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Introduction



What is Searching?

Searching: Finding a specific element in a collection

Why Searching Matters:
® Fundamental operation in computer science
® Used in databases, search engines, file systems
® Performance-critical in many applications

® Basis for more complex algorithms

Key Questions:
® |s the data sorted?
® How large is the dataset?
® How frequently do we search?

® Can we preprocess the data?



Classification of Search Algorithms

Based on Data Structure:
® Array-based: Linear, Binary, Interpolation, Jump
® Tree-based: BST, AVL, Red-Black Trees
¢ Hash-based: Hash Tables, Hash Maps

Based on Preconditions:
® Unsorted data: Linear Search, Hash Tables
e Sorted data: Binary Search, Interpolation, Jump
® Special structures: Tree Search

Based on Complexity:

O(1): Hash Table (average)

O(loglog n): Interpolation (average, uniform data)
O(log n): Binary Search, BST

O(+/n): Jump Search

O(n): Linear Search



Linear vs Binary Search



Linear Search: Overview

Sequential Search Through Elements

Algorithm:
1. Start from first element
2. Check each element sequentially
3. Return index when found
4. Return -1 if not found

Characteristics:
e Time: O(n)
® Space: O(1)
® Requirement: None (works on unsorted data)

When to Use:
® Small datasets (n < 100)
® Unsorted data
e Simple implementation needed



Linear Search: Implementation

1 def linear_search(arr, target):

"""Search for target in array"""

N

3 for i in range(len(arr)):

4 if arr[i] == target:

5 return i # Return index
6 return -1 # Not found

s/ # Example
9 arr = [64, 34, 25, 12, 22, 11, 90]
10 result = linear_search(arr, 22) # Returns 4

Analysis:
® Best case: O(1) - element at first position
® Average case: O(n/2) = O(n) - element in middle
® Worst case: O(n) - element at end or not present



Binary Search: Overview

Divide and Conquer on Sorted Array

Algorithm:

1.

> v W

Find middle element

Compare with target

If equal: found!

If target < middle: search left half
If target > middle: search right half
Repeat until found or exhausted

Characteristics:
® Time: O(logn)
e Space: O(1) iterative, O(log n) recursive
® Requirement: Array must be sorted

Key Advantage:
e Eliminates half of search space in each'step
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Binary Search: Iterative Implementation

def binary_search(arr, target):

"""Search for target in sorted array
left, right = 0, len(arr) - 1

while left <= right:
mid = left + (right - left) // 2 # Avoid overflow

if arr[mid] == target:

return mid
elif arr[mid] < target:

left = mid + 1 # Search right half
else:

right = mid - 1 # Search left half

return -1 # Not found

# Example (array must be sorted!)

= [11, 12, 22, 25, 34, 64, 90]

result = binary_search(arr, 22) # Returns 2

Note: mid = left + (right - left) // 2 avoids integer overflow



Binary Search: Recursive Implementation

1 def binary_search_recursive (arr, target, left, right):

2 if left > right:

3 return -1

4

5 mid = left + (right - left) // 2
6

7 if arr[mid] == target:

8 return mid

9 elif arr[mid] < target:
10 return binary_search_recursive (arr, target,
11 mid + 1, right)

12 else:

13 return binary_search_recursive(arr, target,

14 left, mid - 1)
15

16| # Usage

w7iarr, = [11, 12, 22, 25, 34, 64,.90]



Binary Search: Visual Example

Search for 22 in [11, 12, 22, 25, 34, 64, 90]

Step 1: left=0, right=6, mid=3
[11, 12, 22, 25, 34, 64, 90]
arr[3]=25 > 22, search left half
Step 2: left=0, right=2, mid=1
[11, 12, 22
arr[1]=12 < 22, search right half
Step 3: left=2, right=2, mid=2

2]
arr[2]=22, found at index 2!

Result: Only 3 comparisons for 7 elements



Linear vs Binary Search: Comparison

Feature Linear Binary
Time Complexity O(n) O(log n)
Space Complexity O(1) O(1) iterative
Sorted Required No Yes
Best For Small/unsorted | Large/sorted
Avg comparisons (n=1000) 500 10
Implementation Simple Moderate
Linked List Support Yes No

Performance Comparison:
® n=10: Linear=5, Binary=3
® n = 100: Linear=50, Binary=7
e n=1,000,000: Linear=500,000, Binary=20



Binary Search on Answers (Parametric)



Concept: Search the Answer Space

Binary Search on Answers (Parametric Search)

Idea:
® Binary search on the solution space, not the array
® Find minimum/maximum value satisfying a condition
® Requires monotonic property

Monotonic Property:
® If value x works, then all values > x also work (or vice versa)
e Creates a boundary: [false, false, ..., true, true, ...]
® Binary search finds the boundary

Common Patterns:
® Minimize maximum: Find smallest value where all constraints satisfied
® Maximize minimum: Find largest value where all constraints satisfied
® Find threshold: Find boundary where condition changes



Template: Binary Search on Answers

1 def binary_search_answer (condition_func, low, high):

nmmnn

3 Find minimum value in [low, high] satisfying condition

N

5 result = -1

7 while low <= high:
8 mid = low + (high - low) // 2

10 if condition_func (mid) :

11 result = mid

12 high = mid - 1 # Try to find smaller
13 else:

14 low = mid + 1

15

16 return result

' [



Example 1: Integer Square Root

def sqrt(x):
"""Find integer square root of x"""
if x < 2:
return x

left, right = 1, x // 2

while left <= right:
mid = left + (right - left) // 2
square = mid * mid

if square == x:
return mid

elif square < x:
left = mid + 1

else:
right = mid - 1

return right # Largest integer whose square <= x

# Example: sqrt(8) = 2 (since 272 = 4 <= 8 < 372 = 9)
print (sqrt (8)) # Output: 2

print (sqrt (16)) # Output
print (sqrt (17)) # Output:

NS

Analysis: Search space is [1, x/2], binary search in O(log x)
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Example 2: Minimum Ship Capacity

Problem: Ship packages in D days, find minimum capacity

def ship_within_days(weights, days):
"""Find minimum ship capacity"""
def can_ship(capacity):

"""Check if we can ship with given capacity"""
days_needed = 1
current_load = 0

for weight in weights:
if current_load + weight > capacity:
days_needed += 1
current_load = weight
else:
current_load += weight

return days_needed <= days

# Binary search on capacity
left = max(weights) # Min: heaviest package
right = sum(weights) # Max: all at once

while left < right:
mid = left + (right - left) // 2

if can_ship(mid):

right = mid # Try smaller capacity
else:

left = mid + 1




Ship Capacity Example

Input: weights = [1,2,3,4,5,6,7,8,9,10], days = 5

Search Space:
® Minimum capacity: max(weights) = 10
® Maximum capacity: sum(weights) = 55
® Search range: [10, 55]

Binary Search Process:
® Try capacity=32: Can ship in 3 days — too large
® Try capacity=21: Can ship in 4 days — too large
® Try capacity=15: Can ship in 5 days — works!
® Try capacity=12: Cannot ship in 5 days — too small

Answer: 15
Distribution: [1,2,3,4,5], [6,7], [8], [9], [10]
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Example 3: Koko Eating Bananas

Problem: Finish all banana piles in H hours, minimize eating speed

def min_eating_speed(piles, h):

"""Find minimum eating speed"""

def can_finish(speed):
"""Check if can finish with given speed"""
hours = 0
for pile in piles:

hours += (pile + speed - 1) // speed # Ceiling

return hours <= h

left, right = 1, max(piles)

while left < right:
mid = left + (right - left) // 2

if can_finish(mid):
right = mid
else:
left = mid + 1

return left

# Example: piles=[3,6,7,11], h=8
# Answer: 4 (eat 4 bananas/hour)



Search Trees and Hashing



Binary Search Tree (BST)

Tree-Based Search Structure

Properties:
® Each node has left (smaller) and right (larger) children
® | eft subtree < node < right subtree
® Enables O(log n) search on average

Characteristics:
® Search: O(logn) average, O(n) worst
¢ Insert/Delete: O(logn) average
® Space: O(n)

Advantages:
® Dynamic: supports insertions/deletions
® Maintains sorted order
® Range queries efficient



BST Search Implementation

1/ class TreelNode:

2 def __init__(self, val):
3 self.val = val

4 self.left = None

5 self .right = None

7 def search_bst(root, target):

8 """Search in BST - Recursive"""

9 if not root or root.val == target:
10 return root

12 if target < root.val:

13 return search_bst(root.left, target)
14 else:

15 return search_bst(root.right, target)

17.def search_bst_iterative (root, . target).:



Hash Table Search

Constant-Time Lookup via Hashing

Concept:
® Map keys to array indices using hash function
® Direct access to value via computed index
e Handle collisions (chaining or open addressing)

Characteristics:
® Search: O(1) average, O(n) worst
¢ Insert/Delete: O(1) average
® Space: O(n)

Advantages:
® Fastest average-case search: O(1)
e Simple interface (key-value pairs)
® Good for large datasets with unique keys



Hash Table Implementation
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class HashTable:
def __init__(self, size=10):
self.size = size
self.table = [[] for _ in range(size)]

def _hash(self, key):
return hash(key) % self.size

def insert(self, key, value):
index = self._hash(key)
for i, (k, v) in enumerate(self.table[index]):
if k == key:
self .table[index][i] = (key, value)
return
self.table[index].append ((key, value))

def search(self, key):
index = self._hash(key)
for k, v in self.table[index]:
if k == key:
return v
return None

# Python’s built-in dict is a hash table
hash_table = {"apple": 5, "banana": 3}
print (hash_table["apple"]) # 0(1) lookup



Comparison: Array, BST, Hash Table

Structure Average | Worst | Sorted
Sorted Array + Binary | O(logn) | O(logn) | Yes
BST O(log n) O(n) Yes
Balanced BST O(logn) | O(logn) | Yes
Hash Table 0O(1) O(n) No

When to Use:
Sorted Array: Static data, range queries

BST: Dynamic data, need sorted order

Balanced BST: Guaranteed performance, sorted

Hash Table: Fast lookup, no order needed




Interpolation and Exponential Search



Interpolation Search

Position Estimation Based on Value

Idea:
® | ike looking up a name in phone book
® Estimate position based on value distribution
® \Norks best with uniformly distributed data

Position Formula:

(target—arr[left])
arr[right]|—arr[left

pos = left 4 ¢ Ty X (right — left)
Characteristics:

® Time: O(loglog n) average, O(n) worst

® Requirement: Sorted + uniformly distributed

® Better than binary: For uniform data

Example: Array [10, 20, 30, 40, 50, 60, 70, 80, 90], target=70
Cctitnate: nac ~ N L 10=10 o o _ & (dirscehofmeeie ]
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Interpolation Search Implementation

def interpolation_search(arr, target):
"""Search in uniformly distributed sorted array
left, right = 0, len(arr) - 1

while left <= right and target >= arr[left] and target <= arr[right]:
if left == right:
if arr([left] == target:
return left
return -1

# Estimate position
pos = left + int(((target - arr[left]) /
(arr[right] - arr[left])) * (right - left))

if arr[pos] == target:
return pos

elif arr[pos] < target:
left = pos + 1

else:
right = pos - 1

return -1
# Example: uniformly distributed data

arr = [10, 20, 30, 40, 50, 60, 70, 80, 90]
result = interpolation_search(arr, 70) # Returns 6



Exponential Search

Find Range, Then Binary Search

Algorithm:
1. Check if element at position 0
2. Find range [2K1, 2X] where element exists
3. Perform binary search in that range

Characteristics:
e Time: O(logn)
® Best for: Element near beginning, unbounded arrays

Why Useful:
® Don't need to know array size
® Better than binary search when target near start
® Good for infinite/unbounded lists

Example: Search for 10 in sorted array
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Exponential Search Implementation

def exponential_search(arr, target):
"""Search in sorted array, efficient when target near start"""
n = len(arr)

# If target at first position
if arr[0] == target:

return 0O

# Find range for binary search

i =1
while i < n and arr[i] <= target:
i %= 2

# Binary search in range [i//2, min(i, n-1)]
return binary_search_range (arr, target, i // 2, min(i, n - 1))

def binary_search_range (arr, target, left, right):
while left <= right:
mid = left + (right - left) // 2

if arr[mid] == target:
return mid

elif arr[mid] < target:
left = mid + 1

else:
right = mid - 1

return -1



Jump Search

Jump Fixed Steps, Then Linear

Algorithm:
1. Jump ahead by /n steps
2. Find block containing target
3. Linear search within block

Characteristics:
e Time: O(\/n)
® Jump size: Optimal is v/n
® Space: O(1)

Why Use:
® Simpler than binary search
® Better than linear search
® Good for systems where backward jumps expensive



Jump Search Implementation

1 import math

N

def jump_search(arr, target):

""" Jump search in sorted array"""

n = len(arr)
step = int(math.sqrt(n))
prev = 0

# Jump to find block
while arr[min(step, n) - 1] < target:
prev = step
step += int(math.sqrt(n))
if prev >= n:
return -1

# Linear search in block
while arr[prev] < target:



Complexity and Preconditions



Time Complexity Summary

Algorithm Best Avg Worst | Space
Linear O(1) O(n) O(n) 0O(1)
Binary O(1) O(log n) O(logn) | O(1)
Interpolation |  O(1) | O(loglogn) | O(n) o(1)
Exponential O(1) O(log n) O(logn) | O(1)
Jump o(1) On) | On) | o)
BST O(log n) O(log n) O(n) O(n)
Hash Table O(1) O(1) O(n) O(n)

Performance Comparison (n=1,000,000):

Linear: up to 1,000,000 comparisons
Jump: /1,000,000 = 1,000 comparisons
Binary: log,(1, 000, 000) ~ 20 comparisons
Interpolation: loglog(1, 000, 000) ~ 4 comparisons
Hash: 1 comparison (average)




Preconditions: Binary Search

MUST be sorted!

# Correct usage
arr = [1, 3, 5, 7, 9, 11, 13] # Sorted

result = binary_search(arr, 7) # Works correctly

# Incorrect usage
arr = [3, 1, 5, 9, 7, 11, 13] # NOT sorted
result = binary_search(arr, 7) # May faill

# Check if sorted
def is_sorted(arr):
return all(arr[i] <= arr[i+1]
for i in range(len(arr)-1))

# Safe usage
if is_sorted(arr):
result = binary_search(arr,; target)



Preconditions: Other Algorithms

Interpolation Search:
# MUST be sorted AND uniformly distributed

arr = [10, 20, 30, 40, 50] # Good: uniform
arr = [1, 2, 3, 100, 1000] # Bad: not uniform
Hash Table:
# Keys must be hashable (immutable)
hash_table [42] = "value" # OK: int
hash_table["key"] = "value" # 0K: str
hash_table[(1, 2)] = "value" # 0K: tuple

5. hash_table[[1, 2]] = "value" # ERROR: 1list!

BST:

# Elements must be comparable
bst.insert (5) # OK: int

. . s PN [ —— .



Choosing the Right Algorithm

Decision Factors:

1. Data Characteristics:

Sorted? — Binary, Interpolation, Jump
Uniformly distributed? — Interpolation
Small size (< 100)? — Linear

Large size? — Binary or Hash

2. Operation Frequency:
® Many searches? — Hash Table or BST
® One-time search? — Linear
® Frequent insertions/deletions? — Hash or BST

3. Requirements:
® Need sorted order? — BST or Sorted Array
® Range queries? — BST
e Fastest possible? — Hash Table



Applications and Patterns



Pattern 1: Finding Boundaries
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Find first and last occurrence in sorted array

def find_first_occurrence(arr, target):
"""Find first occurrence of target"""
left, right = 0, len(arr) - 1
result = -1

while left <= right:
mid = left + (right - left) // 2

if arr[mid] == target:
result = mid
right = mid - 1 # Continue searching left

elif arr[mid] < target:
left = mid + 1
else:
right = mid - 1

return result

def find_last_occurrence(arr, target):
"""Find last occurrence of target"""
left, right = 0, len(arr) - 1
result = -1

while left <= right:
mid = left + (right - left) // 2

if arr[mid] == target:
result mid



Pattern 2: Rotated Array Search
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Search in rotated sorted array

def search_rotated(arr, target):
Search in rotated sorted array
Example: [4,5,6,7,0,1,2] (rotated at index 4)

left, right = 0, len(arr) - 1

while left <= right:
mid = left + (right - left) // 2

if arr[mid] == target:
return mid

# Determine which half is
if arr[left] <= arr[mid]:
# Left half is sorted
if arr[left] <= target < arr([mid]:
right = mid - 1
else:
left = mid + 1
else:
# Right half is sorted
if arr[mid] < target <= arr[right]:
left = mid + 1
else:
right = mid - 1

return -1



Pattern 3: Peak Finding

def find_peak_element (arr):

Find a peak element (greater than neighbors)

left, right = 0, len(arr) - 1

while left < right:
mid = left + (right - left) // 2

if arr[mid] < arr[mid + 1]:
left = mid + 1 # Peak is on right
else:
right = mid # Peak is on left or at mid

return left

# Example: [1, 3, 20, 4, 1, 0]
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Pattern 4: 2D Matrix Search

def search_matrix(matrix, target):

Search in row- e and column-wise sorted matrix

Example: [[1,4,7,11],
[2,5,8,12],
[3,6,9,16],
[10, 4,171]

if not matrix or not matrix[0]:
return False

rows, cols = len(matrix), len(matrix([0])

# Start from top-right corner
row, col = 0, cols - 1
while row < rows and col >= O0:
if matrix[row][col] == target:
return True
elif matrix[row][col]l > target:
col -=1 # Move left
else:
row += 1 # Move down

return False

Time: O(m + n), Strategy: Eliminate row or column each step
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Pattern 5: Finding Missing Number

def find_missing(arr):

Find missing number in [0, n]
Example: [0,1,3,4,5] -> missing 2

left, right = 0, len(arr) - 1

while left <= right:
mid = left + (right - left) // 2

if arr[mid] == mid:

left = mid + 1 # Missing is on right

else:

right = mid - 1 # Missing is on left

return left



Common Search Patterns Summary

1. Find Exact Match:
® Standard binary search
® Return index or -1

2. Find First/Last Occurrence:
® Binary search with boundary tracking
e Continue searching after finding match

3. Find Insertion Position:
® Binary search returning left pointer
® Used for maintaining sorted order

4. Search in Rotated Array:
® |dentify which half is sorted
® Search appropriate half

5. Find Peak/Valley:
e..Compare with neighbors



Summary



Key Takeaways

Search Algorithm Categories:

® Linear Search: O(n), works on any data
Binary Search: O(log n), requires sorted data
Interpolation: O(loglogn), uniform distribution
Hash Table: O(1) average, no order
BST: O(log n), dynamic with sorted order

Key Concepts:

Binary search eliminates half each step
Parametric search: search answer space
Hash tables trade space for speed
Preconditions matter (sorted, uniform, etc.)

Choosing Algorithm:
e Consider: data size, sorted, distribution, frequency
® Small/unsorted: Linear

P I S T D o N



Practical Recommendations

Use Built-in Functions:
® Python: list.index (), bisect module, dict
® Java: Arrays.binarySearch(), HashMap
® C++: std::binary_search(), std: :map

Common Mistakes to Avoid:

® Forgetting to sort before binary search

® |nteger overflow in mid calculation

e Off-by-one errors in loop conditions

® Using linear search on large sorted data
Optimization Tips:

® Preprocess data (sort, build index)

® (Cache frequent queries

® Use appropriate data structure

® Consider trade-offs: time vs space vs complexity



Practice Problems

Problem 1: Binary Search Variants
® |Implement finding first and last occurrence
® Find insertion position for sorted array

Problem 2: Parametric Search
e Koko eating bananas (LeetCode 875)
e Capacity to ship packages (LeetCode 1011)
® Split array largest sum (LeetCode 410)

Problem 3: Rotated Array
® Search in rotated sorted array
® Find minimum in rotated array

Problem 4: 2D Search
® Search 2D matrix (LeetCode 74, 240)
® Find peak in 2D array



Resources

Books:
e "Introduction to Algorithms" (CLRS) - Chapters 2, 11, 12
e "The Algorithm Design Manual" (Skiena)

Online Resources:
® Visualizations: visualgo.net
® | eetCode Binary Search problems
® GeeksforGeeks search algorithm tutorials

Practice Platforms:
® | eetCode: Binary Search tag
® HackerRank: Search challenges
® (Codeforces: Binary search problems

Advanced Topics:
® Ternary search
e Fractional cascadina
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