
Segment Trees
Data Structures

Minseok Jeon
DGIST

November 2, 2025

Minseok Jeon Segment Trees November 2, 2025 1/45



Table of Contents

1. Introduction to Segment Trees

2. Building Segment Trees

3. Range Queries

4. Point Updates

5. Range Updates with Lazy Propagation

6. Complexity Analysis

7. Applications

8. Summary

Minseok Jeon Segment Trees November 2, 2025 2/45



Introduction to Segment Trees



What is a Segment Tree?
Segment Tree: A binary tree structure for efficient range queries and updates

Key Properties:
• Each node represents an interval/segment of the array
• Leaf nodes represent single elements
• Internal nodes store aggregate information about their range
• Height: O(log n) for n elements

Common Operations:
• Range sum/min/max queries
• Point updates
• Range updates (with lazy propagation)

Time Complexity: O(log n) for queries and updates
Minseok Jeon Segment Trees November 2, 2025 4/45



Motivation
Problem: Given array, answer multiple queries:
• What is the sum of elements from index i to j?
• Update element at index k

Naive Approach:
• Query: O(n) - iterate through range
• Update: O(1) - change single element

Prefix Sum Approach:
• Query: O(1) - prefix[j] - prefix[i-1]
• Update: O(n) - rebuild prefix array

Segment Tree Solution:
• Query: O(log n) - traverse tree
• Update: O(log n) - update path to root
• Best of both worlds!Minseok Jeon Segment Trees November 2, 2025 5/45



Applications
Segment trees are versatile and widely used:

1. Competitive Programming:
• Range sum/min/max queries with updates
• Finding k-th smallest element in range
• Maximum subarray sum in range

2. Databases:
• Range aggregation queries
• Time-series databases
• Spatial indexes

3. Graphics & Games:
• Rectangle union area
• Collision detection
• Visibility queries

4. Other:
• Network monitoring
• Financial OHLC queries
• Computational geometryMinseok Jeon Segment Trees November 2, 2025 6/45



Building Segment Trees



Tree Structure

Array: [1, 3, 5, 7, 9, 11]

36

9

4

1 3

5

27

16

7 9

11

Each node stores: sum of its range

Minseok Jeon Segment Trees November 2, 2025 8/45



Array Representation
Tree stored in array: Similar to heap representation

Index mapping:
• Node at index i has children at 2i and 2i + 1
• Parent of node i is at i/2
• Root at index 1

Space requirement:
• For array of size n, need ≈ 4n space
• Height = ⌈log2 n⌉
• Total nodes = 2h+1 − 1 < 4n

Array layout for [1, 3, 5, 7, 9, 11]:
Index 1 2 3 4 5 6 7 8 9 12 13
Value 36 9 27 4 5 16 11 1 3 7 9

Minseok Jeon Segment Trees November 2, 2025 9/45



Building the Tree - Recursive

1 class SegmentTree:
2 def __init__(self , arr):
3 self.n = len(arr)
4 self.tree = [0] * (4 * self.n)
5 self.arr = arr
6 if self.n > 0:
7 self.build(1, 0, self.n - 1)
8

9 def build(self , node , start , end):
10 """
11 Build segment tree recursively
12 node: current node index in tree array
13 [start , end]: range this node represents
14 """
15 if start == end:
16 # Leaf node - copy array element
17 self.tree[node] = self.arr[start]
18 return
19

20 mid = (start + end) // 2
21 left_child = 2 * node
22 right_child = 2 * node + 1
23

24 # Build left and right subtrees
25 self.build(left_child , start , mid)
26 self.build(right_child , mid + 1, end)
27

28 # Internal node stores sum of children
29 self.tree[node] = self.tree[left_child] + self.tree[right_child]

Minseok Jeon Segment Trees November 2, 2025 10/45



Building the Tree - Iterative
More efficient approach using 2n space:

1 def build_iterative(arr):
2 """ Build segment tree iteratively - more efficient """
3 n = len(arr)
4 tree = [0] * (2 * n)
5

6 # Copy array to second half
7 for i in range(n):
8 tree[n + i] = arr[i]
9

10 # Build tree by calculating parents
11 for i in range(n - 1, 0, -1):
12 tree[i] = tree[2 * i] + tree[2 * i + 1]
13

14 return tree

Advantages:
• Uses only 2n space (vs 4n for recursive)
• Simpler index calculations
• No recursion overhead

Time Complexity: O(n) for both approaches

Minseok Jeon Segment Trees November 2, 2025 11/45



Range Queries



Query Types
Segment trees support various aggregate queries:

1. Range Sum:
• Query: sum(left, right) = sum of elements in [left, right]
• Combine: sumleft + sumright

2. Range Minimum:
• Query: min(left, right) = minimum element in [left, right]
• Combine: min(minleft,minright)

3. Range Maximum:
• Query: max(left, right) = maximum element in [left, right]
• Combine: max(maxleft,maxright)

4. Other Operations:
• GCD of range
• XOR of range
• Any associative operation!

Minseok Jeon Segment Trees November 2, 2025 13/45



Range Sum Query Implementation

1 def query_sum(self , node , start , end , left , right):
2 """
3 Query sum in range [left , right]
4 node: current node
5 [start , end]: range of current node
6 [left , right]: query range
7 """
8 # Case 1: No overlap
9 if right < start or left > end:

10 return 0
11

12 # Case 2: Complete overlap
13 if left <= start and end <= right:
14 return self.tree[node]
15

16 # Case 3: Partial overlap
17 mid = (start + end) // 2
18 left_sum = self.query_sum (2 * node , start , mid , left , right)
19 right_sum = self.query_sum (2 * node + 1, mid + 1, end ,
20 left , right)
21

22 return left_sum + right_sum
23

24 # Wrapper method
25 def range_sum(self , left , right):
26 return self.query_sum (1, 0, self.n - 1, left , right)

Minseok Jeon Segment Trees November 2, 2025 14/45



Query Visualization
Query: sum(2, 4) in array [1, 3, 5, 7, 9, 11]

36

9

4 5

27

16

7 9

11

Green: Complete overlap Yellow: Partial overlap Red: No overlap

Result: 5 + 16 = 21 (which equals 5 + 7 + 9 ✓)
Minseok Jeon Segment Trees November 2, 2025 15/45



Range Minimum Query
Similar structure, different combine operation:

1 class SegmentTreeMin:
2 def __init__(self , arr):
3 self.n = len(arr)
4 self.tree = [float(’inf’)] * (4 * self.n)
5 self.arr = arr
6 if self.n > 0:
7 self.build(1, 0, self.n - 1)
8

9 def build(self , node , start , end):
10 if start == end:
11 self.tree[node] = self.arr[start]
12 return
13

14 mid = (start + end) // 2
15 self.build (2 * node , start , mid)
16 self.build (2 * node + 1, mid + 1, end)
17

18 # Store minimum of children
19 self.tree[node] = min(self.tree[2 * node],
20 self.tree[2 * node + 1])
21

22 def query_min(self , node , start , end , left , right):
23 if right < start or left > end:
24 return float(’inf’) # Identity for min
25

26 if left <= start and end <= right:
27 return self.tree[node]
28

29 mid = (start + end) // 2
30 return min(self.query_min (2*node , start , mid , left , right),
31 self.query_min (2* node+1, mid+1, end , left , right))

Minseok Jeon Segment Trees November 2, 2025 16/45



Query Time Complexity
Why is query O(log n)?

Analysis:
• Tree height: h = ⌈log2 n⌉
• At each level, visit at most 2 nodes
• Total nodes visited: ≤ 2h = O(log n)

Why at most 2 nodes per level?
1. Start at root
2. At each level, query range can intersect at most 2 children
3. Left boundary intersects one child
4. Right boundary intersects another child
5. Middle parts are completely covered (return immediately)

Best case: O(1) - complete overlap at root
Worst case: O(log n) - query single element
Average case: O(log n)

Minseok Jeon Segment Trees November 2, 2025 17/45



Point Updates



Point Update Implementation

1 def update_point(self , node , start , end , idx , value):
2 """
3 Update element at index idx to value
4 """
5 if start == end:
6 # Leaf node - update value
7 self.arr[idx] = value
8 self.tree[node] = value
9 return

10

11 mid = (start + end) // 2
12

13 if idx <= mid:
14 # Update in left subtree
15 self.update_point (2 * node , start , mid , idx , value)
16 else:
17 # Update in right subtree
18 self.update_point (2 * node + 1, mid + 1, end , idx , value)
19

20 # Update current node from children
21 self.tree[node] = (self.tree[2 * node] +
22 self.tree[2 * node + 1])
23

24 # Wrapper method
25 def update(self , idx , value):
26 self.update_point (1, 0, self.n - 1, idx , value)

Minseok Jeon Segment Trees November 2, 2025 19/45



Update Visualization
Update index 2 from 5 to 8 (delta = +3)

Before:
36

9

4 5

27

After:
39

12

4 8

27

Updated nodes: [2], [0-2], [0-5] - Only O(log n) nodes!
Minseok Jeon Segment Trees November 2, 2025 20/45



Update Time Complexity
Why is update O(log n)?

Path from leaf to root:
• Update travels from leaf to root
• Path length = tree height = ⌈log2 n⌉
• Each ancestor needs updating

Example for n = 8:
• Height = 3
• Update path: leaf → parent → grandparent → root
• 4 nodes total = log2 8 + 1

Comparison:
• Naive array: O(1) update, but O(n) query
• Prefix sum: O(n) update (rebuild), O(1) query
• Segment tree: O(log n) update, O(log n) query ✓Minseok Jeon Segment Trees November 2, 2025 21/45



Range Updates with Lazy Propagation



The Range Update Problem
Problem: Add delta to all elements in range [left, right]

Naive approach:
Time: O(n log n) - Too slow!

Problem:
• Range size can be O(n)
• Each update is O(log n)
• Total: O(n log n)

Solution: Lazy Propagation
• Mark nodes as "lazy" instead of updating immediately
• Defer updates until actually needed
• Push lazy values down only when queried
• Achieves O(log n) range update!

Minseok Jeon Segment Trees November 2, 2025 23/45



Lazy Propagation Concept
Key Idea: Don’t update eagerly, be lazy!

Lazy Array:
• Additional array: lazy[] same size as tree
• lazy[node] = pending update for this node’s range
• When lazy[node] ̸= 0: node needs update

Update Strategy:
1. Find nodes completely covered by update range
2. Mark them as lazy (don’t go deeper!)
3. Push lazy values down only when needed:

• During next query
• During next update that overlaps

Benefits:
• Range update: O(log n) instead of O(n log n)
• Multiple updates before query: Very efficient
• Updates batched and propagated lazily

Minseok Jeon Segment Trees November 2, 2025 24/45



Push Down Operation

1 def push_down(self , node , start , end):
2 """ Propagate lazy value to children """
3 if self.lazy[node] != 0:
4 # Apply lazy value to current node
5 range_size = end - start + 1
6 self.tree[node] += range_size * self.lazy[node]
7

8 # If not leaf , propagate to children
9 if start != end:

10 self.lazy[2 * node] += self.lazy[node]
11 self.lazy[2 * node + 1] += self.lazy[node]
12

13 # Clear lazy value
14 self.lazy[node] = 0

Key Points:
• Apply lazy value to current node
• Pass lazy value to children (don’t apply recursively!)
• Clear current node’s lazy value
• Call before any operation on a node

Minseok Jeon Segment Trees November 2, 2025 25/45



Range Update with Lazy
1 def update_range(self , node , start , end , left , right , delta):
2 """Add delta to range [left , right]"""
3 # Push down pending updates first
4 self.push_down(node , start , end)
5
6 # No overlap
7 if right < start or left > end:
8 return
9

10 # Complete overlap
11 if left <= start and end <= right:
12 # Mark as lazy instead of updating
13 self.lazy[node] += delta
14 self.push_down(node , start , end)
15 return
16
17 # Partial overlap - recurse
18 mid = (start + end) // 2
19 self.update_range (2 * node , start , mid , left , right , delta)
20 self.update_range (2 * node + 1, mid + 1, end , left , right , delta)
21
22 # Update current node after children are updated
23 self.push_down (2 * node , start , mid)
24 self.push_down (2 * node + 1, mid + 1, end)
25 self.tree[node] = self.tree[2 * node] + self.tree[2 * node + 1]
26
27 # Wrapper
28 def update(self , left , right , delta):
29 self.update_range (1, 0, self.n - 1, left , right , delta)

Minseok Jeon Segment Trees November 2, 2025 26/45



Query with Lazy

1 def query_range(self , node , start , end , left , right):
2 """ Query sum in range [left , right]"""
3 # Push down pending updates first!
4 self.push_down(node , start , end)
5

6 # No overlap
7 if right < start or left > end:
8 return 0
9

10 # Complete overlap
11 if left <= start and end <= right:
12 return self.tree[node]
13

14 # Partial overlap
15 mid = (start + end) // 2
16 left_sum = self.query_range (2 * node , start , mid , left , right)
17 right_sum = self.query_range (2 * node + 1, mid + 1, end ,
18 left , right)
19

20 return left_sum + right_sum
21

22 # Wrapper
23 def query(self , left , right):
24 return self.query_range (1, 0, self.n - 1, left , right)

Important: Always push down before using a node’s value!

Minseok Jeon Segment Trees November 2, 2025 27/45



Lazy Propagation Example
Array: [1, 2, 3, 4, 5]
Update: Add 10 to range [1, 3]

Without Lazy (Naive):
• Update index 1: O(log n)
• Update index 2: O(log n)
• Update index 3: O(log n)
• Total: O(3 log n) = O(n log n) for large ranges

With Lazy Propagation:
• Find O(log n) nodes covering [1, 3]
• Mark them as lazy: lazy[node] = 10
• Children not updated yet!
• Total: O(log n)

On Next Query:
• Encounter lazy node → push down
• Update happens on-demand
• Still O(log n) per query

Minseok Jeon Segment Trees November 2, 2025 28/45



Complexity Analysis



Space Complexity
Recursive Representation (4n):
• For n elements
• Tree height: h = ⌈log2 n⌉
• Total nodes: 2h+1 − 1 ≈ 4n
• Safe upper bound: 4n

Iterative Representation (2n):
• More space-efficient
• Exactly 2n space
• First n positions: internal nodes
• Last n positions: leaf nodes (original array)

With Lazy Propagation:
• Additional lazy array: same size as tree
• Total: 8n (recursive) or 4n (iterative)

Example: For n = 1,000,000 elements
Segment tree with lazy: ∼ 64 MB (8 bytes per element)

Minseok Jeon Segment Trees November 2, 2025 30/45



Time Complexity Summary

Operation Without Lazy With Lazy
Build O(n) O(n)
Point Update O(log n) O(log n)
Point Query O(log n) O(log n)
Range Query O(log n) O(log n)
Range Update O(n log n) O(log n)

Key Insight: Lazy propagation transforms range update from O(n log n) to O(log n)!

When to use lazy propagation:
• Frequent range updates
• Updates much more common than queries
• Batch updates before querying
• Willing to trade code complexity for performance

Minseok Jeon Segment Trees November 2, 2025 31/45



Comparison with Alternatives
Structure Build Query Update Space
Array O(1) O(n) O(1) O(n)
Prefix Sum O(n) O(1) O(n) O(n)
Sqrt Decomp O(n) O(

√
n) O(

√
n) O(n)

Segment Tree O(n) O(log n) O(log n) O(4n)
Fenwick Tree O(n log n) O(log n) O(log n) O(n)
Sparse Table O(n log n) O(1) - O(n log n)

When to use Segment Tree:
• Need range queries (sum, min, max, GCD, etc.)
• Need range updates
• Operation is associative
• Need flexibility (any associative operation)

Alternatives:
• Fenwick Tree: Less memory, only sum/XOR
• Sparse Table: Static array, O(1) queries
• Sqrt Decomposition: Simpler, O(

√
n) acceptable

Minseok Jeon Segment Trees November 2, 2025 32/45



Applications



Application 1: Range Sum Queries
Problem: Given array, answer queries and updates

1 # LeetCode 307: Range Sum Query - Mutable
2 class NumArray:
3 def __init__(self , nums):
4 self.seg_tree = SegmentTree(nums)
5

6 def update(self , index , val):
7 self.seg_tree.update(index , val)
8

9 def sumRange(self , left , right):
10 return self.seg_tree.query(left , right)
11

12 # Usage
13 arr = [1, 3, 5, 7, 9, 11]
14 num_array = NumArray(arr)
15

16 print(num_array.sumRange(1, 4)) # 3+5+7+9 = 24
17 num_array.update(2, 10) # Change 5 to 10
18 print(num_array.sumRange(1, 4)) # 3+10+7+9 = 29

Complexity:
• Build: O(n)
• Update: O(log n)
• Query: O(log n)

Minseok Jeon Segment Trees November 2, 2025 34/45



Application 2: Range Minimum Query
Problem: Find minimum in range with updates

1 class RMQSegmentTree:
2 def build(self , node , start , end):
3 if start == end:
4 self.tree[node] = self.arr[start]
5 return
6

7 mid = (start + end) // 2
8 self.build (2 * node , start , mid)
9 self.build (2 * node + 1, mid + 1, end)

10

11 # Store minimum of children
12 self.tree[node] = min(self.tree[2 * node],
13 self.tree[2 * node + 1])
14

15 def query_min(self , node , start , end , left , right):
16 if right < start or left > end:
17 return float(’inf’)
18

19 if left <= start and end <= right:
20 return self.tree[node]
21

22 mid = (start + end) // 2
23 return min(
24 self.query_min (2*node , start , mid , left , right),
25 self.query_min (2* node+1, mid+1, end , left , right)
26 )

Minseok Jeon Segment Trees November 2, 2025 35/45



Application 3: Count in Range
Problem: Count elements in range with value in [a, b]
Solution: Merge Sort Tree (segment tree of sorted arrays)

1 class MergeSortTree:
2 def build(self , node , start , end):
3 if start == end:
4 self.tree[node] = [self.arr[start ]]
5 return
6
7 mid = (start + end) // 2
8 self.build(2 * node , start , mid)
9 self.build(2 * node + 1, mid + 1, end)

10
11 # Merge sorted arrays
12 left_arr = self.tree[2 * node]
13 right_arr = self.tree[2 * node + 1]
14 self.tree[node] = sorted(left_arr + right_arr)
15
16 def count_in_range(self , node , start , end , left , right , a, b):
17 """ Count elements in [left ,right] with value in [a,b]"""
18 if right < start or left > end:
19 return 0
20
21 if left <= start and end <= right:
22 # Binary search in sorted array for count in [a, b]
23 import bisect
24 arr = self.tree[node]
25 left_idx = bisect.bisect_left(arr , a)
26 right_idx = bisect.bisect_right(arr , b)
27 return right_idx - left_idx
28
29 mid = (start + end) // 2
30 return (self.count_in_range (2*node , start , mid , left , right , a, b) +
31 self.count_in_range (2* node+1, mid+1, end , left , right , a, b))

Minseok Jeon Segment Trees November 2, 2025 36/45



Application 4: Database Range Aggregations

Time-Series Database:
• Store metrics over time
• Query: Get sum/avg/min/max over time range
• Segment tree enables O(log n) queries

Spatial Databases:
• 2D segment tree for spatial queries
• Query points in rectangle [x1, y1] to [x2, y2]
• Each node has nested segment tree for second dimension

Minseok Jeon Segment Trees November 2, 2025 37/45



Application 5: Computational Geometry
Rectangle Union Area:
• Given n rectangles, find total area covered
• Use sweep line + segment tree
• Track active intervals as sweep progresses

Closest Pair:
• Find closest pair of points
• Divide and conquer with segment tree
• Query minimum distance in ranges

Line Intersection:
• Count intersections among n line segments
• Sweep line algorithm
• Segment tree tracks active segments

Minseok Jeon Segment Trees November 2, 2025 38/45



Practice Problems
LeetCode Problems:

1. 307. Range Sum Query - Mutable
2. 327. Count of Range Sum
3. 699. Falling Squares
4. 715. Range Module
5. 732. My Calendar III
6. 850. Rectangle Area II

Codeforces/Other:
• SPOJ - GSS1, GSS3 (Maximum Subarray Sum)
• Codeforces - Range queries with various operations
• AtCoder - Lazy Segment Tree problems

Skills to Practice:
• Implementing different aggregation functions
• Lazy propagation
• 2D segment trees
• Dynamic segment trees (on coordinates)

Minseok Jeon Segment Trees November 2, 2025 39/45



Summary



Summary: Key Concepts
Segment Tree Structure:
• Binary tree where each node represents an interval
• Leaf nodes: single elements
• Internal nodes: aggregate of children
• Height: O(log n), Space: O(4n)

Core Operations:
• Build: O(n)
• Range Query: O(log n)
• Point Update: O(log n)
• Range Update (with lazy): O(log n)

Lazy Propagation:
• Defer updates until needed
• Reduces range update from O(n log n) to O(log n)
• Essential for efficient range updatesMinseok Jeon Segment Trees November 2, 2025 41/45



Summary: When to Use
Use Segment Trees When:
• Need range queries (sum, min, max, GCD, etc.)
• Need frequent updates
• Operation is associative
• O(log n) performance required
• Need flexibility for different operations

Consider Alternatives When:
• Fenwick Tree: Only sum/XOR, want less memory
• Sparse Table: Static array, only queries
• Sqrt Decomposition: Simpler code, O(

√
n) OK

• Array: Few queries, frequent updates

Remember:
• Segment trees are versatile and powerful
• Trade-off: More memory for flexibility
• Master both recursive and iterative implementations
• Practice lazy propagation for competitive programming

Minseok Jeon Segment Trees November 2, 2025 42/45



Key Takeaways
1. Segment trees solve range query problems efficiently
2. O(log n) for both queries and updates
3. Lazy propagation is crucial for range updates
4. Works with any associative operation
5. Space: O(4n) - acceptable trade-off
6. Implementation: recursion or iteration
7. Applications: CP, databases, geometry, graphics
8. Practice is essential for mastery

Next Steps:
• Implement from scratch (without looking!)
• Solve LeetCode problems
• Try variations: 2D, dynamic, persistent
• Understand when NOT to use segment trees

Minseok Jeon Segment Trees November 2, 2025 43/45



Further Learning
Advanced Topics:
• Persistent Segment Trees (versioned)
• Dynamic Segment Trees (coordinate compression)
• 2D Segment Trees (nested structures)
• Segment Tree Beats (range chmin/chmax)
• Implicit Segment Trees (sparse)

Resources:
• CP-Algorithms: Segment Tree tutorial
• Codeforces: Segment tree blogs and problems
• YouTube: Tutorials on lazy propagation
• Competitive Programming books

Related Topics:
• Fenwick Tree (Binary Indexed Tree)
• Square Root Decomposition
• Sparse Table
• Range Tree

Minseok Jeon Segment Trees November 2, 2025 44/45



Thank You!

Questions?

Segment Trees: Divide, Conquer, Query

Minseok Jeon Segment Trees November 2, 2025 45/45


	Introduction to Segment Trees
	Building Segment Trees
	Range Queries
	Point Updates
	Range Updates with Lazy Propagation
	Complexity Analysis
	Applications
	Summary

