Searching Algorithms

Find Elements Efficiently Within Collections

Minseok Jeon
DGIST

November 2, 2025

Table of Contents

Introduction

Linear vs Binary Search

Binary Search on Answers (Parametric)
Search Trees and Hashing
Interpolation and Exponential Search
Complexity and Preconditions

Applications and Patterns

o S A o

Summary

Introduction

What is Searching?

Searching: Finding a specific element in a collection

Why Searching Matters:
® Fundamental operation in computer science
® Used in databases, search engines, file systems
® Performance-critical in many applications

® Basis for more complex algorithms

Key Questions:
® |s the data sorted?
® How large is the dataset?
® How frequently do we search?

® Can we preprocess the data?

Classification of Search Algorithms

Based on Data Structure:
® Array-based: Linear, Binary, Interpolation, Jump
® Tree-based: BST, AVL, Red-Black Trees
¢ Hash-based: Hash Tables, Hash Maps

Based on Preconditions:
® Unsorted data: Linear Search, Hash Tables
e Sorted data: Binary Search, Interpolation, Jump
® Special structures: Tree Search

Based on Complexity:

O(1): Hash Table (average)

O(loglog n): Interpolation (average, uniform data)
O(log n): Binary Search, BST

O(+/n): Jump Search

O(n): Linear Search

Linear vs Binary Search

Linear Search: Overview

Sequential Search Through Elements

Algorithm:
1. Start from first element
2. Check each element sequentially
3. Return index when found
4. Return -1 if not found

Characteristics:
e Time: O(n)
® Space: O(1)
® Requirement: None (works on unsorted data)

When to Use:
® Small datasets (n < 100)
® Unsorted data
e Simple implementation needed

Linear Search: Implementation

1 def linear_search(arr, target):

"""Search for target in array"""

N

3 for i in range(len(arr)):

4 if arr[i] == target:

5 return i # Return index
6 return -1 # Not found

s/ # Example
9 arr = [64, 34, 25, 12, 22, 11, 90]
10 result = linear_search(arr, 22) # Returns 4

Analysis:
® Best case: O(1) - element at first position
® Average case: O(n/2) = O(n) - element in middle
® Worst case: O(n) - element at end or not present

Binary Search: Overview

Divide and Conquer on Sorted Array

Algorithm:

1.

> v W

Find middle element

Compare with target

If equal: found!

If target < middle: search left half
If target > middle: search right half
Repeat until found or exhausted

Characteristics:
® Time: O(logn)
e Space: O(1) iterative, O(log n) recursive
® Requirement: Array must be sorted

Key Advantage:
e Eliminates half of search space in each'step

CLVOWNOUTAWNF

1

Binary Search: Iterative Implementation

def binary_search(arr, target):

"""Search for target in sorted array
left, right = 0, len(arr) - 1

while left <= right:
mid = left + (right - left) // 2 # Avoid overflow

if arr[mid] == target:

return mid
elif arr[mid] < target:

left = mid + 1 # Search right half
else:

right = mid - 1 # Search left half

return -1 # Not found

Example (array must be sorted!)

= [11, 12, 22, 25, 34, 64, 90]

result = binary_search(arr, 22) # Returns 2

Note: mid = left + (right - left) // 2 avoids integer overflow

Binary Search: Recursive Implementation

1 def binary_search_recursive (arr, target, left, right):

2 if left > right:

3 return -1

4

5 mid = left + (right - left) // 2
6

7 if arr[mid] == target:

8 return mid

9 elif arr[mid] < target:
10 return binary_search_recursive (arr, target,
11 mid + 1, right)

12 else:

13 return binary_search_recursive(arr, target,

14 left, mid - 1)
15

16| # Usage

w7iarr, = [11, 12, 22, 25, 34, 64,.90]

Binary Search: Visual Example

Search for 22 in [11, 12, 22, 25, 34, 64, 90]

Step 1: left=0, right=6, mid=3
[11, 12, 22, 25, 34, 64, 90]
arr[3]=25 > 22, search left half
Step 2: left=0, right=2, mid=1
[11, 12, 22
arr[1]=12 < 22, search right half
Step 3: left=2, right=2, mid=2

2]
arr[2]=22, found at index 2!

Result: Only 3 comparisons for 7 elements

Linear vs Binary Search: Comparison

Feature Linear Binary
Time Complexity O(n) O(log n)
Space Complexity O(1) O(1) iterative
Sorted Required No Yes
Best For Small/unsorted | Large/sorted
Avg comparisons (n=1000) 500 10
Implementation Simple Moderate
Linked List Support Yes No

Performance Comparison:
® n=10: Linear=5, Binary=3
® n = 100: Linear=50, Binary=7
e n=1,000,000: Linear=500,000, Binary=20

Binary Search on Answers (Parametric)

Concept: Search the Answer Space

Binary Search on Answers (Parametric Search)

Idea:
® Binary search on the solution space, not the array
® Find minimum/maximum value satisfying a condition
® Requires monotonic property

Monotonic Property:
® If value x works, then all values > x also work (or vice versa)
e Creates a boundary: [false, false, ..., true, true, ...]
® Binary search finds the boundary

Common Patterns:
® Minimize maximum: Find smallest value where all constraints satisfied
® Maximize minimum: Find largest value where all constraints satisfied
® Find threshold: Find boundary where condition changes

Template: Binary Search on Answers

1 def binary_search_answer (condition_func, low, high):

nmmnn

3 Find minimum value in [low, high] satisfying condition

N

5 result = -1

7 while low <= high:
8 mid = low + (high - low) // 2

10 if condition_func (mid) :

11 result = mid

12 high = mid - 1 # Try to find smaller
13 else:

14 low = mid + 1

15

16 return result

' [

Example 1: Integer Square Root

def sqrt(x):
"""Find integer square root of x"""
if x < 2:
return x

left, right = 1, x // 2

while left <= right:
mid = left + (right - left) // 2
square = mid * mid

if square == x:
return mid

elif square < x:
left = mid + 1

else:
right = mid - 1

return right # Largest integer whose square <= x

Example: sqrt(8) = 2 (since 272 = 4 <= 8 < 372 = 9)
print (sqrt (8)) # Output: 2

print (sqrt (16)) # Output
print (sqrt (17)) # Output:

NS

Analysis: Search space is [1, x/2], binary search in O(log x)

[N

IN

w0~ o,

©

Example 2: Minimum Ship Capacity

Problem: Ship packages in D days, find minimum capacity

def ship_within_days(weights, days):
"""Find minimum ship capacity"""
def can_ship(capacity):

"""Check if we can ship with given capacity"""
days_needed = 1
current_load = 0

for weight in weights:
if current_load + weight > capacity:
days_needed += 1
current_load = weight
else:
current_load += weight

return days_needed <= days

Binary search on capacity
left = max(weights) # Min: heaviest package
right = sum(weights) # Max: all at once

while left < right:
mid = left + (right - left) // 2

if can_ship(mid):

right = mid # Try smaller capacity
else:

left = mid + 1

Ship Capacity Example

Input: weights = [1,2,3,4,5,6,7,8,9,10], days = 5

Search Space:
® Minimum capacity: max(weights) = 10
® Maximum capacity: sum(weights) = 55
® Search range: [10, 55]

Binary Search Process:
® Try capacity=32: Can ship in 3 days — too large
® Try capacity=21: Can ship in 4 days — too large
® Try capacity=15: Can ship in 5 days — works!
® Try capacity=12: Cannot ship in 5 days — too small

Answer: 15
Distribution: [1,2,3,4,5], [6,7], [8], [9], [10]

N

Example 3: Koko Eating Bananas

Problem: Finish all banana piles in H hours, minimize eating speed

def min_eating_speed(piles, h):

"""Find minimum eating speed"""

def can_finish(speed):
"""Check if can finish with given speed"""
hours = 0
for pile in piles:

hours += (pile + speed - 1) // speed # Ceiling

return hours <= h

left, right = 1, max(piles)

while left < right:
mid = left + (right - left) // 2

if can_finish(mid):
right = mid
else:
left = mid + 1

return left

Example: piles=[3,6,7,11], h=8
Answer: 4 (eat 4 bananas/hour)

Search Trees and Hashing

Binary Search Tree (BST)

Tree-Based Search Structure

Properties:
® Each node has left (smaller) and right (larger) children
® | eft subtree < node < right subtree
® Enables O(log n) search on average

Characteristics:
® Search: O(logn) average, O(n) worst
¢ Insert/Delete: O(logn) average
® Space: O(n)

Advantages:
® Dynamic: supports insertions/deletions
® Maintains sorted order
® Range queries efficient

BST Search Implementation

1/ class TreelNode:

2 def __init__(self, val):
3 self.val = val

4 self.left = None

5 self .right = None

7 def search_bst(root, target):

8 """Search in BST - Recursive"""

9 if not root or root.val == target:
10 return root

12 if target < root.val:

13 return search_bst(root.left, target)
14 else:

15 return search_bst(root.right, target)

17.def search_bst_iterative (root, . target).:

Hash Table Search

Constant-Time Lookup via Hashing

Concept:
® Map keys to array indices using hash function
® Direct access to value via computed index
e Handle collisions (chaining or open addressing)

Characteristics:
® Search: O(1) average, O(n) worst
¢ Insert/Delete: O(1) average
® Space: O(n)

Advantages:
® Fastest average-case search: O(1)
e Simple interface (key-value pairs)
® Good for large datasets with unique keys

Hash Table Implementation

O~NO U A WN R

N

W N

N NN NN
SIS

o

class HashTable:
def __init__(self, size=10):
self.size = size
self.table = [[] for _ in range(size)]

def _hash(self, key):
return hash(key) % self.size

def insert(self, key, value):
index = self._hash(key)
for i, (k, v) in enumerate(self.table[index]):
if k == key:
self .table[index][i] = (key, value)
return
self.table[index].append ((key, value))

def search(self, key):
index = self._hash(key)
for k, v in self.table[index]:
if k == key:
return v
return None

Python’s built-in dict is a hash table
hash_table = {"apple": 5, "banana": 3}
print (hash_table["apple"]) # 0(1) lookup

Comparison: Array, BST, Hash Table

Structure Average | Worst | Sorted
Sorted Array + Binary | O(logn) | O(logn) | Yes
BST O(log n) O(n) Yes
Balanced BST O(logn) | O(logn) | Yes
Hash Table 0O(1) O(n) No

When to Use:
Sorted Array: Static data, range queries

BST: Dynamic data, need sorted order

Balanced BST: Guaranteed performance, sorted

Hash Table: Fast lookup, no order needed

Interpolation and Exponential Search

Interpolation Search

Position Estimation Based on Value

Idea:
® | ike looking up a name in phone book
® Estimate position based on value distribution
® \Norks best with uniformly distributed data

Position Formula:

(target—arr[left])
arr[right]|—arr[left

pos = left 4 ¢ Ty X (right — left)
Characteristics:

® Time: O(loglog n) average, O(n) worst

® Requirement: Sorted + uniformly distributed

® Better than binary: For uniform data

Example: Array [10, 20, 30, 40, 50, 60, 70, 80, 90], target=70
Cctitnate: nac ~ N L 10=10 o o _ & (dirscehofmeeie]

©CoO~NOU A WN

Interpolation Search Implementation

def interpolation_search(arr, target):
"""Search in uniformly distributed sorted array
left, right = 0, len(arr) - 1

while left <= right and target >= arr[left] and target <= arr[right]:
if left == right:
if arr([left] == target:
return left
return -1

Estimate position
pos = left + int(((target - arr[left]) /
(arr[right] - arr[left])) * (right - left))

if arr[pos] == target:
return pos

elif arr[pos] < target:
left = pos + 1

else:
right = pos - 1

return -1
Example: uniformly distributed data

arr = [10, 20, 30, 40, 50, 60, 70, 80, 90]
result = interpolation_search(arr, 70) # Returns 6

Exponential Search

Find Range, Then Binary Search

Algorithm:
1. Check if element at position 0
2. Find range [2K1, 2X] where element exists
3. Perform binary search in that range

Characteristics:
e Time: O(logn)
® Best for: Element near beginning, unbounded arrays

Why Useful:
® Don't need to know array size
® Better than binary search when target near start
® Good for infinite/unbounded lists

Example: Search for 10 in sorted array

D

(RIS, BN NN

Exponential Search Implementation

def exponential_search(arr, target):
"""Search in sorted array, efficient when target near start"""
n = len(arr)

If target at first position
if arr[0] == target:

return 0O

Find range for binary search

i =1
while i < n and arr[i] <= target:
i %= 2

Binary search in range [i//2, min(i, n-1)]
return binary_search_range (arr, target, i // 2, min(i, n - 1))

def binary_search_range (arr, target, left, right):
while left <= right:
mid = left + (right - left) // 2

if arr[mid] == target:
return mid

elif arr[mid] < target:
left = mid + 1

else:
right = mid - 1

return -1

Jump Search

Jump Fixed Steps, Then Linear

Algorithm:
1. Jump ahead by /n steps
2. Find block containing target
3. Linear search within block

Characteristics:
e Time: O(\/n)
® Jump size: Optimal is v/n
® Space: O(1)

Why Use:
® Simpler than binary search
® Better than linear search
® Good for systems where backward jumps expensive

Jump Search Implementation

1 import math

N

def jump_search(arr, target):

""" Jump search in sorted array"""

n = len(arr)
step = int(math.sqrt(n))
prev = 0

Jump to find block
while arr[min(step, n) - 1] < target:
prev = step
step += int(math.sqrt(n))
if prev >= n:
return -1

Linear search in block
while arr[prev] < target:

Complexity and Preconditions

Time Complexity Summary

Algorithm Best Avg Worst | Space
Linear O(1) O(n) O(n) 0O(1)
Binary O(1) O(log n) O(logn) | O(1)
Interpolation | O(1) | O(loglogn) | O(n) o(1)
Exponential O(1) O(log n) O(logn) | O(1)
Jump o(1) On) | On) | o)
BST O(log n) O(log n) O(n) O(n)
Hash Table O(1) O(1) O(n) O(n)

Performance Comparison (n=1,000,000):

Linear: up to 1,000,000 comparisons
Jump: /1,000,000 = 1,000 comparisons
Binary: log,(1, 000, 000) ~ 20 comparisons
Interpolation: loglog(1, 000, 000) ~ 4 comparisons
Hash: 1 comparison (average)

Preconditions: Binary Search

MUST be sorted!

Correct usage
arr = [1, 3, 5, 7, 9, 11, 13] # Sorted

result = binary_search(arr, 7) # Works correctly

Incorrect usage
arr = [3, 1, 5, 9, 7, 11, 13] # NOT sorted
result = binary_search(arr, 7) # May faill

Check if sorted
def is_sorted(arr):
return all(arr[i] <= arr[i+1]
for i in range(len(arr)-1))

Safe usage
if is_sorted(arr):
result = binary_search(arr,; target)

Preconditions: Other Algorithms

Interpolation Search:
MUST be sorted AND uniformly distributed

arr = [10, 20, 30, 40, 50] # Good: uniform
arr = [1, 2, 3, 100, 1000] # Bad: not uniform
Hash Table:
Keys must be hashable (immutable)
hash_table [42] = "value" # OK: int
hash_table["key"] = "value" # 0K: str
hash_table[(1, 2)] = "value" # 0K: tuple

5. hash_table[[1, 2]] = "value" # ERROR: 1list!

BST:

Elements must be comparable
bst.insert (5) # OK: int

. . s PN [—— .

Choosing the Right Algorithm

Decision Factors:

1. Data Characteristics:

Sorted? — Binary, Interpolation, Jump
Uniformly distributed? — Interpolation
Small size (< 100)? — Linear

Large size? — Binary or Hash

2. Operation Frequency:
® Many searches? — Hash Table or BST
® One-time search? — Linear
® Frequent insertions/deletions? — Hash or BST

3. Requirements:
® Need sorted order? — BST or Sorted Array
® Range queries? — BST
e Fastest possible? — Hash Table

Applications and Patterns

Pattern 1: Finding Boundaries

[N

IN

w0~ o,

©

NN NN N NN
0 ~ O 01 N

)
>

Find first and last occurrence in sorted array

def find_first_occurrence(arr, target):
"""Find first occurrence of target"""
left, right = 0, len(arr) - 1
result = -1

while left <= right:
mid = left + (right - left) // 2

if arr[mid] == target:
result = mid
right = mid - 1 # Continue searching left

elif arr[mid] < target:
left = mid + 1
else:
right = mid - 1

return result

def find_last_occurrence(arr, target):
"""Find last occurrence of target"""
left, right = 0, len(arr) - 1
result = -1

while left <= right:
mid = left + (right - left) // 2

if arr[mid] == target:
result mid

Pattern 2: Rotated Array Search

[N

IN

w0~ o,

©

Search in rotated sorted array

def search_rotated(arr, target):
Search in rotated sorted array
Example: [4,5,6,7,0,1,2] (rotated at index 4)

left, right = 0, len(arr) - 1

while left <= right:
mid = left + (right - left) // 2

if arr[mid] == target:
return mid

Determine which half is
if arr[left] <= arr[mid]:
Left half is sorted
if arr[left] <= target < arr([mid]:
right = mid - 1
else:
left = mid + 1
else:
Right half is sorted
if arr[mid] < target <= arr[right]:
left = mid + 1
else:
right = mid - 1

return -1

Pattern 3: Peak Finding

def find_peak_element (arr):

Find a peak element (greater than neighbors)

left, right = 0, len(arr) - 1

while left < right:
mid = left + (right - left) // 2

if arr[mid] < arr[mid + 1]:
left = mid + 1 # Peak is on right
else:
right = mid # Peak is on left or at mid

return left

Example: [1, 3, 20, 4, 1, 0]

0 ~N O OTAWN

Pattern 4: 2D Matrix Search

def search_matrix(matrix, target):

Search in row- e and column-wise sorted matrix

Example: [[1,4,7,11],
[2,5,8,12],
[3,6,9,16],
[10, 4,171]

if not matrix or not matrix[0]:
return False

rows, cols = len(matrix), len(matrix([0])

Start from top-right corner
row, col = 0, cols - 1
while row < rows and col >= O0:
if matrix[row][col] == target:
return True
elif matrix[row][col]l > target:
col -=1 # Move left
else:
row += 1 # Move down

return False

Time: O(m + n), Strategy: Eliminate row or column each step

1

N

Pattern 5: Finding Missing Number

def find_missing(arr):

Find missing number in [0, n]
Example: [0,1,3,4,5] -> missing 2

left, right = 0, len(arr) - 1

while left <= right:
mid = left + (right - left) // 2

if arr[mid] == mid:

left = mid + 1 # Missing is on right

else:

right = mid - 1 # Missing is on left

return left

Common Search Patterns Summary

1. Find Exact Match:
® Standard binary search
® Return index or -1

2. Find First/Last Occurrence:
® Binary search with boundary tracking
e Continue searching after finding match

3. Find Insertion Position:
® Binary search returning left pointer
® Used for maintaining sorted order

4. Search in Rotated Array:
® |dentify which half is sorted
® Search appropriate half

5. Find Peak/Valley:
e..Compare with neighbors

Summary

Key Takeaways

Search Algorithm Categories:

® Linear Search: O(n), works on any data
Binary Search: O(log n), requires sorted data
Interpolation: O(loglogn), uniform distribution
Hash Table: O(1) average, no order
BST: O(log n), dynamic with sorted order

Key Concepts:

Binary search eliminates half each step
Parametric search: search answer space
Hash tables trade space for speed
Preconditions matter (sorted, uniform, etc.)

Choosing Algorithm:
e Consider: data size, sorted, distribution, frequency
® Small/unsorted: Linear

P I S T D o N

Practical Recommendations

Use Built-in Functions:
® Python: list.index (), bisect module, dict
® Java: Arrays.binarySearch(), HashMap
® C++: std::binary_search(), std: :map

Common Mistakes to Avoid:

® Forgetting to sort before binary search

® |nteger overflow in mid calculation

e Off-by-one errors in loop conditions

® Using linear search on large sorted data
Optimization Tips:

® Preprocess data (sort, build index)

® (Cache frequent queries

® Use appropriate data structure

® Consider trade-offs: time vs space vs complexity

Practice Problems

Problem 1: Binary Search Variants
® |Implement finding first and last occurrence
® Find insertion position for sorted array

Problem 2: Parametric Search
e Koko eating bananas (LeetCode 875)
e Capacity to ship packages (LeetCode 1011)
® Split array largest sum (LeetCode 410)

Problem 3: Rotated Array
® Search in rotated sorted array
® Find minimum in rotated array

Problem 4: 2D Search
® Search 2D matrix (LeetCode 74, 240)
® Find peak in 2D array

Resources

Books:
e "Introduction to Algorithms" (CLRS) - Chapters 2, 11, 12
e "The Algorithm Design Manual" (Skiena)

Online Resources:
® Visualizations: visualgo.net
® | eetCode Binary Search problems
® GeeksforGeeks search algorithm tutorials

Practice Platforms:
® | eetCode: Binary Search tag
® HackerRank: Search challenges
® (Codeforces: Binary search problems

Advanced Topics:
® Ternary search
e Fractional cascadina

	Introduction
	Linear vs Binary Search
	Binary Search on Answers (Parametric)
	Search Trees and Hashing
	Interpolation and Exponential Search
	Complexity and Preconditions
	Applications and Patterns
	Summary

