Sorting Algorithms

Organize Data to Enable Efficient Access and Computation

Minseok Jeon
DGIST

November 2, 2025

Table of Contents

Introduction

Comparison Sorts: Quick/Merge/Heap
Stability and In-Place Properties
Partitioning and Recursion

Time/Space Complexities
Non-Comparison Sorts: Counting/Radix

Practical Considerations

o S A o

Summary

Introduction

What is Sorting?

Sorting: Arranging data in a particular order (ascending/descending)

Why Sorting Matters:
® Foundation for search algorithms
® Database query optimization
® Data organization and visualization

Algorithm efficiency (many algorithms require sorted data)

Classification:
® Comparison-based: Compare elements pairwise
® Quick Sort, Merge Sort, Heap Sort
® [ower bound: Q2(nlog n)
® Non-comparison: Use element properties
® Counting Sort, Radix Sort, Bucket Sort
® Can achieve O(n) time

Key Properties of Sorting Algorithms

Important Characteristics:

1. Time Complexity:
® Best, Average, Worst case scenarios

2. Space Complexity:
® |n-place vs. requiring extra memory

3. Stability:
® Preserves relative order of equal elements

4. Adaptability:
® Performance on partially sorted data

5. Recursion:
® Recursive vs. lterative implementation

Comparison Sorts: Quick/Merge/Heap

Quick Sort: Overview

Divide and Conquer Using Partitioning

Algorithm:
1. Choose a pivot element
2. Partition: elements < pivot left, > pivot right
3. Recursively sort left and right partitions

Characteristics:

Time: O(nlogn) average, O(n?) worst
Space: O(log n) for recursion stack
In-place: Yes

Stable: No

Advantages:
® Fastest average-case performance
® Good cache locality
e |n-place sorting

Quick Sort: Implementation

def quick_sort(arr, low, high):

"""Sort array using quick sort"""

if low < high:
Partition and get pivot index
pivot_idx = partition(arr, low, high)

Recursively sort left and right
quick_sort (arr, low, pivot_idx - 1)
quick_sort (arr, pivot_idx + 1, high)

partition(arr, low, high):
"""Lomuto partition scheme
pivot = arr[high] # Choose last element as pivot
i = low - 1 # Index of smaller element

for j in range(low, high):
if arr[j] <= pivot:

e e e
NOOAWNHROOONOUAWNH
o
)
h

18 i+=1

19 arr[i], arr[j] = arr(j], arrl[il

20

21 # Place pivot in correct position

22 arr[i + 1], arr([highl]l = arr[highl, arr[i + 1]

23 return i + 1

Quick Sort: Example

Sorting: [7, 2, 1, 6, 8, 5, 3, 4]

Step 1: Choose pivot = 4 (last element)
Step 2: Partition

Before: [7, 2, 1, 6, 8, 5, 3, 4]
After: [2, 1,3, 4,8, 5,7, 6]

Elements < 4 on left, > 4 on right

Step 3: Recursively sort [2, 1, 3] and [8, 5, 7, 6]
Final Result: [1, 2, 3, 4,5, 6, 7, 8]

Merge Sort: Overview

Divide and Conquer with Merging

Algorithm:
1. Divide array into two halves
2. Recursively sort each half
3. Merge the two sorted halves

Characteristics:

Time: O(nlog n) always
Space: O(n) for auxiliary array
In-place: No

Stable: Yes

Advantages:
e Guaranteed O(nlog n) performance
® Stable sorting
e..Good for external sortina (disk-based)

O

©ww~NO O s W

Merge Sort: Implementation

def

merge_sort (arr) :
"""Sort array using merge sort"""
if len(arr) <= 1

return arr

Divide

mid = len(arr) // 2

left = merge_sort(arr[:mid])
right = merge_sort(arr[mid:])

Conquer (merge)
return merge(left, right)

merge (left, right):

"""Merge two sorted arrays"""
result = []

is3 =0

Merge while both have elements
while i < len(left) and j < len(right):
if left[i] <= rightl[jl:
result.append (left[i])

i+=1

else:
result.append(right [j])
g = i

Add remaining elements
result.extend (left[i:])
result.extend(right [j:])

Merge Sort: Example

Sorting: [38, 27, 43, 3, 9, 82, 10]
Divide Phase:

[38, 27, 43, 3, 9, 82, 10]
[38, 27, 43, 3] [9, 82, 10]
[38, 27][43, 3] [9, 82][10]
[38][27][43] [3] [9] [82]

Merge Phase:

Merge pairs: [27, 38], [3, 43], [9, 82]
Merge again: [3, 27, 38, 43], [9, 10, 82]
Final merge: [3, 9, 10, 27, 38, 43, 82]

Heap Sort: Overview

Build Max Heap, Repeatedly Extract Maximum

Algorithm:
1. Build a max heap from input array
2. Repeatedly extract maximum (root)
3. Place extracted element at end of array
4. Restore heap property

Characteristics:

Time: O(nlogn) always
Space: O(1)

In-place: Yes

Stable: No

Advantages:
e Guaranteed O(nlog n) performance
e |n-place sorting (no extra memory)

©O~NOO D WN

Heap Sort: Implementation

def

def

heap_sort (arr):
"""Sort array using heap sort"""
n = len(arr)

Build max heap
for i in range(n // 2 - 1, -1, -1):
heapify(arr, n, i)

Extract elements from heap
for i in range(n - 1, 0, -1):
Move current root to end
arr [0], arr[i] = arr[i], arr [0]

Heapify reduced heap
heapify(arr, i, 0)

heapify(arr, n, 1i):
"""Maintain max heap property
largest = i

left = 2 * i + 1

right = 2 * i + 2

Check if left child is larger

if left < n and arr[left] > arr[largest]:

largest = left

Check if right child is larger

if right < n and arr[right] > arr([largest]:

largest = right

Comparison of Quick/Merge/Heap

Property Quick Sort | Merge Sort | Heap Sort
Best Time O(nlogn) O(nlogn) | O(nlogn)
Average Time | O(nlogn) O(nlogn) | O(nlogn)
Worst Time O(n?) O(nlogn) | O(nlogn)
Space O(log n) O(n) O(1)
Stable No Yes No
In-place Yes No Yes

When to Use:
® Quick Sort: General purpose, fastest average case
e Merge Sort: Need stability or guaranteed performance

e Heap Sort: Limited memory, guaranteed performance

Stability and In-Place Properties

What is Stability?

Stability: Maintains relative order of equal elements
Example:
Original: [(3, "a"), (1, "b"), (3, "c"), (2, "d")]
Sort by first element:

Stable: [(1, “b”), (2, “d”), (3Y “a“), (3Y IICII)]
"a" before "c" (order preserved)

Unstable' [(1 “b“) (2 lldll) (3 " ||) (3 n n)]
"c" before "a" (order changed)

Why Stability Matters

Multi-level Sorting:

Example: Sort students by grade, then by name
1. First sort by name (stable):
), (David, 90)

2. Then sort by grade (stable):
), (David, 90)
® \Within same grade, alphabetical order preserved!

Applications:
® Database query results with ORDER BY multiple columns
® Spreadsheet sorting by multiple columns

® Event scheduling systems

Stable vs. Unstable Algorithms

Stable Algorithms:
® /Merge Sort
® /Insertion Sort
® v Bubble Sort
e /Counting Sort
® /Radix Sort

Unstable Algorithms:
® x Quick Sort (can be made stable with extra space)
® x Heap Sort
® x Selection Sort

Note:
® Stability often requires extra space or comparisons
® QQuick Sort can be made stable but loses in-place property

What is In-Place Sorting?

In-Place: Uses O(1) extra space (excluding recursion stack)

Benefits:
® Memory-efficient for large datasets
® Better cache performance
® Suitable for embedded systems with limited memory

In-Place Algorithms:

® v Quick Sort: O(log n) stack space
v'Heap Sort: O(1) extra space
v'Insertion Sort: O(1) extra space
v'Selection Sort: O(1) extra space
v'Bubble Sort: O(1) extra space

Not In-Place:
® x Merge Sort: O(n) auxiliary array
e x Counting Sort: O(k) where k is ranae

Trade-offs: Stability vs. In-Place

Algorithm Stable | In-Place
Merge Sort Yes No
Quick Sort No Yes
Heap Sort No Yes
Insertion Sort Yes Yes
Bubble Sort Yes Yes

Observations:
® Hard to achieve both stability and in-place for O(nlog n) sorts
e Simple O(n?) sorts can be both stable and in-place

® Practical choice: Python's Timsort (stable, O(n) space worst case)

Partitioning and Recursion

Partitioning: Core of Quick Sort

Goal: Rearrange array so elements < pivot are left, > pivot are right

Two Main Schemes:

1. Lomuto Partition:
® Simple implementation
® Pjyot: last element

® More swaps than Hoare

2. Hoare Partition:
® More efficient (fewer swaps)
® Pivot: first element

® Slightly more complex

Lomuto Partition

def lomuto_partition(arr, low,

high) :

Simple but does more swaps

Pivot last element

pivot = arr[highl]
i = low - 1

for j in range(low, high):

if arr[j] <= pivot:
i+= 1
arr[i], arr[j] =

arr[jl, arr[i]

arr[i + 1], arr([high] = arr[high]l, arr[i + 1]

return i + 1

Example:

Array: [7,2,1,6,8,5, 3, 4]
Pivot = 4 (last element)
After partition: [2, 1, 3, 4, 8,5, 7, 6]
Pivot at index 3

Hoare Partition

def hoare_partition(arr, low, high):
W
More efficient, fewer swaps
Pivot: first element
W
pivot = arr[low]
i = low - 1
j = high + 1
while True:
Find element >= pivot from left
i+=1
while arr[i] < pivot:
i+=1
Find element <= pivot from right
j =1
while arr[j] > pivot:
jo-=1
if i o>= j:
return j
arr[i], arr(j] = arr[jl, arr[i]

Advantage: About 3x fewer swaps than Lomuto on average

3-Way Partitioning (Dutch National Flag)

For Arrays with Many Duplicates

def three_way_partition(arr, low, high):

Partition into <pivot, =piv >pivot
Efficient for many duplica
pivot = arr[high]
i = low # Boundary of < pivot
j = low # Currer ement
k = high # Boundary of > pivot
while j <= k:
if arr[j] < pivot:
arr[i], arr[j] = arr[jl, arr[il]
i+=1
j =1

elif arr[j] > pivot:
arr[jl, arr[k] = arr[k], arr([j]
k -=1

else:
j+t=1

return i, k

Example: [3, 5, 2, 5, 1, 5, 4, 5] with pivot=5
After: [3,2,1,4,5,5,5, 5]

Recursion in Quick Sort

Recursion Tree Example:

[8.3.1,7,0,10,2]

_— ~
[1,0] [7.3,10,8]
| N
[0.1] [7.3] [10]
|
[3.7]

Recursion Depth:
® Best/Average case: O(logn)
® Worst case (sorted input): O(n)

1
2
3
4
5

Tail Recursion Optimization

def quick_sort_tail_recursive(arr, low, high):
"""Optimize tail recursion to reduce stack space
while low < high:
pivot_idx = partition(arr, low, high)

Recurse on smaller partition
if pivot_idx - low < high - pivot_idx:

quick_sort_tail_recursive (arr, low, pivot_idx - 1)

low = pivot_idx + 1

else:
quick_sort_tail_recursive (arr, pivot_idx + 1,
high = pivot_idx - 1

Benefit:
e Guarantees O(log n) stack depth
® Always recurse on smaller partition

e Convert tail call to iteration

high)

[N

IN

w0~ o,

©

Iterative Quick Sort

def quick_sort_iterative(arr):
"""Quick sort without recursion"""
stack = [(0, len(arr) - 1)]
while stack:
low, high = stack.pop()
if low < high:
pivot_idx = partition(arr, low, high)
Push subproblems to stack
stack.append ((low, pivot_idx - 1))
stack.append ((pivot_idx + 1, high))
Advantages:

® No recursion overhead
® Explicit stack control

® Fasier to debug

Time/Space Complexities

Time Complexity: Comparison Sorts

Algorithm Best Average Worst
Bubble Sort O(n) O(n?) O(n?)
Selection Sort | O(n?) O(n?) O(n?)
Insertion Sort O(n) O(n?) O(n?)
Merge Sort O(nlogn) | O(nlogn) | O(nlogn)
Quick Sort O(nlogn) | O(nlogn) Oo(n?)
Heap Sort O(nlogn) | O(nlogn) | O(nlog n)

Notes:

e Bubble/Insertion: O(n) best case when nearly sorted

e Selection: Always O(n?), even if sorted
® Quick Sort: Worst case with poor pivot selection
® Merge/Heap: Guaranteed O(nlog n)

Space Complexity

Algorithm Space Type
Bubble Sort O(1) In-place
Selection Sort O(1) In-place
Insertion Sort O(1) In-place
Merge Sort O(n) Not in-place
Quick Sort O(logn) | In-place (stack)
Heap Sort O(1) In-place
Counting Sort O(k) Not in-place
Radix Sort O(n+ k) Not in-place

Key Points:
® Stack space for recursion counts
® |n-place sorts use O(1) or O(log n)
® Non-comparison sorts often require extra space

Lower Bound for Comparison Sorts

Theorem: Any comparison-based sort needs 2(nlog n) comparisons

Proof Idea:
® Decision tree model: each comparison is a binary decision
® Tree must have at least n! leaves (all possible permutations)
e Height of binary tree > log,(n!)

Using Stirling’s approximation: log,(n!) = nlog, n

Implications:
® Merge Sort and Heap Sort are asymptotically optimal
® Quick Sort optimal in average case
e Cannot do better than O(nlog n) with comparisons

® Non-comparison sorts can beat this bound!

Practical Performance Comparison

Benchmark Results (n = 10,000):

Algorithm Time (seconds)
Quick Sort 0.0120
Merge Sort 0.0180
Heap Sort 0.0250
Timsort (Python) 0.0015
Insertion Sort 1.2000

Observations:

Quick Sort fastest among simple implementations

Timsort (Python's built-in) highly optimized

Insertion Sort impractical for large arrays
Constants matter in practice!

Non-Comparison Sorts: Counting/Radix

Counting Sort: Overview

Count Occurrences of Each Value

Algorithm:
1. Count occurrences of each value
2. Calculate cumulative counts
3. Place elements in output array using counts

Characteristics:
® Time: O(n+ k) where k = range of values
® Space: O(k)
e Stable: Yes
e Limitation: Only for integers in known range

When to Use:
® Small range: k= nor k<n
® Need linear time sorting
e |ntegers or can map to integers

Counting Sort: Implementation

D

(RIS, BN NN

N RN =

NN NNN NN

®

def counting_sort(arr):
"""Sort array of non-negative integers"""
if not arr:
return arr

Find range

max_val = max(arr)
min_val = min(arr)
range_size = max_val - min_val + 1

Count occurrences

count = [0] #* range_size
for num in arr:
count [num - min_val] += 1

Calculate cumulative count
for i in range (1, range_size):
count [i] += count[i - 1]

Build output array (stable)

output = [0] * len(arr)

for i in range(len(arr) - 1, -1, -1):
num = arr[i]
index = count[num - min_vall] - 1
output [index] = num
count [num - min_val] -= 1

return output

Counting Sort: Example

Sort: [4, 2, 2, 8, 3, 3, 1]
Step 1: Count occurrences

Count array (for values 1-8): [1, 2,2, 1,0, 0, 0, 1]
Value: 1 appears 1x, 2 appears 2x, 3 appears 2x, etc.

Step 2: Cumulative count

[1,3,56,6,6,6,7]

Step 3: Build output
Output: [1, 2, 2, 3, 3, 4, §]

Time: O(n+ k) where n=7, k=8

Radix Sort: Overview

Sort Digit by Digit Using Stable Sort

Algorithm (LSD - Least Significant Digit):
1. Sort by least significant digit (using counting sort)
2. Move to next digit
3. Repeat until most significant digit

Characteristics:
® Time: O(d(n+ k)) where d = digits, k = base
® Space: O(n+ k)
e Stable: Yes

Applications:
® Fixed-length integers or strings
e Card sorting machines (historical)
e Suffix array construction

©O~NOO D WN

Radix Sort: Implementation

def radix_sort(arr):
"""Sort array using radix sort (base 10)"""
if not arr:
return arr

Find maximum number to know number of digits
max_num = max(arr)

Do counting sort for every digit

exp = 1

while max_num // exp > O:
counting_sort_by_digit (arr, exp)
exp *= 10

def counting_sort_by_digit(arr, exp):
"""Counting sort by specific digit"""
n = len(arr)
output = [0] * n
count = [0] * 10 # Base 10

Count occurrences of digits
for num in arr:
digit = (num // exp) % 10
count [digit] += 1

Cumulative count
for i in range(1, 10):
count [i] += count[i - 1]

#,Build output (stable)
o » o

- » N

Radix Sort: Example

Sort: [170, 45, 75, 90, 802, 24, 2, 66]
Pass 1: Sort by 1’s digit
[170, 90, 802, 2, 24, 45, 75, 66]
Result: [170, 90, 802, 2, 24, 45, 75, 66]
Pass 2: Sort by 10’s digit
[802, 02, 170, 24, 45, 66, 75, 90]
Result: [802, 2, 24, 45, 66, 170, 75, 90]
Pass 3: Sort by 100’s digit

[002, 024, 045, 066, 075, 090, 170, 802]
Final: [2, 24, 45, 66, 75, 90, 170, 802

Bucket Sort

Distribute into Buckets, Sort Each

Algorithm:
1. Create buckets for value ranges
2. Distribute elements into buckets
3. Sort each bucket individually
4. Concatenate sorted buckets

Characteristics:
e Time: O(n+ k) average, O(n?) worst
® Best for: Uniformly distributed data
® Poor for: Skewed distributions

Example Use Case:
® Sorting floating-point numbers in [0, 1)
® External sorting (disk-based)

Non-Comparison Sorts: Comparison

Algorithm Time Best Use Case

Counting Sort | O(n+ k) Small integer range

Radix Sort O(d(n+ k)) | Fixed-length inte-
gers/strings

Bucket Sort O(n+ k) Uniform distribution

Limitations:
e Counting: Requires known integer range
e Radix: Not for arbitrary data types
® Bucket: Performance depends on distribution

Advantage:
® Can achieve O(n) time (beats comparison lower bound)

Practical Considerations

Python’s Timsort

Hybrid: Merge Sort + Insertion Sort

Used in:
® Python’s sort() and sorted()
® Java's Arrays.sort () for objects

Key Features:
® Time: O(nlogn) worst, O(n) best
e Stable: Yes
® Optimized for: Real-world data with existing order

How it Works:
® Detects "runs" (already sorted subsequences)
® Uses insertion sort for small runs (< 64 elements)
® Merges runs intelligently
® Exploits partially sorted data

When to Use Each Algorithm

Small Arrays (n < 50):
® Insertion Sort: Simple, fast for small data

Nearly Sorted Data:
e Insertion Sort: O(n) when nearly sorted
® Timsort: Excellent for real-world data

Large Arrays:
® Quick Sort: Fastest average case
® Merge Sort: Guaranteed O(nlog n), stable
® Heap Sort: In-place, guaranteed O(nlog n)

Limited Memory:
e Heap Sort: O(1) extra space
® Quick Sort: O(log n) stack space

Need Stability:
. Merge Sort, Timsort, or Counting/Radix

Optimization Techniques

1. Hybrid Approaches:
e Use Insertion Sort for small subarrays (< 10 elements)
® Combine Quick Sort with Insertion Sort
® Timsort: Merge Sort + Insertion Sort

2. Pivot Selection (Quick Sort):
® Random: Avoid worst case
® Median-of-three: First, middle, last
® Ninther: Median of medians

3. Three-Way Partitioning:
e Handle duplicates efficiently
® O(n) when many equal elements

4. Tail Recursion Elimination:
® Reduce stack space to O(log n)
e Convert to iterative version

Common Mistakes

1. Using Bubble Sort for Large Data:
® BAD: O(n?) always
e GOOD: Use Quick/Merge/Heap Sort

2. Not Considering Stability:
e BAD: Quick Sort breaks secondary sort
® GOOD: Use stable sort (Merge Sort, Timsort)

3. Ignoring Data Characteristics:
® BAD: Quick Sort on sorted data (O(n?))
e GOOD: Insertion Sort or Timsort (O(n))

4. Wrong Algorithm for Data Type:
e BAD: Comparison sort for small integers
e GOOD: Counting Sort (O(n))

Decision Tree for Choosing Sort

‘ n < 507 ‘
\I‘]O
Yes -
; ‘/ Small inte-
Insertion Sort ‘ 5
ger range’
YES AN [6)

‘ Counting Sort‘ Memory limited? ‘

yes/” \no

‘ Heap 54 Need stable? ‘

yes/ \no

‘ I\/Ierg# Quick Sort ‘

Summary

Key Takeaways

Comparison Sorts:
® Quick Sort: Fastest average case, in-place, unstable
® Merge Sort: Guaranteed O(nlogn), stable, extra space
® Heap Sort: In-place, guaranteed O(nlog n), unstable

Non-Comparison Sorts:
® Counting Sort: O(n+ k), small integer range
® Radix Sort: O(d(n+ k)), fixed-length data
® Bucket Sort: O(n+ k), uniform distribution

Important Properties:
e Stability: Preserves relative order of equal elements
¢ In-place: Uses O(1) or O(log n) extra space
® Lower bound: Comparison sorts need 2(nlog n)

Practical Recommendations

For Most Cases:
e Use language built-ins (e.g., Python's sort())
® They are highly optimized (Timsort, Introsort)

Implement Your Own When:
® | earning algorithms
® Special requirements (stability, memory)
® Custom comparison logic
® Performance-critical applications

Quick Reference:

General: Quick Sort or Timsort

e Guaranteed performance: Merge Sort or Heap Sort
e Small data: Insertion Sort
[]
[}

Integer range: Counting Sort or Radix Sort
Need stable: Merge Sort or Timsort

Practice Problems

Problem 1: Complexity Analysis
® Why does Quick Sort have O(n?) worst case?
® How can we avoid it?

Problem 2: Algorithm Selection
e Sort 1 million integers in range [0, 1000]
® \Which algorithm is best? Why?

Problem 3: Stability
® Sort students by grade, then by name
® Which sort preserves both orderings?

Problem 4: Implementation
® Implement Quick Sort with median-of-three pivot
® Measure performance vs. last-element pivot

Resources

Books:
e "Introduction to Algorithms" (CLRS) - Chapter 6-9
e "The Algorithm Design Manual" (Skiena)

Online Visualizations:
¢ VisuAlgo: visualgo.net/en/sorting
® Sorting Animations: sorting-algorithms.com

Practice:
® | eetCode: Sort-related problems
® HackerRank: Sorting challenges

Advanced Topics:
® Timsort implementation details
® Parallel sorting algorithms
® External sorting for big data

	Introduction
	Comparison Sorts: Quick/Merge/Heap
	Stability and In-Place Properties
	Partitioning and Recursion
	Time/Space Complexities
	Non-Comparison Sorts: Counting/Radix
	Practical Considerations
	Summary

