Segment Trees

Data Structures

Minseok Jeon
DGIST

November 2, 2025

Table of Contents

Introduction to Segment Trees
Building Segment Trees

Range Queries

Point Updates

Range Updates with Lazy Propagation
Complexity Analysis

Applications

o S A o

Summary

Introduction to Segment Trees

What is a Segment Tree?

Segment Tree: A binary tree structure for efficient range queries and updates

Key Properties:

Each node represents an interval/segment of the array

Leaf nodes represent single elements

Internal nodes store aggregate information about their range

Height: O(log n) for n elements

Common Operations:
® Range sum/min/max queries
® Point updates
® Range updates (with lazy propagation)

Time Complexity: O(log n) for queries and updates

Motivation

Problem: Given array, answer multiple queries:
® \What is the sum of elements from index / to j7
® [Jpdate element at index k

Naive Approach:
® Query: O(n) - iterate through range
e Update: O(1) - change single element

Prefix Sum Approach:
® Query: O(1) - prefix[j] - prefix[i-1]
® Update: O(n) - rebuild prefix array

Segment Tree Solution:
® Query: O(log n) - traverse tree
e Update: O(log n) - update path to root

a2 DAt ~€ Ik ~A+lh i~ A~

Applications

Segment trees are versatile and widely used:

1. Competitive Programming:
® Range sum/min/max queries with updates
® Finding k-th smallest element in range
® Maximum subarray sum in range
2. Databases:
® Range aggregation queries
® Time-series databases
® Spatial indexes
3. Graphics & Games:
® Rectangle union area
® Collision detection
® Visibility queries
4. Other:
® Network monitoring
® Financial OHLC queries

® (CAamniitatinnal AcArmMmeatr s

Building Segment Trees

Tree Structure

Array: [1, 3,5, 7,9, 11]

Each node stores: sum of its range

Array Representation

Tree stored in array: Similar to heap representation

Index mapping:
® Node at index / has children at 2/ and 2/ + 1
® Parent of node jis at i/2
® Root at index 1

Space requirement:
® For array of size n, need = 4n space
® Height = [log, n]
e Total nodes = 21 — 1 < 4n

Array layout for [1, 3, 5, 7, 9, 11]:

Index | 1 (2] 3 |4 |5 6 | 7 [8]9]12

Value |36 |9 |27 |4 |5|16 |11 |13 | 7

Building the Tree - Recursive

1 class SegmentTree:

2 def __init__(self, arr):

3 self.n = len(arr)

4 self.tree = [0] * (4 * self.n)

5 self.arr = arr

6 if self.n > O:

7 self .build (1, 0, self.n - 1)

8

9 def build(self, node, start, end):

10 e

11 Build segment tree recursively

12 node: current node index in tree array
13 [start, end]: range this node represents
14 e

15 if start == end:

16 # Leaf node - copy array element
17 self.tree[node] = self.arr[start]

18 return
19

Building the Tree - Iterative

More efficient approach using 2n space:

1 def build_iterative (arr):

O
> W N = O

2 """Build segment tree iteratively - more efficient"""
3 n = len(arr)
4 tree = [0] * (2 * n)
5
6 # Copy array to second half
7 for i in range(n):
8 tree[n + i] = arr[il]
9
Build tree by calculating parents
for i in range(n - 1, 0, -1):
tree[i] = tree[2 * i] + tree[2 *x i + 1]
return tree
Advantages:

[D Y = T e T N B

Range Queries

Query Types

Segment trees support various aggregate queries:

1. Range Sum:
e Query: sum(left, right) = sum of elements in [left, right]
e Combine: sumjef; + SUMyight

2. Range Minimum:
® Query: min(left, right) = minimum element in [left, right]
e Combine: min(minjeft, Minyignt)

3. Range Maximum:
e Query: max(left, right) = maximum element in [left, right]
e Combine: max(maxieft, MaXrignt)

4. Other Operations:
® GCD of range
e XOR of ranae

1

© W N o U A~ W N

e B o S R T T =
© o N o o b~ W N K O

Range Sum Query Implementation

def query_sum(self, node, start, end, left, right):

Query sum in range [left, right]

node: current node

[start, end]: range of current node

[left, right]: query range

nnn

Case 1: No overlap

if right < start or left > end:
return O

Case 2: Complete overlap
if left <= start and end <= right:
return self.tree[node]

Case 3: Partial overlap
mid = (start + end) // 2
left_sum = self.query_sum(2 * node, start,

mid,

left,

right_sum = self.query_sum(2 * ‘node +-1, mid + 1, end,

right)

Query Visualization

Query: sum(2, 4) in array [1, 3, 5, 7, 9, 11]

Green: Complete overlap Red: No overlap

Result: 5 + 16 = 21 (which equals 5+ 7 + 9 V')

Range Minimum Query

Similar structure, different combine operation:

1 class SegmentTreeMin:

2 def __init__(self, arr):

3 self.n = len(arr)

4 self .tree = [float(’inf’)] * (4 * self.n)
5 self.arr = arr

6 if self.n > O:

7 self .build (1, 0, self.n - 1)

8

9 def build(self, node, start, end):

10 if start == end:

11 self .tree[node] = self.arr[start]
12 return

13

14 mid = (start + end) // 2

15 self .build (2 * node, start, mid)

16 self.build (2 * node + 1, mid + 1, end)

17

14 # St+ore minimiim of children

Query Time Complexity

Why is query O(log n)?

Analysis:
® Tree height: h = [log, n]
® At each level, visit at most 2 nodes
® Total nodes visited: < 2h = O(log n)

Why at most 2 nodes per level?

Start at root

At each level, query range can intersect at most 2 children
Left boundary intersects one child

Right boundary intersects another child

Middle parts are completely covered (return immediately)

==

ot

Best case: O(1) - complete overlap at root

MWW Aavey race: Oflana n) Aliaryg cinAale alarm ads

Point Updates

Point Update Implementation

© W N o U A W N R
Q.
0]
h

e e T < O =
®w N o o hA W N R O

=
©

update_point (self, node, start, end,

Update element at index idx to value
nnn

if start == end:
Leaf node - update value
self.arr[idx] = value
self .treel[node] = value
return

mid = (start + end) // 2

if idx <= mid:
Update in left subtree

idx, value):

self .update_point (2 * node, start, mid,

else:
Update in right subtree
self .update_point (2 * node + 1,

mid + 1,

idx,

end ,

value)

idx,

value)

Update Visualization

Update index 2 from 5 to 8 (delta = +3)

Before:

After:

Update Time Complexity

Why is update O(log n)?

Path from leaf to root:
® Update travels from leaf to root
® Path length = tree height = [log, n]
® Fach ancestor needs updating

Example for n = 8:
® Height = 3
® Update path: leaf — parent — grandparent — root
® 4 nodes total = log, 8+ 1

Comparison:
® Naive array: O(1) update, but O(n) query
® Prefix sum: O(n) update (rebuild), O(1) query

& CTarmnrmant Frans O (1lan nY 11rnA~+~A OIAAYAN ATCASg, 7/

Range Updates with Lazy Propagation

The Range Update Problem

Problem: Add delta to all elements in range [left, right]

Naive approach:
Time: O(n log n) - Too slow!

Problem:
® Range size can be O(n)
® Each update is O(log n)
e Total: O(n log n)

Solution: Lazy Propagation
® Mark nodes as "lazy" instead of updating immediately
Defer updates until actually needed
Push lazy values down only when queried
Achieves O(log n) range update!

Lazy Propagation Concept

Key Idea: Don’t update eagerly, be lazy!

Lazy Array:
® Additional array: lazy[] same size as tree
® lazy[node] = pending update for this node's range
® \When lazy[node] # 0: node needs update

Update Strategy:
1. Find nodes completely covered by update range
2. Mark them as lazy (don't go deeper!)
3. Push lazy values down only when needed:
® During next query
® During next update that overlaps

Benefits:
e..Range update: O(log n) instead of Of{nlogn)

© W N o U A W N R

R
> W N = O

Push Down Operation

Q.
0]
h

push_down (self, node, start, end):
"""Propagate lazy value to children"""
if self.lazyl[node] != 0:
Apply lazy value to current node
range_size = end - start + 1
self .tree[node] += range_size * self.lazy[node]

If not leaf, propagate to children

if start != end:
self.lazy[2 * node] += self.lazy[nodel]
self.lazy[2 * node + 1] += self.lazyl[nodel

Clear lazy value
self.lazy[node] = 0

Key Points:
® Apply lazy value to current node
e Pass lazv value to children (don't applv reclirsivelv!)

Range Update with Lazy

1 def update_range(self, node, start, end, left, right, delta):

2 """Add delta to range [left, right]"""

3 # Push down pending updates first

4 self .push_down (node, start, end)

5

6 # No overlap

7 if right < start or left > end:

8 return

9

10 # Complete overlap

11 if left <= start and end <= right:

12 # Mark as lazy instead of updating

13 self.lazy[node] += delta

14 self .push_down (node, start, end)

15 return

16

17 # Partial overlap - recurse

18 mid = (start + end) // 2

19 self .update_range (2 * node, start, mid, left, right, delta)
20 self .update_range (2 * node + 1, mid + 1, end, left, right, delta)
21

22 # Update current node after children are updated

23 self .push_down (2 #* node, start, mid)

24 self.push_down (2 #* node + 1, mid + 1, end)

25 self.tree[node] = self.tree[2 * node] + self.tree[2 * node + 1]
26

27| # Wrapper
28| def update(self, left, right, delta):
29 self .update_range(1, 0, self.n - 1, left, right, delta)

1 def query_range(self, node, start, end, left,

© W N o U A~ W N

e e T < O =
®w N o o hA W N R O

=
©

Query with

Lazy

"""Query sum in range [left, right]"""

Push down
self .push_d

pending updates first!
own (node, start, end)

No overlap

if right <
return

Complete
if left <=
return

Partial o

start or left > end:
0

overlap
start and end <= right:

self .tree[node]

verlap

mid = (start + end) // 2
self.query_range (2 * node, start, mid,

left_sum =
right_sum =

self.query_range (2 * node + 1,
left, right)

right):

mid + 1,

Lazy Propagation Example

Array: [1, 2, 3, 4, 5]
Update: Add 10 to range [1, 3]

Without Lazy (Naive):

Update index 1: O(log n)

e Update index 2: O(log n)

® Update index 3: O(log n)

® Total: O(3log n) = O(n log n) for large ranges

With Lazy Propagation:
¢ Find O(log n) nodes covering [1, 3]
® Mark them as lazy: lazy[node] = 10
® Children not updated yet!
e Total: O(log n)

iy ‘Nlavy Diiarv:

Complexity Analysis

Space Complexity

Recursive Representation (4n):
® For n elements
® Tree height: h = [log, n]
e Total nodes: 21 —1 ~ 4n
® Safe upper bound: 4n

Iterative Representation (2n):
® More space-efficient
® Exactly 2n space
® [irst n positions: internal nodes
e |ast n positions: leaf nodes (original array)

With Lazy Propagation:
® Additional lazy array: same size as tree
e Total: 8n (recursive) or 4n (iterative)

Time Complexity Summary

Operation Without Lazy | With Lazy
Build O(n) O(n)
Point Update O(log n) O(log n)
Point Query O(log n) O(log n)
Range Query O(log n) O(log n)
Range Update O(n log n) O(log n)

Key Insight: Lazy propagation transforms range update from O(n log n) to O(log n)!

When to use lazy propagation:
® Frequent range updates
Updates much more common than queries
Batch updates before querying
Willing to trade code complexity for performance

Comparison with Alternatives

When to use Segment Tree:

Structure Build Query Update Space
Array O(1) O(n) 0O(1) O(n)
Prefix Sum O(n) o(1) O(n) O(n)
Sqrt Decomp O(n) O(v/n) O(v/n) o(n)
Segment Tree O(n) O(log n) | O(log n) O(4n)
Fenwick Tree | O(nlog n) | O(log n) | O(log n) O(n)
Sparse Table | O(n log n) o(1) - O(n log n)

® Need range queries (sum, min, max, GCD, etc.)
Need range updates

o
e Operation is associative
[]

Need flexibility (any associative operation)

Alternatives:

® Fenwick Tree: Less memory, only sum/XOR

Applications

© 0w N o U A~ W N

10
11

13
14
15
16
17

19

Application 1: Range Sum Queries

Problem: Given array, answer queries and updates
LeetCode 307: Range Sum Query - Mutable

class NumArray:
def __init__(self, nums):
self .seg_tree = SegmentTree (nums)
def update(self, index, val):
self.seg_tree.update (index, val)
def sumRange (self, left, right):
return self.seg_tree.query(left, right)
Usage
arr = [1, 3, 5, 7, 9, 11]
num_array = NumArray (arr)

print (num_array.sumRange (1, 4)) # 3+5+7+9 =
num_array.update (2, 10)
HArint (n1im arrav siimRance (1 4)) # Pty Lrees g

24

Change 5 to 10

29

Application 2: Range Minimum Query

Problem: Find minimum in range with updates

1 class RMQSegmentTree:

2 def build(self, node, start, end):

3 if start == end:

4 self .tree[node] = self.arr[start]

5 return

6

7 mid = (start + end) // 2

8 self .build (2 * node, start, mid)

9 self .build (2 * node + 1, mid + 1, end)

10

11 # Store minimum of children

12 self .tree[node] = min(self.treel[2 * nodel],

13 self .tree[2 * node + 1])
14

15 def query_min(self, node, start, end, left, right):
16 if right < start or left > end:

17 return float(’inf’)
Jig

Application 3: Count in Range

Problem: Count elements in range with value in [a, b]
Solution: Merge Sort Tree (segment tree of sorted arrays)

class MergeSortTree:

def

build(self, node, start, end):

if start == end:
self.tree[node] = [self.arr[start]]
return

mid = (start + end) // 2
self .build (2 * node, start, mid)
self.build (2 * node + 1, mid + 1, end)

Merge sorted arrays

left_arr = self.tree[2 * nodel
right_arr = self.tree[2 * node + 1]
self.tree[node] = sorted(left_arr + right_arr)

count_in_range (self, node, start, end, left, right, a, b):
"""Count elements in [left,right] with value in [a,b]"""
if right < start or left > end:

return 0

if left <= start and end <= right:
Binary search in sorted array for count in [a, D]
import bisect
arr = self.treel[nodel
left_idx = bisect.bisect_left(arr, a)
right_idx = bisect.bisect_right(arr, b)

e a4l D e o4l

Application 4: Database Range Aggregations

Time-Series Database:
® Store metrics over time
® Query: Get sum/avg/min/max over time range

® Segment tree enables O(log n) queries

Spatial Databases:
® 2D segment tree for spatial queries
® Query points in rectangle [x1, y1] to [x2, y2]

® Fach node has nested segment tree for second dimension

Application 5: Computational Geometry

Rectangle Union Area:
® Given n rectangles, find total area covered
® Use sweep line + segment tree
® Track active intervals as sweep progresses

Closest Pair:
® Find closest pair of points
® Divide and conquer with segment tree
® Query minimum distance in ranges

Line Intersection:
® Count intersections among n line segments
® Sweep line algorithm
® Segment tree tracks active segments

Practice Problems

LeetCode Problems:

1.

> v w o

307.
327.
699.
715.
732.
850.

Range Sum Query - Mutable
Count of Range Sum

Falling Squares

Range Module

My Calendar Il

Rectangle Area Il

Codeforces/Other:
® SPOJ - GSS1, GSS3 (Maximum Subarray Sum)
® (Codeforces - Range queries with various operations
o AtCoder - Lazy Segment Tree problems

Skills to Practice:
® |mplementing different aggregation functions

&'l a7\ nranaAFIAN

Summary

Summary: Key Concepts

Segment Tree Structure:
® Binary tree where each node represents an interval
® | eaf nodes: single elements
® |nternal nodes: aggregate of children
® Height: O(log n), Space: O(4n)

Core Operations:

Build: O(n)

Range Query: O(log n)

Point Update: O(log n)

Range Update (with lazy): O(log n)

Lazy Propagation:
® Defer updates until needed
® Reduces range update from O(n log n) to O(log n)

& Eccantial fAr afFficriant rande 11inAdatac

Summary: When to Use

Use Segment Trees When:
® Need range queries (sum, min, max, GCD, etc.)
® Need frequent updates
® QOperation is associative
® O(log n) performance required
® Need flexibility for different operations
Consider Alternatives When:
® Fenwick Tree: Only sum/XOR, want less memory
® Sparse Table: Static array, only queries
e Sgrt Decomposition: Simpler code, O(y/n) OK
® Array: Few queries, frequent updates

Remember:
® Segment trees are versatile and powerful

& Tradea_AfF- MNMaAra memanryv far flavihi iy

Key Takeaways

e IR

Segment trees solve range query problems efficiently
O(log n) for both queries and updates

Lazy propagation is crucial for range updates

Works with any associative operation

Space: O(4n) - acceptable trade-off
Implementation: recursion or iteration

Applications: CP, databases, geometry, graphics
Practice is essential for mastery

Next Steps:

Implement from scratch (without looking!)
Solve LeetCode problems

Try variations: 2D, dynamic, persistent
Understand when NOT to use segment trees

Further Learning

Advanced Topics:
® Persistent Segment Trees (versioned)
® Dynamic Segment Trees (coordinate compression)
® 2D Segment Trees (nested structures)
® Segment Tree Beats (range chmin/chmax)
® |Implicit Segment Trees (sparse)

Resources:

CP-Algorithms: Segment Tree tutorial
Codeforces: Segment tree blogs and problems
YouTube: Tutorials on lazy propagation
Competitive Programming books

Related Topics:
e Fenwick Tree (Binary Indexed Tree)

& ' TAltare RPAant DarAamnAacidian

Thank Youl

Questions?

Segment Trees: Divide, Conquer, Query

	Introduction to Segment Trees
	Building Segment Trees
	Range Queries
	Point Updates
	Range Updates with Lazy Propagation
	Complexity Analysis
	Applications
	Summary

