
Searching Algorithms
Find Elements Efficiently Within Collections

Minseok Jeon
DGIST

November 2, 2025

Minseok Jeon Searching Algorithms November 2, 2025 1/50

Table of Contents

1. Introduction

2. Linear vs Binary Search

3. Binary Search on Answers (Parametric)

4. Search Trees and Hashing

5. Interpolation and Exponential Search

6. Complexity and Preconditions

7. Applications and Patterns

8. Summary

Minseok Jeon Searching Algorithms November 2, 2025 2/50

Introduction

What is Searching?

Searching: Finding a specific element in a collection

Why Searching Matters:
• Fundamental operation in computer science
• Used in databases, search engines, file systems
• Performance-critical in many applications
• Basis for more complex algorithms

Key Questions:
• Is the data sorted?
• How large is the dataset?
• How frequently do we search?
• Can we preprocess the data?

Minseok Jeon Searching Algorithms November 2, 2025 4/50

Classification of Search Algorithms
Based on Data Structure:
• Array-based: Linear, Binary, Interpolation, Jump
• Tree-based: BST, AVL, Red-Black Trees
• Hash-based: Hash Tables, Hash Maps

Based on Preconditions:
• Unsorted data: Linear Search, Hash Tables
• Sorted data: Binary Search, Interpolation, Jump
• Special structures: Tree Search

Based on Complexity:
• O(1): Hash Table (average)
• O(log log n): Interpolation (average, uniform data)
• O(log n): Binary Search, BST
• O(

√
n): Jump Search

• O(n): Linear Search
Minseok Jeon Searching Algorithms November 2, 2025 5/50

Linear vs Binary Search

Linear Search: Overview
Sequential Search Through Elements

Algorithm:
1. Start from first element
2. Check each element sequentially
3. Return index when found
4. Return -1 if not found

Characteristics:
• Time: O(n)
• Space: O(1)
• Requirement: None (works on unsorted data)

When to Use:
• Small datasets (n < 100)
• Unsorted data
• Simple implementation needed
• One-time search

Minseok Jeon Searching Algorithms November 2, 2025 7/50

Linear Search: Implementation

1 def linear_search(arr , target):
2 """ Search for target in array """
3 for i in range(len(arr)):
4 if arr[i] == target:
5 return i # Return index
6 return -1 # Not found
7

8 # Example
9 arr = [64, 34, 25, 12, 22, 11, 90]

10 result = linear_search(arr , 22) # Returns 4

Analysis:
• Best case: O(1) - element at first position
• Average case: O(n/2) = O(n) - element in middle
• Worst case: O(n) - element at end or not present

Minseok Jeon Searching Algorithms November 2, 2025 8/50

Binary Search: Overview
Divide and Conquer on Sorted Array

Algorithm:
1. Find middle element
2. Compare with target
3. If equal: found!
4. If target < middle: search left half
5. If target > middle: search right half
6. Repeat until found or exhausted

Characteristics:
• Time: O(log n)
• Space: O(1) iterative, O(log n) recursive
• Requirement: Array must be sorted

Key Advantage:
• Eliminates half of search space in each step
• For 1 million elements: log2(1, 000, 000) ≈ 20 comparisons

Minseok Jeon Searching Algorithms November 2, 2025 9/50

Binary Search: Iterative Implementation

1 def binary_search(arr , target):
2 """ Search for target in sorted array """
3 left , right = 0, len(arr) - 1
4
5 while left <= right:
6 mid = left + (right - left) // 2 # Avoid overflow
7
8 if arr[mid] == target:
9 return mid

10 elif arr[mid] < target:
11 left = mid + 1 # Search right half
12 else:
13 right = mid - 1 # Search left half
14
15 return -1 # Not found
16
17 # Example (array must be sorted !)
18 arr = [11, 12, 22, 25, 34, 64, 90]
19 result = binary_search(arr , 22) # Returns 2

Note: mid = left + (right - left) // 2 avoids integer overflow

Minseok Jeon Searching Algorithms November 2, 2025 10/50

Binary Search: Recursive Implementation

1 def binary_search_recursive(arr , target , left , right):
2 if left > right:
3 return -1
4

5 mid = left + (right - left) // 2
6

7 if arr[mid] == target:
8 return mid
9 elif arr[mid] < target:

10 return binary_search_recursive(arr , target ,
11 mid + 1, right)
12 else:
13 return binary_search_recursive(arr , target ,
14 left , mid - 1)
15

16 # Usage
17 arr = [11, 12, 22, 25, 34, 64, 90]
18 result = binary_search_recursive(arr , 22, 0, len(arr) - 1)

Minseok Jeon Searching Algorithms November 2, 2025 11/50

Binary Search: Visual Example
Search for 22 in [11, 12, 22, 25, 34, 64, 90]

Step 1: left=0, right=6, mid=3

[11, 12, 22, 25, 34, 64, 90]
arr[3]=25 > 22, search left half

Step 2: left=0, right=2, mid=1

[11, 12, 22]
arr[1]=12 < 22, search right half

Step 3: left=2, right=2, mid=2

[22]
arr[2]=22, found at index 2!

Result: Only 3 comparisons for 7 elements
Minseok Jeon Searching Algorithms November 2, 2025 12/50

Linear vs Binary Search: Comparison

Feature Linear Binary
Time Complexity O(n) O(log n)

Space Complexity O(1) O(1) iterative
Sorted Required No Yes
Best For Small/unsorted Large/sorted
Avg comparisons (n=1000) 500 10
Implementation Simple Moderate
Linked List Support Yes No

Performance Comparison:
• n = 10: Linear=5, Binary=3
• n = 100: Linear=50, Binary=7
• n = 1, 000, 000: Linear=500,000, Binary=20

Minseok Jeon Searching Algorithms November 2, 2025 13/50

Binary Search on Answers (Parametric)

Concept: Search the Answer Space
Binary Search on Answers (Parametric Search)

Idea:
• Binary search on the solution space, not the array
• Find minimum/maximum value satisfying a condition
• Requires monotonic property

Monotonic Property:
• If value x works, then all values > x also work (or vice versa)
• Creates a boundary: [false, false, ..., true, true, ...]
• Binary search finds the boundary

Common Patterns:
• Minimize maximum: Find smallest value where all constraints satisfied
• Maximize minimum: Find largest value where all constraints satisfied
• Find threshold: Find boundary where condition changes

Minseok Jeon Searching Algorithms November 2, 2025 15/50

Template: Binary Search on Answers

1 def binary_search_answer(condition_func , low , high):
2 """
3 Find minimum value in [low , high] satisfying condition
4 """
5 result = -1
6

7 while low <= high:
8 mid = low + (high - low) // 2
9

10 if condition_func(mid):
11 result = mid
12 high = mid - 1 # Try to find smaller
13 else:
14 low = mid + 1
15

16 return result

Key Points:
• condition_func(x): Returns True if x satisfies constraint
• Search space: continuous range of values
• Answer: boundary where condition becomes true

Minseok Jeon Searching Algorithms November 2, 2025 16/50

Example 1: Integer Square Root

1 def sqrt(x):
2 """ Find integer square root of x"""
3 if x < 2:
4 return x
5
6 left , right = 1, x // 2
7
8 while left <= right:
9 mid = left + (right - left) // 2

10 square = mid * mid
11
12 if square == x:
13 return mid
14 elif square < x:
15 left = mid + 1
16 else:
17 right = mid - 1
18
19 return right # Largest integer whose square <= x
20
21 # Example: sqrt (8) = 2 (since 2^2 = 4 <= 8 < 3^2 = 9)
22 print(sqrt (8)) # Output: 2
23 print(sqrt (16)) # Output: 4
24 print(sqrt (17)) # Output: 4

Analysis: Search space is [1, x/2], binary search in O(log x)

Minseok Jeon Searching Algorithms November 2, 2025 17/50

Example 2: Minimum Ship Capacity
Problem: Ship packages in D days, find minimum capacity

1 def ship_within_days(weights , days):
2 """ Find minimum ship capacity """
3 def can_ship(capacity):
4 """ Check if we can ship with given capacity """
5 days_needed = 1
6 current_load = 0
7
8 for weight in weights:
9 if current_load + weight > capacity:

10 days_needed += 1
11 current_load = weight
12 else:
13 current_load += weight
14
15 return days_needed <= days
16
17 # Binary search on capacity
18 left = max(weights) # Min: heaviest package
19 right = sum(weights) # Max: all at once
20
21 while left < right:
22 mid = left + (right - left) // 2
23
24 if can_ship(mid):
25 right = mid # Try smaller capacity
26 else:
27 left = mid + 1
28
29 return left

Minseok Jeon Searching Algorithms November 2, 2025 18/50

Ship Capacity Example
Input: weights = [1,2,3,4,5,6,7,8,9,10], days = 5

Search Space:
• Minimum capacity: max(weights) = 10
• Maximum capacity: sum(weights) = 55
• Search range: [10, 55]

Binary Search Process:
• Try capacity=32: Can ship in 3 days → too large
• Try capacity=21: Can ship in 4 days → too large
• Try capacity=15: Can ship in 5 days → works!
• Try capacity=12: Cannot ship in 5 days → too small

Answer: 15
Distribution: [1,2,3,4,5], [6,7], [8], [9], [10]

Minseok Jeon Searching Algorithms November 2, 2025 19/50

Example 3: Koko Eating Bananas

Problem: Finish all banana piles in H hours, minimize eating speed
1 def min_eating_speed(piles , h):
2 """ Find minimum eating speed """
3 def can_finish(speed):
4 """ Check if can finish with given speed """
5 hours = 0
6 for pile in piles:
7 hours += (pile + speed - 1) // speed # Ceiling
8 return hours <= h
9

10 left , right = 1, max(piles)
11
12 while left < right:
13 mid = left + (right - left) // 2
14
15 if can_finish(mid):
16 right = mid
17 else:
18 left = mid + 1
19
20 return left
21
22 # Example: piles =[3,6,7,11], h=8
23 # Answer: 4 (eat 4 bananas/hour)

Minseok Jeon Searching Algorithms November 2, 2025 20/50

Search Trees and Hashing

Binary Search Tree (BST)
Tree-Based Search Structure

Properties:
• Each node has left (smaller) and right (larger) children
• Left subtree < node < right subtree
• Enables O(log n) search on average

Characteristics:
• Search: O(log n) average, O(n) worst
• Insert/Delete: O(log n) average
• Space: O(n)

Advantages:
• Dynamic: supports insertions/deletions
• Maintains sorted order
• Range queries efficient

Disadvantage:
• Can degenerate to O(n) if unbalanced
• Solution: Self-balancing trees (AVL, Red-Black)

Minseok Jeon Searching Algorithms November 2, 2025 22/50

BST Search Implementation

1 class TreeNode:
2 def __init__(self , val):
3 self.val = val
4 self.left = None
5 self.right = None
6

7 def search_bst(root , target):
8 """ Search in BST - Recursive """
9 if not root or root.val == target:

10 return root
11

12 if target < root.val:
13 return search_bst(root.left , target)
14 else:
15 return search_bst(root.right , target)
16

17 def search_bst_iterative(root , target):
18 """ Search in BST - Iterative """
19 while root and root.val != target:
20 if target < root.val:
21 root = root.left
22 else:
23 root = root.right
24 return root

Minseok Jeon Searching Algorithms November 2, 2025 23/50

Hash Table Search
Constant-Time Lookup via Hashing

Concept:
• Map keys to array indices using hash function
• Direct access to value via computed index
• Handle collisions (chaining or open addressing)

Characteristics:
• Search: O(1) average, O(n) worst
• Insert/Delete: O(1) average
• Space: O(n)

Advantages:
• Fastest average-case search: O(1)
• Simple interface (key-value pairs)
• Good for large datasets with unique keys

Disadvantages:
• No sorted order
• Poor worst-case performance
• Extra memory for hash table

Minseok Jeon Searching Algorithms November 2, 2025 24/50

Hash Table Implementation

1 class HashTable:
2 def __init__(self , size =10):
3 self.size = size
4 self.table = [[] for _ in range(size)]
5
6 def _hash(self , key):
7 return hash(key) % self.size
8
9 def insert(self , key , value):

10 index = self._hash(key)
11 for i, (k, v) in enumerate(self.table[index]):
12 if k == key:
13 self.table[index][i] = (key , value)
14 return
15 self.table[index]. append ((key , value))
16
17 def search(self , key):
18 index = self._hash(key)
19 for k, v in self.table[index]:
20 if k == key:
21 return v
22 return None
23
24 # Python ’s built -in dict is a hash table
25 hash_table = {"apple": 5, "banana": 3}
26 print(hash_table["apple"]) # O(1) lookup

Minseok Jeon Searching Algorithms November 2, 2025 25/50

Comparison: Array, BST, Hash Table

Structure Average Worst Sorted
Sorted Array + Binary O(log n) O(log n) Yes
BST O(log n) O(n) Yes
Balanced BST O(log n) O(log n) Yes
Hash Table O(1) O(n) No

When to Use:
• Sorted Array: Static data, range queries
• BST: Dynamic data, need sorted order
• Balanced BST: Guaranteed performance, sorted
• Hash Table: Fast lookup, no order needed

Minseok Jeon Searching Algorithms November 2, 2025 26/50

Interpolation and Exponential Search

Interpolation Search
Position Estimation Based on Value

Idea:
• Like looking up a name in phone book
• Estimate position based on value distribution
• Works best with uniformly distributed data

Position Formula:

pos = lef t + (target−arr [lef t])
(arr [r ight]−arr [lef t]) × (r ight − lef t)

Characteristics:
• Time: O(log log n) average, O(n) worst
• Requirement: Sorted + uniformly distributed
• Better than binary: For uniform data

Example: Array [10, 20, 30, 40, 50, 60, 70, 80, 90], target=70
Estimate: pos ≈ 0 + 70−1090−10 × 8 = 6 (directly finds it!)Minseok Jeon Searching Algorithms November 2, 2025 28/50

Interpolation Search Implementation

1 def interpolation_search(arr , target):
2 """ Search in uniformly distributed sorted array """
3 left , right = 0, len(arr) - 1
4
5 while left <= right and target >= arr[left] and target <= arr[right]:
6 if left == right:
7 if arr[left] == target:
8 return left
9 return -1

10
11 # Estimate position
12 pos = left + int (((target - arr[left]) /
13 (arr[right] - arr[left])) * (right - left))
14
15 if arr[pos] == target:
16 return pos
17 elif arr[pos] < target:
18 left = pos + 1
19 else:
20 right = pos - 1
21
22 return -1
23
24 # Example: uniformly distributed data
25 arr = [10, 20, 30, 40, 50, 60, 70, 80, 90]
26 result = interpolation_search(arr , 70) # Returns 6

Minseok Jeon Searching Algorithms November 2, 2025 29/50

Exponential Search
Find Range, Then Binary Search

Algorithm:
1. Check if element at position 0
2. Find range [2k−1, 2k] where element exists
3. Perform binary search in that range

Characteristics:
• Time: O(log n)
• Best for: Element near beginning, unbounded arrays

Why Useful:
• Don’t need to know array size
• Better than binary search when target near start
• Good for infinite/unbounded lists

Example: Search for 10 in sorted array
Check positions: 1, 2, 4, 8, 16 → found range [8, 16]
Binary search in [8, 16] → find exact position

Minseok Jeon Searching Algorithms November 2, 2025 30/50

Exponential Search Implementation
1 def exponential_search(arr , target):
2 """ Search in sorted array , efficient when target near start """
3 n = len(arr)
4
5 # If target at first position
6 if arr [0] == target:
7 return 0
8
9 # Find range for binary search

10 i = 1
11 while i < n and arr[i] <= target:
12 i *= 2
13
14 # Binary search in range [i//2, min(i, n-1)]
15 return binary_search_range(arr , target , i // 2, min(i, n - 1))
16
17 def binary_search_range(arr , target , left , right):
18 while left <= right:
19 mid = left + (right - left) // 2
20
21 if arr[mid] == target:
22 return mid
23 elif arr[mid] < target:
24 left = mid + 1
25 else:
26 right = mid - 1
27
28 return -1

Minseok Jeon Searching Algorithms November 2, 2025 31/50

Jump Search
Jump Fixed Steps, Then Linear

Algorithm:
1. Jump ahead by

√
n steps

2. Find block containing target
3. Linear search within block

Characteristics:
• Time: O(

√
n)

• Jump size: Optimal is
√
n

• Space: O(1)

Why Use:
• Simpler than binary search
• Better than linear search
• Good for systems where backward jumps expensive

Trade-off:
• Slower than binary search: O(

√
n) vs O(log n)

• Simpler implementation
• Better cache performance (forward-only)

Minseok Jeon Searching Algorithms November 2, 2025 32/50

Jump Search Implementation

1 import math
2

3 def jump_search(arr , target):
4 """ Jump search in sorted array """
5 n = len(arr)
6 step = int(math.sqrt(n))
7 prev = 0
8

9 # Jump to find block
10 while arr[min(step , n) - 1] < target:
11 prev = step
12 step += int(math.sqrt(n))
13 if prev >= n:
14 return -1
15

16 # Linear search in block
17 while arr[prev] < target:
18 prev += 1
19 if prev == min(step , n):
20 return -1
21

22 if arr[prev] == target:
23 return prev
24

25 return -1

Minseok Jeon Searching Algorithms November 2, 2025 33/50

Complexity and Preconditions

Time Complexity Summary
Algorithm Best Avg Worst Space
Linear O(1) O(n) O(n) O(1)

Binary O(1) O(log n) O(log n) O(1)

Interpolation O(1) O(log log n) O(n) O(1)

Exponential O(1) O(log n) O(log n) O(1)

Jump O(1) O(
√
n) O(

√
n) O(1)

BST O(log n) O(log n) O(n) O(n)

Hash Table O(1) O(1) O(n) O(n)

Performance Comparison (n=1,000,000):
• Linear: up to 1,000,000 comparisons
• Jump:

√
1, 000, 000 = 1, 000 comparisons

• Binary: log2(1, 000, 000) ≈ 20 comparisons
• Interpolation: log log(1, 000, 000) ≈ 4 comparisons
• Hash: 1 comparison (average)

Minseok Jeon Searching Algorithms November 2, 2025 35/50

Preconditions: Binary Search
MUST be sorted!

1 # Correct usage
2 arr = [1, 3, 5, 7, 9, 11, 13] # Sorted
3 result = binary_search(arr , 7) # Works correctly
4

5 # Incorrect usage
6 arr = [3, 1, 5, 9, 7, 11, 13] # NOT sorted
7 result = binary_search(arr , 7) # May fail!
8

9 # Check if sorted
10 def is_sorted(arr):
11 return all(arr[i] <= arr[i+1]
12 for i in range(len(arr) -1))
13

14 # Safe usage
15 if is_sorted(arr):
16 result = binary_search(arr , target)
17 else:
18 arr.sort() # Sort first
19 result = binary_search(arr , target)

Minseok Jeon Searching Algorithms November 2, 2025 36/50

Preconditions: Other Algorithms
Interpolation Search:

1 # MUST be sorted AND uniformly distributed
2 arr = [10, 20, 30, 40, 50] # Good: uniform
3 arr = [1, 2, 3, 100, 1000] # Bad: not uniform

Hash Table:
1 # Keys must be hashable (immutable)
2 hash_table [42] = "value" # OK: int
3 hash_table["key"] = "value" # OK: str
4 hash_table [(1, 2)] = "value" # OK: tuple
5 hash_table [[1, 2]] = "value" # ERROR: list!

BST:
1 # Elements must be comparable
2 bst.insert (5) # OK: int
3 bst.insert("a") # ERROR if tree has ints!

Minseok Jeon Searching Algorithms November 2, 2025 37/50

Choosing the Right Algorithm
Decision Factors:

1. Data Characteristics:
• Sorted? → Binary, Interpolation, Jump
• Uniformly distributed? → Interpolation
• Small size (< 100)? → Linear
• Large size? → Binary or Hash

2. Operation Frequency:
• Many searches? → Hash Table or BST
• One-time search? → Linear
• Frequent insertions/deletions? → Hash or BST

3. Requirements:
• Need sorted order? → BST or Sorted Array
• Range queries? → BST
• Fastest possible? → Hash Table
• Memory constrained? → In-place algorithms

Minseok Jeon Searching Algorithms November 2, 2025 38/50

Applications and Patterns

Pattern 1: Finding Boundaries
Find first and last occurrence in sorted array

1 def find_first_occurrence(arr , target):
2 """ Find first occurrence of target """
3 left , right = 0, len(arr) - 1
4 result = -1
5
6 while left <= right:
7 mid = left + (right - left) // 2
8
9 if arr[mid] == target:

10 result = mid
11 right = mid - 1 # Continue searching left
12 elif arr[mid] < target:
13 left = mid + 1
14 else:
15 right = mid - 1
16
17 return result
18
19 def find_last_occurrence(arr , target):
20 """ Find last occurrence of target """
21 left , right = 0, len(arr) - 1
22 result = -1
23
24 while left <= right:
25 mid = left + (right - left) // 2
26
27 if arr[mid] == target:
28 result = mid
29 left = mid + 1 # Continue searching right
30 elif arr[mid] < target:
31 left = mid + 1
32 else:
33 right = mid - 1
34
35 return result

Minseok Jeon Searching Algorithms November 2, 2025 40/50

Pattern 2: Rotated Array Search
Search in rotated sorted array

1 def search_rotated(arr , target):
2 """
3 Search in rotated sorted array
4 Example: [4,5,6,7,0,1,2] (rotated at index 4)
5 """
6 left , right = 0, len(arr) - 1
7
8 while left <= right:
9 mid = left + (right - left) // 2

10
11 if arr[mid] == target:
12 return mid
13
14 # Determine which half is sorted
15 if arr[left] <= arr[mid]:
16 # Left half is sorted
17 if arr[left] <= target < arr[mid]:
18 right = mid - 1
19 else:
20 left = mid + 1
21 else:
22 # Right half is sorted
23 if arr[mid] < target <= arr[right]:
24 left = mid + 1
25 else:
26 right = mid - 1
27
28 return -1Minseok Jeon Searching Algorithms November 2, 2025 41/50

Pattern 3: Peak Finding

1 def find_peak_element(arr):
2 """
3 Find a peak element (greater than neighbors)
4 """
5 left , right = 0, len(arr) - 1
6

7 while left < right:
8 mid = left + (right - left) // 2
9

10 if arr[mid] < arr[mid + 1]:
11 left = mid + 1 # Peak is on right
12 else:
13 right = mid # Peak is on left or at mid
14

15 return left
16

17 # Example: [1, 3, 20, 4, 1, 0]
18 # Peak at index 2 (value 20)

Key Insight: Always move towards higher values

Minseok Jeon Searching Algorithms November 2, 2025 42/50

Pattern 4: 2D Matrix Search
1 def search_matrix(matrix , target):
2 """
3 Search in row -wise and column -wise sorted matrix
4 Example: [[1,4,7,11],
5 [2,5,8,12],
6 [3,6,9,16],
7 [10 ,13 ,14 ,17]]
8 """
9 if not matrix or not matrix [0]:

10 return False
11
12 rows , cols = len(matrix), len(matrix [0])
13
14 # Start from top -right corner
15 row , col = 0, cols - 1
16
17 while row < rows and col >= 0:
18 if matrix[row][col] == target:
19 return True
20 elif matrix[row][col] > target:
21 col -= 1 # Move left
22 else:
23 row += 1 # Move down
24
25 return False

Time: O(m + n), Strategy: Eliminate row or column each step
Minseok Jeon Searching Algorithms November 2, 2025 43/50

Pattern 5: Finding Missing Number

1 def find_missing(arr):
2 """
3 Find missing number in [0, n]
4 Example: [0,1,3,4,5] -> missing 2
5 """
6 left , right = 0, len(arr) - 1
7

8 while left <= right:
9 mid = left + (right - left) // 2

10

11 if arr[mid] == mid:
12 left = mid + 1 # Missing is on right
13 else:
14 right = mid - 1 # Missing is on left
15

16 return left
17

18 # Example usage
19 arr = [0, 1, 3, 4, 5, 6]
20 print(find_missing(arr)) # Output: 2

Key: If arr[i] == i, no missing number up to i

Minseok Jeon Searching Algorithms November 2, 2025 44/50

Common Search Patterns Summary
1. Find Exact Match:
• Standard binary search
• Return index or -1

2. Find First/Last Occurrence:
• Binary search with boundary tracking
• Continue searching after finding match

3. Find Insertion Position:
• Binary search returning left pointer
• Used for maintaining sorted order

4. Search in Rotated Array:
• Identify which half is sorted
• Search appropriate half

5. Find Peak/Valley:
• Compare with neighbors
• Move towards increasing values

6. 2D Search:
• Start from corner
• Eliminate row or column each step

7. Binary Search on Answer:
• Search solution space
• Check monotonic condition

Minseok Jeon Searching Algorithms November 2, 2025 45/50

Summary

Key Takeaways
Search Algorithm Categories:
• Linear Search: O(n), works on any data
• Binary Search: O(log n), requires sorted data
• Interpolation: O(log log n), uniform distribution
• Hash Table: O(1) average, no order
• BST: O(log n), dynamic with sorted order

Key Concepts:
• Binary search eliminates half each step
• Parametric search: search answer space
• Hash tables trade space for speed
• Preconditions matter (sorted, uniform, etc.)

Choosing Algorithm:
• Consider: data size, sorted, distribution, frequency
• Small/unsorted: Linear
• Large/sorted: Binary
• Frequent searches: Hash or BST

Minseok Jeon Searching Algorithms November 2, 2025 47/50

Practical Recommendations
Use Built-in Functions:
• Python: list.index(), bisect module, dict
• Java: Arrays.binarySearch(), HashMap
• C++: std::binary_search(), std::map

Common Mistakes to Avoid:
• Forgetting to sort before binary search
• Integer overflow in mid calculation
• Off-by-one errors in loop conditions
• Using linear search on large sorted data

Optimization Tips:
• Preprocess data (sort, build index)
• Cache frequent queries
• Use appropriate data structure
• Consider trade-offs: time vs space vs complexity

Minseok Jeon Searching Algorithms November 2, 2025 48/50

Practice Problems
Problem 1: Binary Search Variants
• Implement finding first and last occurrence
• Find insertion position for sorted array

Problem 2: Parametric Search
• Koko eating bananas (LeetCode 875)
• Capacity to ship packages (LeetCode 1011)
• Split array largest sum (LeetCode 410)

Problem 3: Rotated Array
• Search in rotated sorted array
• Find minimum in rotated array

Problem 4: 2D Search
• Search 2D matrix (LeetCode 74, 240)
• Find peak in 2D array

Minseok Jeon Searching Algorithms November 2, 2025 49/50

Resources
Books:
• "Introduction to Algorithms" (CLRS) - Chapters 2, 11, 12
• "The Algorithm Design Manual" (Skiena)

Online Resources:
• Visualizations: visualgo.net
• LeetCode Binary Search problems
• GeeksforGeeks search algorithm tutorials

Practice Platforms:
• LeetCode: Binary Search tag
• HackerRank: Search challenges
• Codeforces: Binary search problems

Advanced Topics:
• Ternary search
• Fractional cascading
• Suffix arrays and trees

Minseok Jeon Searching Algorithms November 2, 2025 50/50

	Introduction
	Linear vs Binary Search
	Binary Search on Answers (Parametric)
	Search Trees and Hashing
	Interpolation and Exponential Search
	Complexity and Preconditions
	Applications and Patterns
	Summary

