Data Structures: Non-Linear Data Structures

Minseok Jeon
DGIST

November 2, 2025

Contents

Introduction

Trees and Binary Search Trees
Tree Traversals

Heaps

Balanced Trees

Graphs

Graph Traversals

Applications

© Lo N S s W=

Summary

Introduction

What are Non-Linear Data Structures?

Non-linear data structures organize data in hierarchical or networked relationships,
unlike linear structures where elements follow a sequential order.

Key Characteristics

® Elements not in sequence Main Types
® Hierarchical or networked ® Trees: Hierarchical
® Multiple paths between elements ® Graphs: Networked

® Model real-world relationships

Knowledge Points

N otk W

Trees: binary trees and BSTs

Tree traversals: inorder/preorder/postorder
Heaps: min-heap and max-heap

Balanced trees: AVL and Red-Black

Graph representations: list vs matrix
Graph traversals: BFS and DFS

Applications and modeling

Trees and Binary Search Trees

Tree Terminology

Basic Terms

® Root: Topmost node 1

e Parent: Node with children / \

® Child: Node connected below 2 3

e Leaf: Node with no children / \ \
e Edge: Connection between nodes 4 5 6

Example Tree
® Height: Longest path to leaf P

® Depth: Distance from root

Binary Trees

A binary tree is a tree where each node has at most two children (left and right).

Types of Binary Trees:
® Full: Every node has 0 or 2 children

1
o Complete: All levels filled except / \
possibly last 5 3
® Perfect: All internal nodes have 2 \
children, all leaves at same level Pefect Binary Free

® Degenerate: Each node has only one
child

Binary Search Tree (BST)

Definition
A BST is a binary tree with ordering property:
® | eft subtree contains only nodes with values less than parent
® Right subtree contains only nodes with values greater than parent

® Both subtrees are also BSTs

/\
/\ \

Property: 1<3<4</6<\78<10<13<14

4 B

==

HOWOWW~NOUHWNH

BST Operations

Search - O(h)

def search(root, target): é
if root is None or 3
root.value == target: 4
return root 5

q 6
if target < root.value: 7
return search(root.left, 8
target) 9

else: 10
return search(root.right, 11
target) 12

Complexity

Insert - O(h)

Q.
)
3

insert (root, value):
if root is None:
return TreeNode (value)

if value < root.value:
root.left = insert(
root.left, value)
elif value > root.value:
root.right = insert(
root.right, value)

return root

h = height of tree. Average: O(log n), Worst: O(n) when tree is skewed

BST vs Array vs Linked List

Operation | Sorted Array | Linked List | BST (balanced)

Search O(log n) O(n) O(log n)
Insert O(n) O(1)* O(log n)
Delete O(n) O(1)* O(log n)
Min/Max 0O(1) O(n) O(log n)
Sorted order Built-in No Inorder traversal

*assuming position is known

Applications

Databases (indexing), file systems, expression trees, symbol tables, priority queues

Non-Linear Data Structures

Tree Traversals

Depth-First Traversals (DFS)

Three Main Types
1. Inorder (Left — Root — Right)

4 ® Order: 1,2, 3,4,5,6,7

/ \ ® Use: Get sorted values from BST

2 6 2. Preorder (Root — Left — Right)
/N /\ ® Order: 4,2,1,3,6,5,7
1 g 7 ® Use: Copy tree, serialize

3. Postorder (Left — Right — Root)
® Order: 1,3,2,5,7,6, 4
® Use: Delete tree, calculate size

© O~ A WN -

el e
R WN RO

Inorder Traversal Implementation

e Version

def inorder (root):

if root is None:
return []

result = []
Left
result.extend (
inorder (root.left))
Root
result.append(root.value)
Right
result.extend (
inorder (root.right))

return result

O~NOU R WN R

N e
SOCXNOU R WN - O ©

inorder_iterative (root):

result = []
stack = []
current = root

while current

or stack:

Go to leftmost
while current:

stack.

append (current)

current = current.left

Process
current =

node
stack.pop ()

result.append (
current.value)

Visit right

current =

return result

current.right

Breadth-First Traversal (BFS)

1 from collections import deque
2
3 def level_order (root):
4 if root is None:
5 return []
6
Level-Order Traversal j{ oo o W
8 queue = deque ([root])
5 o . 9
Visit nodes level by level, left to right 10| while queue:
11 node = queue.popleft ()
12 result.append(node.value)
13
/ \ 14 if node.left:
15 queue . append (node.left)
16 if node.right:
/ \ / \ 17 queue.append (node.right)
18
7 19 return result

Ode:4,2,6,1,3,5,7
i

Shortest path, level processing, check if tree
is complete

Traversal Comparison

Traversal | Order Use Case | Data Structure
Inorder Left-Root-Right | Sorted values (BST) | Stack
Preorder Root-Left-Right | Copy, serialize Stack
Postorder | Left-Right-Root | Delete, calculate Stack
Level-order | Level by level Shortest path Queue

Complexity

® Time: O(n) - visit each node once

¢ Space: O(h) for recursion/stack, O(w) for queue (w = max width)

Heaps

What is a Heap?

A heap is a specialized tree-based data structure that satisfies the heap property,
typically implemented as a complete binary tree stored in an array.

Max-Heap

Parent < Children Parent > Children
1 10
/ \ / \
3 2 7 9
/ N/ \ /N /N
7 5 6 3 b 8

Array: [1, 3,2, 7,5, 4, 6] Array: [10, 7,9, 3, 5, 6, 8]

Heap Array Representation

Index Relationships

For a node at index i:
o Left child: 27 + 1
® Right child: 27 + 2
® Parent: |(i—1)/2]

L1 Jls L2 7[5][4][6]
0 N 2 3 4 5 6
e

right

Complete binary tree structure ensures O(log n) height

Heap Operations

Insert - O(log n) Extract Min - O(log n)

1. Add to end of array 1. Store minimum (root)
2. Bubble up to restore heap property 2. Move last element to root
1 def imsert(self, value): 3. Bubble down to restore heap
2 self.heap.append (value)
3 current = len(self.heap)-1
4 1 def extract_min(self):
5 while current > O0: 2 if len(self.heap) == 0:
6 parent = (current-1)//2 3 raise IndexError ()
7 if self.heapl[current] < 4
8 self.heap[parent]: 5 min_val = self.heap[0]
9 self.swap (current, 6 self.heap[0] =
10 parent) 7 self .heap.pop ()
11 current = parent 8 self.heapify_down (0)
12 else: 9
13 break 10 return min_val

Peek Min/Max: O(1)

Simply return the root element without removing

Heap Applications

Priority Queue Heapsort
® Task scheduling ® Build heap: O(n)
® CPU scheduling ® Extract all: O(n log n)
® Event-driven simulation ® |n-place sorting

K Largest/Smallest Graph Algorithms

® Use min-heap of size k for k largest ® Dijkstra's shortest path

® O(n log k) time complexity ® Prim’s minimum spanning tree

Heap vs BST

Heap: Quick min/max access, partial order. BST: Full order, any element search

Balanced Trees

Why Balanced Trees?

Problem: Unbalanced BST

Regular BST can degenerate to linked list

Solution: Self-Balancing
Maintain balanced structure automatically
\ 2
2 /\
\ 1 3
3 \
o(n) operatiSns! O(log n) guaranteed!
4

Two Main Approaches

AVL Trees: Strictly balanced. Red-Black Trees: Loosely balanced

AVL Trees

Definition

AVL tree: Self-balancing BST where height difference between left and right subtrees is
at most 1 for every node.

Balance Factor

BF = height(left subtree) - height(right subtree)
Must be in {-1, 0, 1}. If |BF| > 1, rebalancing needed.

¢ Right Rotation (LL case)
¢ Left Rotation (RR case)
¢ Left-Right Rotation (LR case)
¢ Right-Left Rotation (RL case)

® Height < 1.44 log n
® Up to 2 rotations per insert

® O(log n) rotations for delete

Red-Black Trees

Definition

Red-Black tree: Self-balancing BST where each node has a color (red or black) with
specific properties.

Properties

1. Every node is either red or black

Root is always black
All leaves (NIL) are black

Red nodes cannot have red children

o B9

Every path from root to leaf has same number of black nodes

Key Differences from AVL

® Looser balance (height < 2 log n)

e Faster insert/delete (fewer rotations)

AVL vs Red-Black Comparison

Feature | AVL Tree Red-Black Tree
Balance Strictly balanced | Loosely balanced
Height <144 logn <2logn
Rotations (insert) Up to 2 Up to 2
Rotations (delete) O(log n) Up to 3
Search Faster Slightly slower
Insert/Delete Slower Faster

Use case Search-heavy Insert/delete-heavy
Memory Less More (color bit)

Real-world Usage

AVL: Database indexing. Red-Black: Java TreeMap, C++ std::map, Linux kernel

Graphs

Graph Fundamentals

Definition

A graph G = (V, E) consists of vertices (V) and edges (E) connecting them.

Graph Types .
¢ Undirected: Edges have no direction g e

(friendships)

® Directed: Edges have direction
(follows)

® Weighted: Edges have values
(distances) Undirected Graph

® Unweighted: No edge values

Graph Representations

Adjacency Matrix

Adjacency List

2D array: matrix[i][j] = 1 if edge exists

Array of lists: list[i] = neighbors
| 0 2 3

1

0 —1[1,2
0j0 1 1 O 1. 2]

1 — 0, 3]
111 0 0 1

2 — [0, 3]
2|1 0 0 1 3 (L2
310 1 1 O '

Pros: O(V + E) space

Pros: O(1) edge check e O] b aleds

Cons: O(V?) space

Matrix: Dense graphs, fast edge lookup. List: Sparse graphs (most real-world)

Graph Representation Comparison

Operation | Adjacency Matrix | Adjacency List
Space o(V?) O(V + E)
Add edge 0(1) 0(1)
Remove edge 0(1) o(V)
Check if edge exists 0(1) o(V)

Find all neighbors o(Vv) O(degree)
Iterate all edges 0o(V?) O(V + E)

Space Example

Graph with 1000 vertices, 5000 edges:
® Matrix: 1000 x 1000 = 1,000,000 entries
® List: 1000 + 2x5000 = 11,000 entries

® |ist is ~90x more space-efficient!

Graph Traversals

Breadth-First Search (BFS)

Algorithm

1. Start at source vertex

2. Visit all unvisited neighbors

3. Then visit neighbors of neighbors
4. Uses Queue (FIFO)

4

/s

1
\3

Order: 1—2—3—4

Applications
Shortest path (unweighted), level-orderprocessing, web crawling, social networks

Depth-First Search (DFS)

Algorithm

1.
2.
3.

Start at source vertex
Visit unvisited neighbor

Recursively visit that neighbor's
neighbors

Backtrack when no unvisited
neighbors

Uses Stack (LIFO)

0
029

BFS vs DFS

Feature | BFS | DFS

Data Structure Queue Stack/Recursion
Memory O(V) - wider O(h) - deeper
Shortest Path | Yes (unweighted) No
Completeness Yes Yes

Time O(V + E) O(V + E)

Use BFS for: Use DF'S for:

® Shortest path (unweighted) ® Cycle detection
® | evel-order processing ® Topological sorting
® Minimum hops/distance ® Finding all paths

Applications

Tree Applications

Database Indexes

File Systems

® Directories and files form tree ® B-Trees and B+ Trees

® Root directory at top ® Fast range queries

® Recursive size calculation ® O(log n) search/insert/delete
Decision Trees (ML)

® Each HTML tag is a node e Classification and regression

® Parent-child relationships O Bl e 16 2 ek

® Tree traversal for rendering O LS B1 I Es

More Applications

Abstract syntax trees (compilers), Huffman coding (compression), expression evaluation

Graph Applications

Social Networks Web Page Ranking
® Vertices: Users ® Vertices: Web pages
® Edges: Friendships/Follows ® Edges: Hyperlinks
® BFS: Degrees of separation ® PageRank algorithm
® DFS: Connection exploration ® Google's foundation

Maps & Navigation

Course Prerequisites

® Vertices: Locations ® Vertices: Courses

® Edges: Roads (weighted) ® Edges: Prerequisites

® Dijkstra's: Shortest path ® Topological sort: Valid order

® Applications: GPS, routing ® Cycle detection: Invalid prereqgs

More Applications

When to Use Trees vs Graphs

Use Trees When: Use Graphs When:
® Hierarchical relationships ® Many-to-many relationships
® One path between any two nodes ® Multiple paths between nodes
® (Clear parent-child structure ® Network-like structure
® No cycles allowed ® Cycles may exist
Examples: Examples:
® File systems ® Social networks
e DOM ® Maps and roads
® Qrganizational charts ® Web links

® Expression trees ® Dependencies

Summary

Key Takeaways

® Binary trees, BSTs: O(log n) operations when balanced

® Traversals: Inorder (sorted), Preorder (copy), Postorder (delete), Level-order (BFS)
® Heaps: Priority queue, O(1) peek, O(log n) insert/extract
® Balanced trees (AVL, Red-Black): Guaranteed O(log n)

® Adjacency matrix (dense) vs list (sparse)

® BFS: Shortest path, level-order, queue-based

DFS: Cycle detection, topological sort, stack-based
Both: O(V + E) time complexity

Applications Everywhere

File systems, databases, social networks, maps, compilers, machine learning, web ranking

Complexity Summary

Data Structure | Search | Insert | Delete

BST (balanced) | O(log n) | O(log n) | O(log n)
BST (worst) O(n) O(n) O(n)
AVL Tree O(log n) | O(log n) | O(log n)
Red-Black Tree | O(log n) | O(log n) | O(log n)
Heap (min/max) O(n) (Iog n) | O(log n)
Heap (peek) 0(1) -

Graph Traversals
BFS and DFS both have O(V + E) time complexity

Thank You!

Questions?

	Introduction
	Trees and Binary Search Trees
	Tree Traversals
	Heaps
	Balanced Trees
	Graphs
	Graph Traversals
	Applications
	Summary

