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Introduction to Stacks



What is a Stack?

Definition
A stack is a linear data structure that follows the Last In, First Out (LIFO) principle.

Key characteristics:
• Elements are added and removed from the same

end (top)
• Only the top element is accessible
• Perfect for managing nested operations and

histories
• Natural structure for function calls and recursion

Item 1
Item 2
Item 3
Item 4 TOP

Stack Structure
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Core Operations



Essential Stack Operations

Primary Operations
• Push: Add element to top
• Pop: Remove and return top element
• Peek/Top: Return top element

without removing
• Empty: Check if stack is empty
• Size: Get number of elements

C Example
1 int s [100];
2 int top = -1; // empty
3
4 // push
5 s[++ top] = 10;
6 s[++ top] = 20;
7
8 // peek (top element )
9 int topVal = s[top ]; // -> 20

10
11 // pop
12 int x = s[top - -]; // -> 20
13
14 // empty ?
15 int empty = (top == -1);

Time Complexity
All operations are O(1) - constant time (amortized for push in dynamic arrays)
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Stack Operations Visualization

Initial Stack

10
20

After Push(30)

10
20
30 PUSH

After Pop()

10
20 TOP

Returns: 30
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Implementation Approaches



Array-based vs Linked List Implementation

Array-based Stack
Pros:

• Contiguous memory
• Great cache locality
• Simple implementation
• O(1) amortized push

Cons:
• Occasional resize cost
• Capacity management

Linked List-based Stack
Pros:

• No resize cost
• Always O(1) operations
• Dynamic size

Cons:
• Extra pointer memory
• Poor cache locality
• More complex
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Linked List Stack Implementation

1 class Node:
2 def __init__ (self , val , next=None):
3 self.val = val
4 self.next = next
5

6 class StackLL :
7 def __init__ (self):
8 self.head = None
9 self.n = 0

10

11 def push(self , x):
12 self.head = Node(x, self.head)
13 self.n += 1
14

15 def pop(self):
16 if not self.head:
17 raise IndexError ("pop from empty stack")
18 x = self.head.val
19 self.head = self.head.next
20 self.n -= 1
21 return x
22

23 def peek(self):
24 if not self.head:
25 raise IndexError ("peek from empty stack")
26 return self.head.val
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Applications



Expression Evaluation: Parentheses Matching

Problem
Check if parentheses, brackets, and braces are properly balanced.

Algorithm:
1. Push opening brackets onto stack
2. For closing brackets:

• Check if stack is empty
• Check if top matches type
• Pop if match, return false if not

3. Stack should be empty at end

1 def valid_brackets (s):
2 pairs = {’)’:’(’, ’]’:’[’, ’}’:’{’}
3 st = []
4 for ch in s:
5 if ch in ’([{ ’:
6 st. append (ch)
7 elif ch in ’)]} ’:
8 if not st or st [ -1] != pairs [ch ]:
9 return False

10 st.pop ()
11 return not st
12
13 # Examples :
14 # valid_brackets ("([]) {}") -> True
15 # valid_brackets ("([) ]") -> False
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Function Call Stack and Recursion

Call Stack Mechanism
• Each function call creates a stack frame
• Frame contains: parameters, local variables,

return address
• Recursion uses call stack implicitly
• Deep recursion can cause stack overflow

Converting Recursion to Iteration
Use explicit stack to avoid stack overflow for
deep recursion

main()
func1()
func2()
func3() Current

Call Stack
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Undo/Redo Operations

Two-Stack Approach
• Undo Stack: stores performed actions
• Redo Stack: stores undone actions

Operations:
• Action: push to undo, clear redo
• Undo: pop from undo, apply inverse,

push to redo
• Redo: pop from redo, apply, push to

undo

Simple undo/redo pattern in
pseudocode:

• do(action) - execute and save
• undo() - reverse last action
• redo() - replay undone action

Real-world Examples
Text editors, image editing software, IDEs, web browsers
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Complexity Analysis



Time and Space Complexity

Implementation Push Pop/Peek Space

Array-based O(1) amortized O(1) O(n)
Linked List-based O(1) O(1) O(n) + pointer overhead

Array-based Considerations
• Amortized O(1) push due to resize
• Worst-case single push: O(n)
• Better cache performance

Linked List Considerations
• Guaranteed O(1) for all operations
• Extra memory per node
• Dynamic allocation overhead
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Summary



Key Takeaways

Stack Fundamentals
• LIFO data structure with top-only access
• Essential operations: push, pop, peek, empty, size
• All operations are O(1) time complexity

Implementation Choices
• Array-based: better cache, amortized O(1)
• Linked list-based: guaranteed O(1), more memory

Important Applications
• Expression evaluation and parentheses matching
• Function call management and recursion
• Undo/redo functionality
• Backtracking algorithms
• Converting recursive to iterative algorithms
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Thank You!
Questions?
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