Data Structures: Queues

Minseok Jeon
DGIST

November 2, 2025

Contents

Introduction to Queues

Core Operations

Circular Queue

Deque (Double-Ended Queue)
Priority Queue
Implementation Approaches
Applications

Complexity Analysis

© ® IS ok W

Queue vs Stack

10. Summary

Introduction to Queues

What is a Queue?

Definition

A queue is a linear data structure that follows the First In, First Out (FIFO) principle.

Key characteristics:

Elements are inserted at the rear (enqueue)
Elements are removed from the front (dequeue)
Perfect for scheduling and buffering

Models real-world waiting lines

Used in OS scheduling and network packet
handling

FRONT > 1 [2] 3[4 |« REAR

Queue Structure

Core Operations

Essential Queue Operations

1 #include <stdio.h>
2 #include <stdlib.h>
3
4| typedef struct Node {
5 int data;
6 struct Node* next;
Primary Operations 7|} Node;
9 typedef struct Q {
e Enqueue: Add element to rear 10 DR
11} Queue;
® Dequeue: Remove and return front 12
13 void enqueue (Queue* g, int x) {
element 14 Node* n = malloc(sizeof (Node));
15 n->data = x; n->next = NULL;
® Front/Peek: View front element 0 12 (a-dmen) @ePrens=Pnomt = aj
gq->rear = n;
WlthOUt removing ig) if (!q->front) g->front = n;
c c 20
o Empty: Check if queue is empty 21 int dequeue(Queuex q) {
R 22 int x = q->front->data;
e Size: Get number of elements 23 Node* tmp = q->fromt;
24 q->front = g->front->next;
25 if (!q->front) gq->rear = NULL;
26 free(tmp); return x;

Queue Operations Visualization

Initial Queue After Enqueue(40) After Dequeue()

Returns: 10

F210[20]30| F2|{10[20]30[40¢«r F=[20][30]40]

Circular Queue

Circular Queue Concept

Why Circular Queue?

® Simple array queue wastes space

® Front pointer moves forward

Space at beginning becomes unusable

® Solution: Wrap around using modulo

Wrap-around Formula

(index + 1) % capacity

Full/Empty Detection:
® Track size explicitly, OR

® Reserve one empty slot

On@

Circular Buffer

R=4

Circular Queue Implementation

1 class CircularQueue:

2 def __init__(self, capacity):

3 self .data = [Nonel] #* capacity

4 self .capacity = capacity

5 self.front = 0

6 self.size = 0

7

8 def enqueue (self, item):

9 if self.size == self.capacity:

10 raise Exception("Queue is full")
11 rear = (self.front + self.size)) self.capacity
12 self .data[rear] = item

13 self.size += 1

14

15 def dequeue (self):

16 if self.size == 0:

17 raise Exception("Queue.is empty")

Deque (Double-Ended Queue)

Deque: Double-Ended Queue

Definition

A deque (pronounced "deck") allows insertion and deletion at both ends.

Deque Operations

pushFront (x): Insert at front

pushBack(x): Insert at rear

® popFront(): Remove from front

J
® popBack(): Remove from rear ' AlB[C|[D]

Use Cases pop pop

® Palindrome checking Both ends accessible
e Sliding window algorithms

® Browser history (forward/back)

Priority Queue

Priority Queue

Definition
A priority queue is a queue where elements are served based on priority rather than

insertion order.

Key Properties
® Each element has a priority
® Highest (or lowest) priority served first
® Typically implemented with binary heap Min-Heap (Priority Queue)
e Insert: O(log n)

Implementation Approaches

Array-based vs Linked List Implementation

Feature ‘ Array-based ‘ Linked List-based
Time Complexity O(1) amortized O(1) guaranteed
Space Efficiency Better (contiguous) | More overhead (pointers)
Cache Performance Excellent Fair

Resize Cost Occasional O(n) Never

Capacity Fixed (or resizable) Dynamic

Array-based Queue Linked List Queue

® Use circular buffer ® Maintain front and rear pointers

® Track front and rear indices ® No capacity concerns

® Better for bounded queues ® Better for unbounded queues

Linked List Queue Implementation

1 class Node:

2 def __init__(self, val, next=None):
3 self.val = val
4 self .next = next

6 class QueuelLL:

7 def __init__(self):

8 self.front = None

9 self .rear = None

10 self.size = 0

11

12 def enqueue (self, x):

13 new_node = Node (x)

14 if self.rear:

15 self .rear.next = new_node
16 self.rear = new_node

17 if not self.front:

Applications

Producer-Consumer Pattern

Producer
Bounded Buffer Problem
enqueue
® Producers generate data
® Consumers process data Queue
® Queue acts as buffer dequene
® Handles rate mismatch
.. Consumer
Synchronization:

o If full — producer waits
o If empty s consumer waits
Print spooler, web server request

® Use locks/semaphores for thread safety handl
andling

Queues in Operating Systems

CPU Scheduling

® Ready queue: processes ready to run
® Multiple priority queues Ready Queue
® Round-robin scheduling ’(P1| P2| P3| P4

dispatch

® Multi-level feedback queue (MLFQ) @
I/O Scheduling
® Disk request queue OS Scheduler

® Network packet queue

® Print job queue

Queues in Networking

Network Routers and Switches

® Incoming packets queued before processing

Multiple queues for Quality of Service (QoS)

Different priority levels (voice, video, data)

Scheduling algorithms: WFQ (Weighted Fair Queuing), Priority Queuing

e Qpems 1hpes Queue Management
® High priority: VolP, video

(] —tail:
conferencing Drop-tail: drop when full

¢ Random Early Detection (RED)

® Token bucket rate limiting

® Medium priority: streaming video

® Best effort: web browsing, email

Complexity Analysis

Time and Space Complexity

Structure ‘ Enqueue ‘ Dequeue ‘ Peek ‘ Space
Queue (Array) O(1) amortized 0O(1) 0(1) O(n)
Queue (Linked List) 0o(1) 0O(1) O(1) | O(n) + pointers
Circular Queue 0(1) 0(1) 0(1) O(capacity)
Deque 0(1) 0o(1) 0(1) O(n)
Priority Queue (Heap) O(log n) O(log n) | O(1) O(n)

Special Cases

® For bounded integer priorities: Use bucket queues for O(1) operations
® For monotonic priorities: Consider monotonic queue optimization

® For small fixed priorities: Array of queues (one per priority level)

Queue vs Stack

Queue vs Stack Comparison

Property ‘ Queue ‘ Stack
Principle | FIFO (First In, First Out) | LIFO (Last In, First Out)
Insert Rear (enqueue) Top (push)
Remove Front (dequeue) Top (pop)
Real-world Waiting line Plate stack

Use case Scheduling Recursion, undo

Queue Applications Stack Applications

® Breadth-First Search (BFS)
® Task scheduling

Depth-First Search (DFS)

Expression evaluation

e Buffering ® Function calls

® QOrder processing Undo operations

Summary

Key Takeaways

Queue Fundamentals

e FIFO data structure: First In, First Out

® Essential operations: enqueue (rear), dequeue (front)

® All basic operations are O(1) time complexity

Queue Variants

® Circular Queue: Efficient space usage with wrap-around

¢ Deque: Double-ended queue for flexible insertion/deletion

® Priority Queue: Element ordering based on priority (heap-based)

Important Applications

® Producer-consumer pattern and bounded buffers
® OS scheduling (CPU, 1/0, process management)
® Network packet queuing and QoS

Thank You!

Questions?

	Introduction to Queues
	Core Operations
	Circular Queue
	Deque (Double-Ended Queue)
	Priority Queue
	Implementation Approaches
	Applications
	Complexity Analysis
	Queue vs Stack
	Summary

