
Sorting Algorithms
Organize Data to Enable Efficient Access and Computation

Minseok Jeon
DGIST

November 2, 2025

Minseok Jeon Sorting Algorithms November 2, 2025 1/54

Table of Contents

1. Introduction

2. Comparison Sorts: Quick/Merge/Heap

3. Stability and In-Place Properties

4. Partitioning and Recursion

5. Time/Space Complexities

6. Non-Comparison Sorts: Counting/Radix

7. Practical Considerations

8. Summary

Minseok Jeon Sorting Algorithms November 2, 2025 2/54

Introduction

What is Sorting?
Sorting: Arranging data in a particular order (ascending/descending)

Why Sorting Matters:
• Foundation for search algorithms
• Database query optimization
• Data organization and visualization
• Algorithm efficiency (many algorithms require sorted data)

Classification:
• Comparison-based: Compare elements pairwise

• Quick Sort, Merge Sort, Heap Sort
• Lower bound: Ω(n log n)

• Non-comparison: Use element properties
• Counting Sort, Radix Sort, Bucket Sort
• Can achieve O(n) time

Minseok Jeon Sorting Algorithms November 2, 2025 4/54

Key Properties of Sorting Algorithms
Important Characteristics:

1. Time Complexity:
• Best, Average, Worst case scenarios

2. Space Complexity:
• In-place vs. requiring extra memory

3. Stability:
• Preserves relative order of equal elements

4. Adaptability:
• Performance on partially sorted data

5. Recursion:
• Recursive vs. Iterative implementation

Minseok Jeon Sorting Algorithms November 2, 2025 5/54

Comparison Sorts: Quick/Merge/Heap

Quick Sort: Overview
Divide and Conquer Using Partitioning

Algorithm:
1. Choose a pivot element
2. Partition: elements < pivot left, > pivot right
3. Recursively sort left and right partitions

Characteristics:
• Time: O(n log n) average, O(n2) worst
• Space: O(log n) for recursion stack
• In-place: Yes
• Stable: No

Advantages:
• Fastest average-case performance
• Good cache locality
• In-place sortingMinseok Jeon Sorting Algorithms November 2, 2025 7/54

Quick Sort: Implementation

1 def quick_sort(arr , low , high):
2 """ Sort array using quick sort """
3 if low < high:
4 # Partition and get pivot index
5 pivot_idx = partition(arr , low , high)
6
7 # Recursively sort left and right
8 quick_sort(arr , low , pivot_idx - 1)
9 quick_sort(arr , pivot_idx + 1, high)

10
11 def partition(arr , low , high):
12 """ Lomuto partition scheme """
13 pivot = arr[high] # Choose last element as pivot
14 i = low - 1 # Index of smaller element
15
16 for j in range(low , high):
17 if arr[j] <= pivot:
18 i += 1
19 arr[i], arr[j] = arr[j], arr[i]
20
21 # Place pivot in correct position
22 arr[i + 1], arr[high] = arr[high], arr[i + 1]
23 return i + 1

Minseok Jeon Sorting Algorithms November 2, 2025 8/54

Quick Sort: Example

Sorting: [7, 2, 1, 6, 8, 5, 3, 4]

Step 1: Choose pivot = 4 (last element)
Step 2: Partition

Before: [7, 2, 1, 6, 8, 5, 3, 4]
After: [2, 1, 3, 4, 8, 5, 7, 6]

Elements < 4 on left, > 4 on right

Step 3: Recursively sort [2, 1, 3] and [8, 5, 7, 6]

Final Result: [1, 2, 3, 4, 5, 6, 7, 8]

Minseok Jeon Sorting Algorithms November 2, 2025 9/54

Merge Sort: Overview
Divide and Conquer with Merging

Algorithm:
1. Divide array into two halves
2. Recursively sort each half
3. Merge the two sorted halves

Characteristics:
• Time: O(n log n) always
• Space: O(n) for auxiliary array
• In-place: No
• Stable: Yes

Advantages:
• Guaranteed O(n log n) performance
• Stable sorting
• Good for external sorting (disk-based)
• Parallelizable

Minseok Jeon Sorting Algorithms November 2, 2025 10/54

Merge Sort: Implementation
1 def merge_sort(arr):
2 """ Sort array using merge sort """
3 if len(arr) <= 1:
4 return arr
5
6 # Divide
7 mid = len(arr) // 2
8 left = merge_sort(arr[:mid])
9 right = merge_sort(arr[mid:])

10
11 # Conquer (merge)
12 return merge(left , right)
13
14 def merge(left , right):
15 """ Merge two sorted arrays """
16 result = []
17 i = j = 0
18
19 # Merge while both have elements
20 while i < len(left) and j < len(right):
21 if left[i] <= right[j]:
22 result.append(left[i])
23 i += 1
24 else:
25 result.append(right[j])
26 j += 1
27
28 # Add remaining elements
29 result.extend(left[i:])
30 result.extend(right[j:])
31
32 return result

Minseok Jeon Sorting Algorithms November 2, 2025 11/54

Merge Sort: Example
Sorting: [38, 27, 43, 3, 9, 82, 10]

Divide Phase:

[38, 27, 43, 3, 9, 82, 10]

[38, 27, 43, 3] [9, 82, 10]

[38, 27][43, 3] [9, 82] [10]

[38][27][43] [3] [9] [82]

Merge Phase:

Merge pairs: [27, 38], [3, 43], [9, 82]
Merge again: [3, 27, 38, 43], [9, 10, 82]
Final merge: [3, 9, 10, 27, 38, 43, 82]

Minseok Jeon Sorting Algorithms November 2, 2025 12/54

Heap Sort: Overview
Build Max Heap, Repeatedly Extract Maximum

Algorithm:
1. Build a max heap from input array
2. Repeatedly extract maximum (root)
3. Place extracted element at end of array
4. Restore heap property

Characteristics:
• Time: O(n log n) always
• Space: O(1)
• In-place: Yes
• Stable: No

Advantages:
• Guaranteed O(n log n) performance
• In-place sorting (no extra memory)
• No worst-case degradation

Minseok Jeon Sorting Algorithms November 2, 2025 13/54

Heap Sort: Implementation
1 def heap_sort(arr):
2 """ Sort array using heap sort """
3 n = len(arr)
4
5 # Build max heap
6 for i in range(n // 2 - 1, -1, -1):
7 heapify(arr , n, i)
8
9 # Extract elements from heap

10 for i in range(n - 1, 0, -1):
11 # Move current root to end
12 arr[0], arr[i] = arr[i], arr [0]
13
14 # Heapify reduced heap
15 heapify(arr , i, 0)
16
17 def heapify(arr , n, i):
18 """ Maintain max heap property """
19 largest = i
20 left = 2 * i + 1
21 right = 2 * i + 2
22
23 # Check if left child is larger
24 if left < n and arr[left] > arr[largest]:
25 largest = left
26
27 # Check if right child is larger
28 if right < n and arr[right] > arr[largest]:
29 largest = right
30
31 # If largest is not root
32 if largest != i:
33 arr[i], arr[largest] = arr[largest], arr[i]
34 heapify(arr , n, largest)

Minseok Jeon Sorting Algorithms November 2, 2025 14/54

Comparison of Quick/Merge/Heap

Property Quick Sort Merge Sort Heap Sort
Best Time O(n log n) O(n log n) O(n log n)

Average Time O(n log n) O(n log n) O(n log n)

Worst Time O(n2) O(n log n) O(n log n)

Space O(log n) O(n) O(1)

Stable No Yes No
In-place Yes No Yes

When to Use:
• Quick Sort: General purpose, fastest average case
• Merge Sort: Need stability or guaranteed performance
• Heap Sort: Limited memory, guaranteed performance

Minseok Jeon Sorting Algorithms November 2, 2025 15/54

Stability and In-Place Properties

What is Stability?

Stability: Maintains relative order of equal elements

Example:

Original: [(3, "a"), (1, "b"), (3, "c"), (2, "d")]

Sort by first element:

Stable: [(1, "b"), (2, "d"), (3, "a"), (3, "c")]
"a" before "c" (order preserved)

Unstable: [(1, "b"), (2, "d"), (3, "c"), (3, "a")]
"c" before "a" (order changed)

Minseok Jeon Sorting Algorithms November 2, 2025 17/54

Why Stability Matters

Multi-level Sorting:

Example: Sort students by grade, then by name
1. First sort by name (stable):

(Alice, 85), (Bob, 90), (Charlie, 85), (David, 90)

2. Then sort by grade (stable):
(Alice, 85), (Charlie, 85), (Bob, 90), (David, 90)

• Within same grade, alphabetical order preserved!

Applications:
• Database query results with ORDER BY multiple columns
• Spreadsheet sorting by multiple columns
• Event scheduling systems

Minseok Jeon Sorting Algorithms November 2, 2025 18/54

Stable vs. Unstable Algorithms
Stable Algorithms:
• ✓Merge Sort
• ✓Insertion Sort
• ✓Bubble Sort
• ✓Counting Sort
• ✓Radix Sort

Unstable Algorithms:
• × Quick Sort (can be made stable with extra space)
• × Heap Sort
• × Selection Sort

Note:
• Stability often requires extra space or comparisons
• Quick Sort can be made stable but loses in-place property

Minseok Jeon Sorting Algorithms November 2, 2025 19/54

What is In-Place Sorting?
In-Place: Uses O(1) extra space (excluding recursion stack)

Benefits:
• Memory-efficient for large datasets
• Better cache performance
• Suitable for embedded systems with limited memory

In-Place Algorithms:
• ✓Quick Sort: O(log n) stack space
• ✓Heap Sort: O(1) extra space
• ✓Insertion Sort: O(1) extra space
• ✓Selection Sort: O(1) extra space
• ✓Bubble Sort: O(1) extra space

Not In-Place:
• × Merge Sort: O(n) auxiliary array
• × Counting Sort: O(k) where k is range
• × Radix Sort: O(n + k)

Minseok Jeon Sorting Algorithms November 2, 2025 20/54

Trade-offs: Stability vs. In-Place

Algorithm Stable In-Place
Merge Sort Yes No
Quick Sort No Yes
Heap Sort No Yes
Insertion Sort Yes Yes
Bubble Sort Yes Yes

Observations:
• Hard to achieve both stability and in-place for O(n log n) sorts
• Simple O(n2) sorts can be both stable and in-place
• Practical choice: Python’s Timsort (stable, O(n) space worst case)

Minseok Jeon Sorting Algorithms November 2, 2025 21/54

Partitioning and Recursion

Partitioning: Core of Quick Sort

Goal: Rearrange array so elements < pivot are left, > pivot are right

Two Main Schemes:

1. Lomuto Partition:
• Simple implementation
• Pivot: last element
• More swaps than Hoare

2. Hoare Partition:
• More efficient (fewer swaps)
• Pivot: first element
• Slightly more complex

Minseok Jeon Sorting Algorithms November 2, 2025 23/54

Lomuto Partition
1 def lomuto_partition(arr , low , high):
2 """
3 Simple but does more swaps
4 Pivot: last element
5 """
6 pivot = arr[high]
7 i = low - 1
8
9 for j in range(low , high):

10 if arr[j] <= pivot:
11 i += 1
12 arr[i], arr[j] = arr[j], arr[i]
13
14 arr[i + 1], arr[high] = arr[high], arr[i + 1]
15 return i + 1

Example:

Array: [7, 2, 1, 6, 8, 5, 3, 4]
Pivot = 4 (last element)

After partition: [2, 1, 3, 4, 8, 5, 7, 6]
Pivot at index 3

Minseok Jeon Sorting Algorithms November 2, 2025 24/54

Hoare Partition

1 def hoare_partition(arr , low , high):
2 """
3 More efficient , fewer swaps
4 Pivot: first element
5 """
6 pivot = arr[low]
7 i = low - 1
8 j = high + 1
9

10 while True:
11 # Find element >= pivot from left
12 i += 1
13 while arr[i] < pivot:
14 i += 1
15
16 # Find element <= pivot from right
17 j -= 1
18 while arr[j] > pivot:
19 j -= 1
20
21 if i >= j:
22 return j
23
24 arr[i], arr[j] = arr[j], arr[i]

Advantage: About 3x fewer swaps than Lomuto on average

Minseok Jeon Sorting Algorithms November 2, 2025 25/54

3-Way Partitioning (Dutch National Flag)
For Arrays with Many Duplicates

1 def three_way_partition(arr , low , high):
2 """
3 Partition into <pivot , =pivot , >pivot
4 Efficient for many duplicates
5 """
6 pivot = arr[high]
7 i = low # Boundary of < pivot
8 j = low # Current element
9 k = high # Boundary of > pivot

10
11 while j <= k:
12 if arr[j] < pivot:
13 arr[i], arr[j] = arr[j], arr[i]
14 i += 1
15 j += 1
16 elif arr[j] > pivot:
17 arr[j], arr[k] = arr[k], arr[j]
18 k -= 1
19 else:
20 j += 1
21
22 return i, k

Example: [3, 5, 2, 5, 1, 5, 4, 5] with pivot=5
After: [3, 2, 1, 4, 5, 5, 5, 5]

Minseok Jeon Sorting Algorithms November 2, 2025 26/54

Recursion in Quick Sort

Recursion Tree Example:

[8,3,1,7,0,10,2]

[1,0]

[0,1]

[7,3,10,8]

[7,3]

[3,7]

[10]

Recursion Depth:
• Best/Average case: O(log n)
• Worst case (sorted input): O(n)

Minseok Jeon Sorting Algorithms November 2, 2025 27/54

Tail Recursion Optimization

1 def quick_sort_tail_recursive(arr , low , high):
2 """ Optimize tail recursion to reduce stack space """
3 while low < high:
4 pivot_idx = partition(arr , low , high)
5
6 # Recurse on smaller partition
7 if pivot_idx - low < high - pivot_idx:
8 quick_sort_tail_recursive(arr , low , pivot_idx - 1)
9 low = pivot_idx + 1

10 else:
11 quick_sort_tail_recursive(arr , pivot_idx + 1, high)
12 high = pivot_idx - 1

Benefit:
• Guarantees O(log n) stack depth
• Always recurse on smaller partition
• Convert tail call to iteration

Minseok Jeon Sorting Algorithms November 2, 2025 28/54

Iterative Quick Sort

1 def quick_sort_iterative(arr):
2 """ Quick sort without recursion """
3 stack = [(0, len(arr) - 1)]
4
5 while stack:
6 low , high = stack.pop()
7
8 if low < high:
9 pivot_idx = partition(arr , low , high)

10
11 # Push subproblems to stack
12 stack.append ((low , pivot_idx - 1))
13 stack.append ((pivot_idx + 1, high))

Advantages:
• No recursion overhead
• Explicit stack control
• Easier to debug

Minseok Jeon Sorting Algorithms November 2, 2025 29/54

Time/Space Complexities

Time Complexity: Comparison Sorts

Algorithm Best Average Worst
Bubble Sort O(n) O(n2) O(n2)

Selection Sort O(n2) O(n2) O(n2)

Insertion Sort O(n) O(n2) O(n2)

Merge Sort O(n log n) O(n log n) O(n log n)

Quick Sort O(n log n) O(n log n) O(n2)

Heap Sort O(n log n) O(n log n) O(n log n)

Notes:
• Bubble/Insertion: O(n) best case when nearly sorted
• Selection: Always O(n2), even if sorted
• Quick Sort: Worst case with poor pivot selection
• Merge/Heap: Guaranteed O(n log n)

Minseok Jeon Sorting Algorithms November 2, 2025 31/54

Space Complexity

Algorithm Space Type
Bubble Sort O(1) In-place
Selection Sort O(1) In-place
Insertion Sort O(1) In-place
Merge Sort O(n) Not in-place
Quick Sort O(log n) In-place (stack)
Heap Sort O(1) In-place
Counting Sort O(k) Not in-place
Radix Sort O(n + k) Not in-place

Key Points:
• Stack space for recursion counts
• In-place sorts use O(1) or O(log n)
• Non-comparison sorts often require extra space

Minseok Jeon Sorting Algorithms November 2, 2025 32/54

Lower Bound for Comparison Sorts

Theorem: Any comparison-based sort needs Ω(n log n) comparisons

Proof Idea:
• Decision tree model: each comparison is a binary decision
• Tree must have at least n! leaves (all possible permutations)
• Height of binary tree ≥ log2(n!)
• Using Stirling’s approximation: log2(n!) ≈ n log2 n

Implications:
• Merge Sort and Heap Sort are asymptotically optimal
• Quick Sort optimal in average case
• Cannot do better than O(n log n) with comparisons
• Non-comparison sorts can beat this bound!

Minseok Jeon Sorting Algorithms November 2, 2025 33/54

Practical Performance Comparison
Benchmark Results (n = 10,000):

Algorithm Time (seconds)
Quick Sort 0.0120
Merge Sort 0.0180
Heap Sort 0.0250
Timsort (Python) 0.0015
Insertion Sort 1.2000

Observations:
• Quick Sort fastest among simple implementations
• Timsort (Python’s built-in) highly optimized
• Insertion Sort impractical for large arrays
• Constants matter in practice!

Minseok Jeon Sorting Algorithms November 2, 2025 34/54

Non-Comparison Sorts: Counting/Radix

Counting Sort: Overview
Count Occurrences of Each Value

Algorithm:
1. Count occurrences of each value
2. Calculate cumulative counts
3. Place elements in output array using counts

Characteristics:
• Time: O(n + k) where k = range of values
• Space: O(k)
• Stable: Yes
• Limitation: Only for integers in known range

When to Use:
• Small range: k ≈ n or k < n
• Need linear time sorting
• Integers or can map to integersMinseok Jeon Sorting Algorithms November 2, 2025 36/54

Counting Sort: Implementation
1 def counting_sort(arr):
2 """ Sort array of non -negative integers """
3 if not arr:
4 return arr
5
6 # Find range
7 max_val = max(arr)
8 min_val = min(arr)
9 range_size = max_val - min_val + 1

10
11 # Count occurrences
12 count = [0] * range_size
13 for num in arr:
14 count[num - min_val] += 1
15
16 # Calculate cumulative count
17 for i in range(1, range_size):
18 count[i] += count[i - 1]
19
20 # Build output array (stable)
21 output = [0] * len(arr)
22 for i in range(len(arr) - 1, -1, -1):
23 num = arr[i]
24 index = count[num - min_val] - 1
25 output[index] = num
26 count[num - min_val] -= 1
27
28 return output

Minseok Jeon Sorting Algorithms November 2, 2025 37/54

Counting Sort: Example
Sort: [4, 2, 2, 8, 3, 3, 1]

Step 1: Count occurrences

Count array (for values 1-8): [1, 2, 2, 1, 0, 0, 0, 1]
Value: 1 appears 1x, 2 appears 2x, 3 appears 2x, etc.

Step 2: Cumulative count

[1, 3, 5, 6, 6, 6, 6, 7]

Step 3: Build output

Output: [1, 2, 2, 3, 3, 4, 8]

Time: O(n + k) where n = 7, k = 8
Minseok Jeon Sorting Algorithms November 2, 2025 38/54

Radix Sort: Overview
Sort Digit by Digit Using Stable Sort

Algorithm (LSD - Least Significant Digit):
1. Sort by least significant digit (using counting sort)
2. Move to next digit
3. Repeat until most significant digit

Characteristics:
• Time: O(d(n + k)) where d = digits, k = base
• Space: O(n + k)
• Stable: Yes

Applications:
• Fixed-length integers or strings
• Card sorting machines (historical)
• Suffix array construction

Minseok Jeon Sorting Algorithms November 2, 2025 39/54

Radix Sort: Implementation
1 def radix_sort(arr):
2 """ Sort array using radix sort (base 10)"""
3 if not arr:
4 return arr
5
6 # Find maximum number to know number of digits
7 max_num = max(arr)
8
9 # Do counting sort for every digit

10 exp = 1
11 while max_num // exp > 0:
12 counting_sort_by_digit(arr , exp)
13 exp *= 10
14
15 def counting_sort_by_digit(arr , exp):
16 """ Counting sort by specific digit """
17 n = len(arr)
18 output = [0] * n
19 count = [0] * 10 # Base 10
20
21 # Count occurrences of digits
22 for num in arr:
23 digit = (num // exp) % 10
24 count[digit] += 1
25
26 # Cumulative count
27 for i in range(1, 10):
28 count[i] += count[i - 1]
29
30 # Build output (stable)
31 for i in range(n - 1, -1, -1):
32 digit = (arr[i] // exp) % 10
33 output[count[digit] - 1] = arr[i]
34 count[digit] -= 1
35
36 # Copy to original array
37 for i in range(n):
38 arr[i] = output[i]

Minseok Jeon Sorting Algorithms November 2, 2025 40/54

Radix Sort: Example
Sort: [170, 45, 75, 90, 802, 24, 2, 66]

Pass 1: Sort by 1’s digit

[170, 90, 802, 2, 24, 45, 75, 66]
Result: [170, 90, 802, 2, 24, 45, 75, 66]

Pass 2: Sort by 10’s digit

[802, 02, 170, 24, 45, 66, 75, 90]
Result: [802, 2, 24, 45, 66, 170, 75, 90]

Pass 3: Sort by 100’s digit

[002, 024, 045, 066, 075, 090, 170, 802]
Final: [2, 24, 45, 66, 75, 90, 170, 802]

Minseok Jeon Sorting Algorithms November 2, 2025 41/54

Bucket Sort
Distribute into Buckets, Sort Each

Algorithm:
1. Create buckets for value ranges
2. Distribute elements into buckets
3. Sort each bucket individually
4. Concatenate sorted buckets

Characteristics:
• Time: O(n + k) average, O(n2) worst
• Best for: Uniformly distributed data
• Poor for: Skewed distributions

Example Use Case:
• Sorting floating-point numbers in [0, 1)
• External sorting (disk-based)

Minseok Jeon Sorting Algorithms November 2, 2025 42/54

Non-Comparison Sorts: Comparison

Algorithm Time Best Use Case
Counting Sort O(n + k) Small integer range
Radix Sort O(d(n + k)) Fixed-length inte-

gers/strings
Bucket Sort O(n + k) Uniform distribution

Limitations:
• Counting: Requires known integer range
• Radix: Not for arbitrary data types
• Bucket: Performance depends on distribution

Advantage:
• Can achieve O(n) time (beats comparison lower bound)

Minseok Jeon Sorting Algorithms November 2, 2025 43/54

Practical Considerations

Python’s Timsort
Hybrid: Merge Sort + Insertion Sort

Used in:
• Python’s sort() and sorted()
• Java’s Arrays.sort() for objects

Key Features:
• Time: O(n log n) worst, O(n) best
• Stable: Yes
• Optimized for: Real-world data with existing order

How it Works:
• Detects "runs" (already sorted subsequences)
• Uses insertion sort for small runs (< 64 elements)
• Merges runs intelligently
• Exploits partially sorted data

Minseok Jeon Sorting Algorithms November 2, 2025 45/54

When to Use Each Algorithm
Small Arrays (n < 50):
• Insertion Sort: Simple, fast for small data

Nearly Sorted Data:
• Insertion Sort: O(n) when nearly sorted
• Timsort: Excellent for real-world data

Large Arrays:
• Quick Sort: Fastest average case
• Merge Sort: Guaranteed O(n log n), stable
• Heap Sort: In-place, guaranteed O(n log n)

Limited Memory:
• Heap Sort: O(1) extra space
• Quick Sort: O(log n) stack space

Need Stability:
• Merge Sort, Timsort, or Counting/RadixMinseok Jeon Sorting Algorithms November 2, 2025 46/54

Optimization Techniques
1. Hybrid Approaches:
• Use Insertion Sort for small subarrays (< 10 elements)
• Combine Quick Sort with Insertion Sort
• Timsort: Merge Sort + Insertion Sort

2. Pivot Selection (Quick Sort):
• Random: Avoid worst case
• Median-of-three: First, middle, last
• Ninther: Median of medians

3. Three-Way Partitioning:
• Handle duplicates efficiently
• O(n) when many equal elements

4. Tail Recursion Elimination:
• Reduce stack space to O(log n)
• Convert to iterative version

Minseok Jeon Sorting Algorithms November 2, 2025 47/54

Common Mistakes
1. Using Bubble Sort for Large Data:
• BAD: O(n2) always
• GOOD: Use Quick/Merge/Heap Sort

2. Not Considering Stability:
• BAD: Quick Sort breaks secondary sort
• GOOD: Use stable sort (Merge Sort, Timsort)

3. Ignoring Data Characteristics:
• BAD: Quick Sort on sorted data (O(n2))
• GOOD: Insertion Sort or Timsort (O(n))

4. Wrong Algorithm for Data Type:
• BAD: Comparison sort for small integers
• GOOD: Counting Sort (O(n))

Minseok Jeon Sorting Algorithms November 2, 2025 48/54

Decision Tree for Choosing Sort

n < 50?

Insertion Sort
Small inte-
ger range?

Counting Sort Memory limited?

Heap Sort Need stable?

Merge SortQuick Sort

yes no

yes no

yes no

yes no

Minseok Jeon Sorting Algorithms November 2, 2025 49/54

Summary

Key Takeaways
Comparison Sorts:
• Quick Sort: Fastest average case, in-place, unstable
• Merge Sort: Guaranteed O(n log n), stable, extra space
• Heap Sort: In-place, guaranteed O(n log n), unstable

Non-Comparison Sorts:
• Counting Sort: O(n + k), small integer range
• Radix Sort: O(d(n + k)), fixed-length data
• Bucket Sort: O(n + k), uniform distribution

Important Properties:
• Stability: Preserves relative order of equal elements
• In-place: Uses O(1) or O(log n) extra space
• Lower bound: Comparison sorts need Ω(n log n)

Minseok Jeon Sorting Algorithms November 2, 2025 51/54

Practical Recommendations
For Most Cases:
• Use language built-ins (e.g., Python’s sort())
• They are highly optimized (Timsort, Introsort)

Implement Your Own When:
• Learning algorithms
• Special requirements (stability, memory)
• Custom comparison logic
• Performance-critical applications

Quick Reference:
• General: Quick Sort or Timsort
• Guaranteed performance: Merge Sort or Heap Sort
• Small data: Insertion Sort
• Integer range: Counting Sort or Radix Sort
• Need stable: Merge Sort or Timsort

Minseok Jeon Sorting Algorithms November 2, 2025 52/54

Practice Problems
Problem 1: Complexity Analysis
• Why does Quick Sort have O(n2) worst case?
• How can we avoid it?

Problem 2: Algorithm Selection
• Sort 1 million integers in range [0, 1000]
• Which algorithm is best? Why?

Problem 3: Stability
• Sort students by grade, then by name
• Which sort preserves both orderings?

Problem 4: Implementation
• Implement Quick Sort with median-of-three pivot
• Measure performance vs. last-element pivot

Minseok Jeon Sorting Algorithms November 2, 2025 53/54

Resources
Books:
• "Introduction to Algorithms" (CLRS) - Chapter 6-9
• "The Algorithm Design Manual" (Skiena)

Online Visualizations:
• VisuAlgo: visualgo.net/en/sorting
• Sorting Animations: sorting-algorithms.com

Practice:
• LeetCode: Sort-related problems
• HackerRank: Sorting challenges

Advanced Topics:
• Timsort implementation details
• Parallel sorting algorithms
• External sorting for big data

Minseok Jeon Sorting Algorithms November 2, 2025 54/54

	Introduction
	Comparison Sorts: Quick/Merge/Heap
	Stability and In-Place Properties
	Partitioning and Recursion
	Time/Space Complexities
	Non-Comparison Sorts: Counting/Radix
	Practical Considerations
	Summary

