
Data Structures: Stacks

Data Structure Course
DGIST

October 2, 2025

Contents

1. Introduction to Stacks

2. Core Operations

3. Implementation Approaches

4. Applications

5. Complexity Analysis

6. Summary

Introduction to Stacks

What is a Stack?

Definition
A stack is a linear data structure that follows the Last In, First Out (LIFO) principle.

Key characteristics:
• Elements are added and removed from the same

end (top)
• Only the top element is accessible
• Perfect for managing nested operations and

histories
• Natural structure for function calls and recursion

Item 1
Item 2
Item 3
Item 4 TOP

Stack Structure

Data Structure Course Stacks October 2, 2025 4/19

Core Operations

Essential Stack Operations

Primary Operations
• Push: Add element to top
• Pop: Remove and return top element
• Peek/Top: Return top element

without removing
• Empty: Check if stack is empty
• Size: Get number of elements

C Example
1 int s [100];
2 int top = -1; // empty
3
4 // push
5 s[++ top] = 10;
6 s[++ top] = 20;
7
8 // peek (top element)
9 int topVal = s[top]; // -> 20

10
11 // pop
12 int x = s[top - -]; // -> 20
13
14 // empty ?
15 int empty = (top == -1);

Time Complexity
All operations are O(1) - constant time (amortized for push in dynamic arrays)

Data Structure Course Stacks October 2, 2025 6/19

Stack Operations Visualization

Initial Stack

10
20

After Push(30)

10
20
30 PUSH

After Pop()

10
20 TOP

Returns: 30

Data Structure Course Stacks October 2, 2025 7/19

Implementation Approaches

Array-based vs Linked List Implementation

Array-based Stack
Pros:

• Contiguous memory
• Great cache locality
• Simple implementation
• O(1) amortized push

Cons:
• Occasional resize cost
• Capacity management

Linked List-based Stack
Pros:

• No resize cost
• Always O(1) operations
• Dynamic size

Cons:
• Extra pointer memory
• Poor cache locality
• More complex

Data Structure Course Stacks October 2, 2025 9/19

Linked List Stack Implementation

1 class Node:
2 def __init__ (self , val , next=None):
3 self.val = val
4 self.next = next
5

6 class StackLL :
7 def __init__ (self):
8 self.head = None
9 self.n = 0

10

11 def push(self , x):
12 self.head = Node(x, self.head)
13 self.n += 1
14

15 def pop(self):
16 if not self.head:
17 raise IndexError ("pop from empty stack")
18 x = self.head.val
19 self.head = self.head.next
20 self.n -= 1
21 return x
22

23 def peek(self):
24 if not self.head:
25 raise IndexError ("peek from empty stack")
26 return self.head.val

Data Structure Course Stacks October 2, 2025 10/19

Applications

Expression Evaluation: Parentheses Matching

Problem
Check if parentheses, brackets, and braces are properly balanced.

Algorithm:
1. Push opening brackets onto stack
2. For closing brackets:

• Check if stack is empty
• Check if top matches type
• Pop if match, return false if not

3. Stack should be empty at end

1 def valid_brackets (s):
2 pairs = {’)’:’(’, ’]’:’[’, ’}’:’{’}
3 st = []
4 for ch in s:
5 if ch in ’([{ ’:
6 st. append (ch)
7 elif ch in ’)]} ’:
8 if not st or st [-1] != pairs [ch]:
9 return False

10 st.pop ()
11 return not st
12
13 # Examples :
14 # valid_brackets ("([]) {}") -> True
15 # valid_brackets ("([)]") -> False

Data Structure Course Stacks October 2, 2025 12/19

Function Call Stack and Recursion

Call Stack Mechanism
• Each function call creates a stack frame
• Frame contains: parameters, local variables,

return address
• Recursion uses call stack implicitly
• Deep recursion can cause stack overflow

Converting Recursion to Iteration
Use explicit stack to avoid stack overflow for
deep recursion

main()
func1()
func2()
func3() Current

Call Stack

Data Structure Course Stacks October 2, 2025 13/19

Undo/Redo Operations

Two-Stack Approach
• Undo Stack: stores performed actions
• Redo Stack: stores undone actions

Operations:
• Action: push to undo, clear redo
• Undo: pop from undo, apply inverse,

push to redo
• Redo: pop from redo, apply, push to

undo

Simple undo/redo pattern in
pseudocode:

• do(action) - execute and save
• undo() - reverse last action
• redo() - replay undone action

Real-world Examples
Text editors, image editing software, IDEs, web browsers

Data Structure Course Stacks October 2, 2025 14/19

Complexity Analysis

Time and Space Complexity

Implementation Push Pop/Peek Space

Array-based O(1) amortized O(1) O(n)
Linked List-based O(1) O(1) O(n) + pointer overhead

Array-based Considerations
• Amortized O(1) push due to resize
• Worst-case single push: O(n)
• Better cache performance

Linked List Considerations
• Guaranteed O(1) for all operations
• Extra memory per node
• Dynamic allocation overhead

Data Structure Course Stacks October 2, 2025 16/19

Summary

Key Takeaways

Stack Fundamentals
• LIFO data structure with top-only access
• Essential operations: push, pop, peek, empty, size
• All operations are O(1) time complexity

Implementation Choices
• Array-based: better cache, amortized O(1)
• Linked list-based: guaranteed O(1), more memory

Important Applications
• Expression evaluation and parentheses matching
• Function call management and recursion
• Undo/redo functionality
• Backtracking algorithms
• Converting recursive to iterative algorithms

Data Structure Course Stacks October 2, 2025 18/19

Thank You!
Questions?

	Introduction to Stacks
	Core Operations
	Implementation Approaches
	Applications
	Complexity Analysis
	Summary

