Data Structures: Stacks

Data Structure Course
DGIST

October 2, 2025

Contents

1. Introduction to Stacks

2. Core Operations

3. Implementation Approaches
4. Applications

5. Complexity Analysis

6. Summary

Introduction to Stacks

What is a Stack?

Definition
A stack is a linear data structure that follows the Last In, First Out (LIFO) principle.

Key characteristics:

Elements are added and removed from the same
end (top)

Only the top element is accessible

Perfect for managing nested operations and
histories

Natural structure for function calls and recursion

Item 4 [« TOP
ltem 3
ltem 2
ltem 1

Stack Structure

Core Operations

Essential Stack Operations

Primary Operations
® Push: Add element to top

® Pop: Remove and return top element

Peek/Top: Return top element
without removing

Empty: Check if stack is empty

Size: Get number of elements

©O~NO O WN -

int s[100];

int top = -1; // empty
// push
s [++top]
s [++top]

10;
20;

// peek (top element)
int topVal = s[topl; // -> 20
// pop

int x = s[top--1; // -> 20
// empty?

int empty = (top == -1);

Time Complexity

All operations are O(1) - constant time (amortized for push in dynamic arrays)

Stack Operations Visualization

Initial Stack After Push(30) After Pop()
Returns: 30
30 PUSH
20 20 20 < TOP

10 10 10

Implementation Approaches

Array-based vs Linked List Implementation

Array-based Stack Linked List-based Stack
Pros: Pros:
e Contiguous memory ® No resize cost
® Great cache locality e Always O(1) operations
® Simple implementation ® Dynamic size
® O(1) amortized push Cons:
Cons: ® Extra pointer memory
® (Qccasional resize cost ® Poor cache locality

® Capacity management ® More complex

Linked List Stack Implementation

1 class Node:

2 def __init__(self, val, next=None):
3 self.val = val
4 self .next = next

6 class StackLL:

7 def __init__(self):

8 self .head = None

9 self .n = 0

10

1 def push(self, x):

12 self .head = Node(x, self.head)
13 self.n +=

14

15 def pop(self):

16 if not self.head:

17 raise IndexError ("pops from empty stack")

Applications

Expression Evaluation: Parentheses Matching

Problem

Check if parentheses, brackets, and braces are properly balanced.

Algorithm:
1. Push opening brackets onto stack

2. For closing brackets:

® Check if stack is empty
® Check if top matches type
® Pop if match, return false if not

3. Stack should be empty at end

O~NOO A WN =

10
11
12
13
14
15

def valid_brackets(s):
paieg = {7)287(P, 1982 [P, 578 °F
st = []
for ch in s:
if ch in *([{’:
st.append (ch)
elif ch in ’)]}’:
if not st or st[-1] != pairs[ch]:
return False
st.pop)
return not st

Examples:
valid_brackets ("(
(

[1){}") -> True
valid_brackets ("([)I") -> False

Stacks

Function Call Stack and Recursion

Call Stack Mechanism

® Each function call creates a stack frame

® Frame contains: parameters, local variables, func3()
return address func2()
® Recursion uses call stack implicitly funcl()
. main()
® Deep recursion can cause stack overflow
Call Stack

Converting Recursion to Iteration

Use explicit stack to avoid stack overflow for
deep recursion

- Current

Undo/Redo Operations

Two-Stack Approach

® Undo Stack: stores performed actions
Simple undo/redo pattern in

® Redo Stack: stores undone actions
pseudocode:

Operations: ® do(action) - execute and save

® Action: push to undo, clear redo e undo() - reverse last action

® Undo: pop from undo, apply inverse,

) . ® redo() - replay undone action
push to redo

® Redo: pop from redo, apply, push to
undo

Real-world Examples

Text editors, image editing software, IDEs, web browsers

Complexity Analysis

Time and Space Complexity

Implementation | Push | Pop/Peek | Space

Array-based O(1) amortized 0(1) O(n)
Linked List-based 0(1) 0(1) O(n) + pointer overhead

Array-based Considerations Linked List Considerations
® Amortized O(1) push due to resize ® Guaranteed O(1) for all operations
® Worst-case single push: O(n) ® Extra memory per node

® Better cache performance ® Dynamic allocation overhead

Summary

Key Takeaways

Stack Fundamentals
® |IFO data structure with top-only access

® Essential operations: push, pop, peek, empty, size

® All operations are O(1) time complexity

Implementation Choices

® Array-based: better cache, amortized O(1)

® Linked list-based: guaranteed O(1), more memory

Important Applications

® Expression evaluation and parentheses matching

® Function call management and recursion

Undo/redo functionality

Backtracking algorithms

Thank You!

Questions?

	Introduction to Stacks
	Core Operations
	Implementation Approaches
	Applications
	Complexity Analysis
	Summary

