices: 0 1 2 3 4 5 6

Heap Insert Operation

Algorithm:
1. Add new element at the end (maintain complete tree property)
2. Heapify Up: Compare with parent and swap if needed
3. Repeat until heap property restored

def

def

insert (self, value):
"""Insert value into max heap"""
self .heap.append(value)

self . _heapify_up(len(self.heap) - 1)

_heapify_up(self, index):
parent = (index - 1) // 2

Max heap: 1f current > parent, swap
if index > O and self.heap[index] > self.heapl[parent]:
self .heap[index], self.heap[parent] = \
self.heap[parent], self-.heap[index]

© 0w N o U A W N e

e
= o

5]

Heap Extract Max/Min Operation

Algorithm:

1.
2
3.
4

def

def

Remove and return root (max/min element)

. Replace root with last element

Heapify Down: Compare with children and swap with larger/smaller

. Repeat until heap property restored

extract_max (self):
if not self.heap:
return None

max_val = self.heap[0]

self .heap [0] = self.heap[-1]
self .heap.pop ()
self._heapify_down (0)

return max_val

_heapify_down (self, index):
largest = index

Heap Applications

Priority Queue:
® Task scheduling (OS process scheduling)
® Event-driven simulation
® Dijjkstra’s shortest path algorithm

Heap Sort:
® Build max heap from array
® Repeatedly extract max
® O(nlog n) time, O(1) space

Top-K Problems:
¢ Find K largest/smallest elements
® Maintain min/max heap of size K
® Streaming data scenarios

Median Finding:
e Two heans: max hean for lower half minheapn for unner half

Balanced Trees

Why Balanced Trees?

Problem with BST: Can degenerate to O(n) operations in worst case.

Worst Case BST Balanced BST

Height = log n
Operations: O(log n)

Height = n
Operations: O(n)

Solution: Self-balancing trees (AVL, Red-Black)

AVL Trees

Definition: BST where height difference of left and right subtrees < 1 for all nodes.

Balance Factor: height(left) - height(right)
® Must be -1, 0, or +1 for all nodes

BF=0

Properties:
e Height is always O(log n)

AVL Tree Rotations

Four Rotation Cases:

1. Left-Left (LL) 2. Right-Right (RR)
Single right rotation Single left rotation

3. Left-Right (LR) 4. Right-Left (RL)
Left rotate, then right rotate Right rotate, then left rotate

AVL Tree Rotation Implementation

1 def _rotate_right(self, y):

© W N o U A~ W N

e e T < O =
®w N o o hA W N R O

=
©

def

"""Right rotation
x = y.left
T2 = x.right

"

.right =y
y.left = T2

y.height = 1 + max(self
self
1 + max(self
self

I

x.height
return x

_rotate_left (self, x):
"""TLeft rotation"""

y = x.right

T2 = y.left

._get_height (y.
._get_height (y.
._get_height (x.
._get_height (x.

left),
right))
left),
right))

Red-Black Trees

Definition: BST with additional color property for balancing.

Properties:

1.

Ot L

Every node is either red or black

Root is always black

All leaves (NIL) are black

Red nodes have black children (no two red nodes in a row)

All paths from root to leaves have same number of black nodes

Red-Black Trees vs AVL Trees

Feature AVL Tree Red-Black Tree
Balance Strictly balanced | Approximately balanced
Height <1.44logn <2logn

Search Faster Slightly slower
Insert/Delete | More rotations Fewer rotations

Use case Read-heavy Insert/delete-heavy
Examples Databases Java TreeMap, C++ map

Key Takeaway:
® AVL: Better for lookup-intensive applications

® Red-Black: Better for applications with frequent insertions/deletions

Real-World Applications

Database Indexing

B-Trees and B+ Trees: Variants of balanced trees used in databases.

Why Trees for Databases?

Fast search: O(log n)

® Efficient range queries

® Good disk I/O performance (nodes = disk blocks)
® Support for ordered traversal

B+ Tree Features:

All data in leaf nodes

Internal nodes only store keys

Leaves linked for sequential access
Used in: MySQL, PostgreSQL, SQLite

Example:

® |ndex on employee 1D
e Fast lookups: SELECT * WHERE id = 12345

Expression Parsing

Syntax Trees: Represent mathematical or code expressions.

Example: (3+5) x 2

Evaluation:
® Postorder traversal: 3, 5, +, 2, X
® Result: (3+5) =28, then 8 x2 =16

Applications:

File Systems

Directory Structure: Trees represent hierarchical file organization.

/]
/
home etc var
[userl I user2 { log I tmp]

Operations:

® Navigate directories: O(depth)

® | ist contents: Visit children

® Calculate directory size: Postorder traversal
Search for files: DFS or BFS

Decision Trees (Machine Learning)

Decision Trees: Tree-based models for classification and regression.

Age < 307

[Income < 50K?j [Credit > 700?}

[No [Yes [Yes [No]

Properties:
® |nternal nodes: Decision rules
® |eaves: Predictions (class labels or values)
® Path from root to leaf: Decision path

Algorithms: ID3, C4.5, CART, Random Forests, Gradient Boosting

Huffman Coding (Compression)

Huffman Tree: Optimal prefix-free binary code for data compression.

Example: Compress "AAABBC"

Encoding:
e A:0Q,B:10, C: 11
e "AAABBC" — 000 10 10 11 (10 bits vs 18 bits)

Used in: ZIP, JPEG, MP3

Complexity Analysis

Tree Operations Complexity

Operation BST (avg) | BST (worst) | Balanced
Search O(log n) O(n) O(log n)
Insert O(log n) O(n) O(log n)
Delete O(log n) O(n) O(log n)
Find Min/Max | O(log n) O(n) O(log n)
Traversal O(n) O(n) O(n)

Key Points:
e Unbalanced BST: Worst case O(n) when tree becomes skewed
® Balanced trees (AVL, Red-Black): Guaranteed O(log n)
® Traversals always O(n) - must visit every node

Heap Operations Complexity

Operation Time Complexity
Insert O(log n)
Extract Max/Min O(log n)

Get Max/Min (peek) 0(1)

Build Heap O(n)
Heapify O(log n)
Heap Sort O(n log n)

Space Complexity: O(n)

Note:
® Get max/min is O(1) - root element
® Build heap from array is O(n), not O(n log n)

Space Complexity

Tree Storage:

Structure Space
Binary Tree (pointer-based) O(n)
Complete Binary Tree (array) | O(n)
AVL Tree (with height) O(n)
Red-Black Tree (with color) O(n)
Heap (array-based) O(n)

Additional Space:
® Recursive traversals: O(h) stack space
® [terative traversals with stack/queue: O(h) or O(w)
® h = height, w = maximum width

® | evel-order traversal: O(w) for queue

Summary

Key Concepts Recap

Binary Trees:
® Hierarchical structure with at most 2 children per node
e Types: Full, Complete, Perfect, Balanced, Skewed

Binary Search Trees:
® QOrdered binary tree: left < root < right
e QOperations: Search, Insert, Delete - O(h)
e Can degenerate to O(n) without balancing

Traversals:
® |norder (sorted), Preorder (copy), Postorder (delete), Level-order

Heaps:
e Complete binary tree with heap property
® Priority queue, Heap sort, Top-K problems

Key Concepts Recap (continued)

Balanced Trees:
e AVL: Strict balance, faster search
® Red-Black: Approximate balance, faster insert/delete
® Both guarantee O(log n) operations

Applications:

Database indexing (B-trees, B+ trees)
Expression parsing (syntax trees)

File systems (directory trees)

Machine learning (decision trees)
Compression (Huffman coding)

Complexity:
® Balanced trees: O(log n) for search, insert, delete
® Heaps: O(log n) for insert/extract, O(1) for peek
® Traversals: Always O(n)

When to Use Which Tree?

Use Case

Tree Type

Fast search in sorted data

BST, AVL, Red-Black

Priority queue

Min/Max Heap

Frequent inserts/deletes

Red-Black Tree

Lookup-heavy workload

AVL Tree

Database indexing

B-Tree, B+ Tree

Expression evaluation

Syntax Tree

File system

N-ary Tree

Decision making

Decision Tree

Compression

Huffman Tree

Range queries

Segment Tree, Interval Tree

Practice Problems

Basic:
® |mplement inorder, preorder, postorder traversals
® Find height of a binary tree
® Check if a binary tree is a valid BST
® Find lowest common ancestor (LCA)

Intermediate:

Serialize and deserialize a binary tree

e Convert sorted array to balanced BST

® |mplement AVL tree with rotations

® Find kth smallest element in BST

Advanced:
® |mplement Red-Black tree
® Morris traversal (constant space)
® Segment tree for range queries

e R o o T P

Next Steps

Continue Learning:

Advanced trees: Trie, Segment Tree, Fenwick Tree
Graph algorithms (trees are special graphs)
Dynamic programming with trees

Practice on LeetCode, HackerRank

Resources:

CLRS: Introduction to Algorithms

GeeksforGeeks tree tutorials

Visualgo.net for visualizations

Project: Implement your own balanced tree library

Real-World Projects:

Build a simple database with B-tree indexing
Create an expression evaluator

Implement file compression with Huffman coding

D T [c

)
J
3
z
)
)
.

Thank Youl

Questions?

Trees: The Foundation of Hierarchical Thinking

	Introduction to Trees
	Binary Trees
	Binary Search Trees (BST)
	Tree Traversals
	Heaps
	Balanced Trees
	Real-World Applications
	Complexity Analysis
	Summary

