
Data Structures: Queues

Minseok Jeon
DGIST

November 2, 2025

Contents

1. Introduction to Queues

2. Core Operations

3. Circular Queue

4. Deque (Double-Ended Queue)

5. Priority Queue

6. Implementation Approaches

7. Applications

8. Complexity Analysis

9. Queue vs Stack

10. Summary

Introduction to Queues

What is a Queue?

Definition
A queue is a linear data structure that follows the First In, First Out (FIFO) principle.

Key characteristics:
• Elements are inserted at the rear (enqueue)
• Elements are removed from the front (dequeue)
• Perfect for scheduling and buffering
• Models real-world waiting lines
• Used in OS scheduling and network packet

handling

1 2 3 4FRONT REAR
Queue Structure

Minseok Jeon Queues November 2, 2025 4/28

Core Operations

Essential Queue Operations

Primary Operations
• Enqueue: Add element to rear
• Dequeue: Remove and return front

element
• Front/Peek: View front element

without removing
• Empty: Check if queue is empty
• Size: Get number of elements

C Example
1 # include <stdio .h>
2 # include <stdlib .h>
3
4 typedef struct Node {
5 int data;
6 struct Node* next;
7 } Node;
8
9 typedef struct Queue {

10 Node *front , *rear;
11 } Queue ;
12
13 void enqueue (Queue * q, int x) {
14 Node* n = malloc (sizeof (Node));
15 n->data = x; n->next = NULL;
16 if (q->rear) q->rear ->next = n;
17 q->rear = n;
18 if (!q-> front) q-> front = n;
19 }
20
21 int dequeue (Queue * q) {
22 int x = q->front ->data;
23 Node* tmp = q-> front ;
24 q-> front = q->front ->next;
25 if (!q-> front) q->rear = NULL;
26 free(tmp); return x;
27 }
28
29 int isEmpty (Queue * q) {
30 return q-> front == NULL;
31 }

Time Complexity
All operations are O(1) - constant time

Minseok Jeon Queues November 2, 2025 6/28

Queue Operations Visualization

Initial Queue

10 20 30F

After Enqueue(40)

10 20 30 40F R

After Dequeue()

20 30 40F

Returns: 10

Minseok Jeon Queues November 2, 2025 7/28

Circular Queue

Circular Queue Concept

Why Circular Queue?
• Simple array queue wastes space
• Front pointer moves forward
• Space at beginning becomes unusable
• Solution: Wrap around using modulo

Wrap-around Formula
(index + 1) % capacity

Full/Empty Detection:
• Track size explicitly, OR
• Reserve one empty slot

0
1

2

3

4
5

6

7

8

9

F=0

R=4

0
1

2

3

4

Circular Buffer

Minseok Jeon Queues November 2, 2025 9/28

Circular Queue Implementation

1 class CircularQueue :
2 def __init__ (self , capacity):
3 self.data = [None] * capacity
4 self. capacity = capacity
5 self.front = 0
6 self.size = 0
7

8 def enqueue (self , item):
9 if self.size == self. capacity :

10 raise Exception ("Queue is full")
11 rear = (self.front + self.size) % self. capacity
12 self.data[rear] = item
13 self.size += 1
14

15 def dequeue (self):
16 if self.size == 0:
17 raise Exception ("Queue is empty")
18 item = self.data[self.front]
19 self.front = (self.front + 1) % self. capacity
20 self.size -= 1
21 return item

Minseok Jeon Queues November 2, 2025 10/28

Deque (Double-Ended Queue)

Deque: Double-Ended Queue

Definition
A deque (pronounced "deck") allows insertion and deletion at both ends.

Deque Operations
• pushFront(x): Insert at front
• pushBack(x): Insert at rear
• popFront(): Remove from front
• popBack(): Remove from rear

Use Cases
• Palindrome checking
• Sliding window algorithms
• Browser history (forward/back)
• Undo/redo with priorities

A B C D

push

pop

push

pop

Both ends accessible

Minseok Jeon Queues November 2, 2025 12/28

Priority Queue

Priority Queue

Definition
A priority queue is a queue where elements are served based on priority rather than
insertion order.

Key Properties
• Each element has a priority
• Highest (or lowest) priority served first
• Typically implemented with binary heap
• Insert: O(log n)
• Extract-min/max: O(log n)
• Peek: O(1)

3

5

9 12

7

8 10

Min-Heap (Priority Queue)

Applications
Dijkstra’s algorithm, task scheduling,
event simulation

Minseok Jeon Queues November 2, 2025 14/28

Implementation Approaches

Array-based vs Linked List Implementation

Feature Array-based Linked List-based

Time Complexity O(1) amortized O(1) guaranteed
Space Efficiency Better (contiguous) More overhead (pointers)
Cache Performance Excellent Fair
Resize Cost Occasional O(n) Never
Capacity Fixed (or resizable) Dynamic

Array-based Queue
• Use circular buffer
• Track front and rear indices
• Better for bounded queues

Linked List Queue
• Maintain front and rear pointers
• No capacity concerns
• Better for unbounded queues

Minseok Jeon Queues November 2, 2025 16/28

Linked List Queue Implementation

1 class Node:
2 def __init__ (self , val , next=None):
3 self.val = val
4 self.next = next
5

6 class QueueLL :
7 def __init__ (self):
8 self.front = None
9 self.rear = None

10 self.size = 0
11

12 def enqueue (self , x):
13 new_node = Node(x)
14 if self.rear:
15 self.rear.next = new_node
16 self.rear = new_node
17 if not self.front:
18 self.front = new_node
19 self.size += 1
20

21 def dequeue (self):
22 if not self.front:
23 raise Exception ("Queue is empty")
24 val = self.front.val
25 self.front = self.front.next
26 if not self.front:
27 self.rear = None
28 self.size -= 1
29 return val

Minseok Jeon Queues November 2, 2025 17/28

Applications

Producer-Consumer Pattern

Bounded Buffer Problem
• Producers generate data
• Consumers process data
• Queue acts as buffer
• Handles rate mismatch

Synchronization:
• If full → producer waits
• If empty → consumer waits
• Use locks/semaphores for thread safety

Producer

Queue

Consumer

enqueue

dequeue

Examples
Print spooler, web server request
handling

Minseok Jeon Queues November 2, 2025 19/28

Queues in Operating Systems

CPU Scheduling
• Ready queue: processes ready to run
• Multiple priority queues
• Round-robin scheduling
• Multi-level feedback queue (MLFQ)

I/O Scheduling
• Disk request queue
• Network packet queue
• Print job queue

Ready Queue

P1 P2 P3 P4

CPU

dispatch

OS Scheduler

Minseok Jeon Queues November 2, 2025 20/28

Queues in Networking

Network Routers and Switches
• Incoming packets queued before processing
• Multiple queues for Quality of Service (QoS)
• Different priority levels (voice, video, data)
• Scheduling algorithms: WFQ (Weighted Fair Queuing), Priority Queuing

Packet Queue Types
• High priority: VoIP, video

conferencing
• Medium priority: streaming video
• Best effort: web browsing, email

Queue Management
• Drop-tail: drop when full
• Random Early Detection (RED)
• Token bucket rate limiting

Minseok Jeon Queues November 2, 2025 21/28

Complexity Analysis

Time and Space Complexity

Structure Enqueue Dequeue Peek Space

Queue (Array) O(1) amortized O(1) O(1) O(n)
Queue (Linked List) O(1) O(1) O(1) O(n) + pointers
Circular Queue O(1) O(1) O(1) O(capacity)
Deque O(1) O(1) O(1) O(n)
Priority Queue (Heap) O(log n) O(log n) O(1) O(n)

Special Cases
• For bounded integer priorities: Use bucket queues for O(1) operations
• For monotonic priorities: Consider monotonic queue optimization
• For small fixed priorities: Array of queues (one per priority level)

Minseok Jeon Queues November 2, 2025 23/28

Queue vs Stack

Queue vs Stack Comparison

Property Queue Stack

Principle FIFO (First In, First Out) LIFO (Last In, First Out)
Insert Rear (enqueue) Top (push)
Remove Front (dequeue) Top (pop)
Real-world Waiting line Plate stack
Use case Scheduling Recursion, undo

Queue Applications
• Breadth-First Search (BFS)
• Task scheduling
• Buffering
• Order processing

Stack Applications
• Depth-First Search (DFS)
• Expression evaluation
• Function calls
• Undo operations

Minseok Jeon Queues November 2, 2025 25/28

Summary

Key Takeaways

Queue Fundamentals
• FIFO data structure: First In, First Out
• Essential operations: enqueue (rear), dequeue (front)
• All basic operations are O(1) time complexity

Queue Variants
• Circular Queue: Efficient space usage with wrap-around
• Deque: Double-ended queue for flexible insertion/deletion
• Priority Queue: Element ordering based on priority (heap-based)

Important Applications
• Producer-consumer pattern and bounded buffers
• OS scheduling (CPU, I/O, process management)
• Network packet queuing and QoS
• BFS traversal and task scheduling

Minseok Jeon Queues November 2, 2025 27/28

Thank You!
Questions?

	Introduction to Queues
	Core Operations
	Circular Queue
	Deque (Double-Ended Queue)
	Priority Queue
	Implementation Approaches
	Applications
	Complexity Analysis
	Queue vs Stack
	Summary

