
Data Structures: Non-Linear Data Structures

Minseok Jeon
DGIST

November 2, 2025

Contents

1. Introduction

2. Trees and Binary Search Trees

3. Tree Traversals

4. Heaps

5. Balanced Trees

6. Graphs

7. Graph Traversals

8. Applications

9. Summary

Introduction

What are Non-Linear Data Structures?

Definition
Non-linear data structures organize data in hierarchical or networked relationships,
unlike linear structures where elements follow a sequential order.

Key Characteristics
• Elements not in sequence
• Hierarchical or networked
• Multiple paths between elements
• Model real-world relationships

Main Types
• Trees: Hierarchical
• Graphs: Networked

Minseok Jeon Non-Linear Data Structures November 2, 2025 4/42

Knowledge Points

1. Trees: binary trees and BSTs
2. Tree traversals: inorder/preorder/postorder
3. Heaps: min-heap and max-heap
4. Balanced trees: AVL and Red-Black
5. Graph representations: list vs matrix
6. Graph traversals: BFS and DFS
7. Applications and modeling

Minseok Jeon Non-Linear Data Structures November 2, 2025 5/42

Trees and Binary Search Trees

Tree Terminology

Basic Terms
• Root: Topmost node
• Parent: Node with children
• Child: Node connected below
• Leaf: Node with no children
• Edge: Connection between nodes
• Height: Longest path to leaf
• Depth: Distance from root

1

2

4 5

3

6Example Tree

Minseok Jeon Non-Linear Data Structures November 2, 2025 7/42

Binary Trees

Definition
A binary tree is a tree where each node has at most two children (left and right).

Types of Binary Trees:
• Full: Every node has 0 or 2 children
• Complete: All levels filled except

possibly last
• Perfect: All internal nodes have 2

children, all leaves at same level
• Degenerate: Each node has only one

child

1

2

4 5

3

6 7Perfect Binary Tree

Minseok Jeon Non-Linear Data Structures November 2, 2025 8/42

Binary Search Tree (BST)

Definition
A BST is a binary tree with ordering property:

• Left subtree contains only nodes with values less than parent
• Right subtree contains only nodes with values greater than parent
• Both subtrees are also BSTs

8

3

1 6

4 7

10

14

13

Property: 1 < 3 < 4 < 6 < 7 < 8 < 10 < 13 < 14

Minseok Jeon Non-Linear Data Structures November 2, 2025 9/42

BST Operations

Search - O(h)

1 def search (root , target):
2 if root is None or
3 root. value == target :
4 return root
5
6 if target < root. value :
7 return search (root.left ,
8 target)
9 else:

10 return search (root.right ,
11 target)

Insert - O(h)

1 def insert (root , value):
2 if root is None:
3 return TreeNode (value)
4
5 if value < root. value :
6 root.left = insert (
7 root.left , value)
8 elif value > root. value :
9 root. right = insert (

10 root.right , value)
11
12 return root

Complexity
h = height of tree. Average: O(log n), Worst: O(n) when tree is skewed

Minseok Jeon Non-Linear Data Structures November 2, 2025 10/42

BST vs Array vs Linked List

Operation Sorted Array Linked List BST (balanced)

Search O(log n) O(n) O(log n)
Insert O(n) O(1)* O(log n)
Delete O(n) O(1)* O(log n)
Min/Max O(1) O(n) O(log n)
Sorted order Built-in No Inorder traversal

*assuming position is known

Applications
Databases (indexing), file systems, expression trees, symbol tables, priority queues

Minseok Jeon Non-Linear Data Structures November 2, 2025 11/42

Tree Traversals

Depth-First Traversals (DFS)

4

2

1 3

6

5 7

Three Main Types
1. Inorder (Left → Root → Right)

• Order: 1, 2, 3, 4, 5, 6, 7
• Use: Get sorted values from BST

2. Preorder (Root → Left → Right)
• Order: 4, 2, 1, 3, 6, 5, 7
• Use: Copy tree, serialize

3. Postorder (Left → Right → Root)
• Order: 1, 3, 2, 5, 7, 6, 4
• Use: Delete tree, calculate size

Minseok Jeon Non-Linear Data Structures November 2, 2025 13/42

Inorder Traversal Implementation

Recursive Version
1 def inorder (root):
2 if root is None:
3 return []
4
5 result = []
6 # Left
7 result . extend (
8 inorder (root.left))
9 # Root

10 result . append (root. value)
11 # Right
12 result . extend (
13 inorder (root. right))
14
15 return result

Iterative Version (Stack)

1 def inorder_iterative (root):
2 result = []
3 stack = []
4 current = root
5
6 while current or stack :
7 # Go to leftmost
8 while current :
9 stack . append (current)

10 current = current .left
11
12 # Process node
13 current = stack .pop ()
14 result . append (
15 current . value)
16
17 # Visit right
18 current = current . right
19
20 return result

Minseok Jeon Non-Linear Data Structures November 2, 2025 14/42

Breadth-First Traversal (BFS)

Level-Order Traversal
Visit nodes level by level, left to right

4

2

1 3

6

5 7
Order: 4, 2, 6, 1, 3, 5, 7

1 from collections import deque
2
3 def level_order (root):
4 if root is None:
5 return []
6
7 result = []
8 queue = deque ([root])
9

10 while queue :
11 node = queue . popleft ()
12 result . append (node. value)
13
14 if node.left:
15 queue . append (node.left)
16 if node. right :
17 queue . append (node. right)
18
19 return result

Use Case
Shortest path, level processing, check if tree
is complete

Minseok Jeon Non-Linear Data Structures November 2, 2025 15/42

Traversal Comparison

Traversal Order Use Case Data Structure

Inorder Left-Root-Right Sorted values (BST) Stack
Preorder Root-Left-Right Copy, serialize Stack
Postorder Left-Right-Root Delete, calculate Stack
Level-order Level by level Shortest path Queue

Complexity
• Time: O(n) - visit each node once
• Space: O(h) for recursion/stack, O(w) for queue (w = max width)

Minseok Jeon Non-Linear Data Structures November 2, 2025 16/42

Heaps

What is a Heap?

Definition
A heap is a specialized tree-based data structure that satisfies the heap property,
typically implemented as a complete binary tree stored in an array.

Min-Heap
Parent ≤ Children

1

3

7 5

2

4 6
Array: [1, 3, 2, 7, 5, 4, 6]

Max-Heap
Parent ≥ Children

10

7

3 5

9

6 8
Array: [10, 7, 9, 3, 5, 6, 8]

Minseok Jeon Non-Linear Data Structures November 2, 2025 18/42

Heap Array Representation

Index Relationships
For a node at index i:

• Left child: 2i + 1
• Right child: 2i + 2
• Parent: ⌊(i − 1)/2⌋

1
0

3
1

2
2

7
3

5
4

4
5

6
6

left
right

Efficiency
Complete binary tree structure ensures O(log n) height

Minseok Jeon Non-Linear Data Structures November 2, 2025 19/42

Heap Operations

Insert - O(log n)
1. Add to end of array
2. Bubble up to restore heap property

1 def insert (self , value):
2 self.heap. append (value)
3 current = len(self.heap) -1
4
5 while current > 0:
6 parent = (current -1) //2
7 if self.heap[current] <
8 self.heap[parent]:
9 self.swap(current ,

10 parent)
11 current = parent
12 else:
13 break

Extract Min - O(log n)
1. Store minimum (root)
2. Move last element to root
3. Bubble down to restore heap

1 def extract_min (self):
2 if len(self.heap) == 0:
3 raise IndexError ()
4
5 min_val = self.heap [0]
6 self.heap [0] =
7 self.heap.pop ()
8 self. heapify_down (0)
9

10 return min_val

Peek Min/Max: O(1)
Simply return the root element without removing

Minseok Jeon Non-Linear Data Structures November 2, 2025 20/42

Heap Applications

Priority Queue
• Task scheduling
• CPU scheduling
• Event-driven simulation

K Largest/Smallest
• Use min-heap of size k for k largest
• O(n log k) time complexity

Heapsort
• Build heap: O(n)
• Extract all: O(n log n)
• In-place sorting

Graph Algorithms
• Dijkstra’s shortest path
• Prim’s minimum spanning tree

Heap vs BST
Heap: Quick min/max access, partial order. BST: Full order, any element search

Minseok Jeon Non-Linear Data Structures November 2, 2025 21/42

Balanced Trees

Why Balanced Trees?

Problem: Unbalanced BST
Regular BST can degenerate to linked list

1

2

3

4
O(n) operations!

Solution: Self-Balancing
Maintain balanced structure automatically

2

1 3

4O(log n) guaranteed!

Two Main Approaches
AVL Trees: Strictly balanced. Red-Black Trees: Loosely balanced

Minseok Jeon Non-Linear Data Structures November 2, 2025 23/42

AVL Trees

Definition
AVL tree: Self-balancing BST where height difference between left and right subtrees is
at most 1 for every node.

Balance Factor
BF = height(left subtree) - height(right subtree)
Must be in {-1, 0, 1}. If |BF| > 1, rebalancing needed.

Rotations
• Right Rotation (LL case)
• Left Rotation (RR case)
• Left-Right Rotation (LR case)
• Right-Left Rotation (RL case)

Properties
• Height ≤ 1.44 log n
• Up to 2 rotations per insert
• O(log n) rotations for delete

Minseok Jeon Non-Linear Data Structures November 2, 2025 24/42

Red-Black Trees

Definition
Red-Black tree: Self-balancing BST where each node has a color (red or black) with
specific properties.

Properties
1. Every node is either red or black
2. Root is always black
3. All leaves (NIL) are black
4. Red nodes cannot have red children
5. Every path from root to leaf has same number of black nodes

Key Differences from AVL
• Looser balance (height ≤ 2 log n)
• Faster insert/delete (fewer rotations)
• Slightly slower search

Minseok Jeon Non-Linear Data Structures November 2, 2025 25/42

AVL vs Red-Black Comparison

Feature AVL Tree Red-Black Tree

Balance Strictly balanced Loosely balanced
Height ≤ 1.44 log n ≤ 2 log n
Rotations (insert) Up to 2 Up to 2
Rotations (delete) O(log n) Up to 3
Search Faster Slightly slower
Insert/Delete Slower Faster
Use case Search-heavy Insert/delete-heavy
Memory Less More (color bit)

Real-world Usage
AVL: Database indexing. Red-Black: Java TreeMap, C++ std::map, Linux kernel

Minseok Jeon Non-Linear Data Structures November 2, 2025 26/42

Graphs

Graph Fundamentals

Definition
A graph G = (V, E) consists of vertices (V) and edges (E) connecting them.

Graph Types
• Undirected: Edges have no direction

(friendships)
• Directed: Edges have direction

(follows)
• Weighted: Edges have values

(distances)
• Unweighted: No edge values

0 1

2 3

Undirected Graph

Minseok Jeon Non-Linear Data Structures November 2, 2025 28/42

Graph Representations

Adjacency Matrix
2D array: matrix[i][j] = 1 if edge exists

0 1 2 3
0 0 1 1 0
1 1 0 0 1
2 1 0 0 1
3 0 1 1 0

Pros: O(1) edge check
Cons: O(V 2) space

Adjacency List
Array of lists: list[i] = neighbors
0 → [1, 2]
1 → [0, 3]
2 → [0, 3]
3 → [1, 2]

Pros: O(V + E) space
Cons: O(V) edge check

When to Use
Matrix: Dense graphs, fast edge lookup. List: Sparse graphs (most real-world)

Minseok Jeon Non-Linear Data Structures November 2, 2025 29/42

Graph Representation Comparison

Operation Adjacency Matrix Adjacency List

Space O(V 2) O(V + E)
Add edge O(1) O(1)
Remove edge O(1) O(V)
Check if edge exists O(1) O(V)
Find all neighbors O(V) O(degree)
Iterate all edges O(V 2) O(V + E)

Space Example
Graph with 1000 vertices, 5000 edges:

• Matrix: 1000 × 1000 = 1,000,000 entries
• List: 1000 + 2×5000 = 11,000 entries
• List is ∼90x more space-efficient!

Minseok Jeon Non-Linear Data Structures November 2, 2025 30/42

Graph Traversals

Breadth-First Search (BFS)

Algorithm
1. Start at source vertex
2. Visit all unvisited neighbors
3. Then visit neighbors of neighbors
4. Uses Queue (FIFO)

1
2
3

4

Order: 1→2→3→4

Applications
Shortest path (unweighted), level-order processing, web crawling, social networksMinseok Jeon Non-Linear Data Structures November 2, 2025 32/42

Depth-First Search (DFS)

Algorithm
1. Start at source vertex
2. Visit unvisited neighbor
3. Recursively visit that neighbor’s

neighbors
4. Backtrack when no unvisited

neighbors
5. Uses Stack (LIFO)

1
2
3

4

Order: 1→2→4→3

Applications
Cycle detection, topological sort, connected components, maze solving, backtracking

Minseok Jeon Non-Linear Data Structures November 2, 2025 33/42

BFS vs DFS

Feature BFS DFS

Data Structure Queue Stack/Recursion
Memory O(V) - wider O(h) - deeper
Shortest Path Yes (unweighted) No
Completeness Yes Yes
Time O(V + E) O(V + E)

Use BFS for:
• Shortest path (unweighted)
• Level-order processing
• Minimum hops/distance

Use DFS for:
• Cycle detection
• Topological sorting
• Finding all paths

Minseok Jeon Non-Linear Data Structures November 2, 2025 34/42

Applications

Tree Applications

File Systems
• Directories and files form tree
• Root directory at top
• Recursive size calculation

HTML DOM
• Each HTML tag is a node
• Parent-child relationships
• Tree traversal for rendering

Database Indexes
• B-Trees and B+ Trees
• Fast range queries
• O(log n) search/insert/delete

Decision Trees (ML)
• Classification and regression
• Each node is a decision
• Leaves are outcomes

More Applications
Abstract syntax trees (compilers), Huffman coding (compression), expression evaluation

Minseok Jeon Non-Linear Data Structures November 2, 2025 36/42

Graph Applications

Social Networks
• Vertices: Users
• Edges: Friendships/Follows
• BFS: Degrees of separation
• DFS: Connection exploration

Maps & Navigation
• Vertices: Locations
• Edges: Roads (weighted)
• Dijkstra’s: Shortest path
• Applications: GPS, routing

Web Page Ranking
• Vertices: Web pages
• Edges: Hyperlinks
• PageRank algorithm
• Google’s foundation

Course Prerequisites
• Vertices: Courses
• Edges: Prerequisites
• Topological sort: Valid order
• Cycle detection: Invalid prereqs

More Applications
Network flow, dependency resolution, recommendation systems, circuit design

Minseok Jeon Non-Linear Data Structures November 2, 2025 37/42

When to Use Trees vs Graphs

Use Trees When:
• Hierarchical relationships
• One path between any two nodes
• Clear parent-child structure
• No cycles allowed

Examples:
• File systems
• DOM
• Organizational charts
• Expression trees

Use Graphs When:
• Many-to-many relationships
• Multiple paths between nodes
• Network-like structure
• Cycles may exist

Examples:
• Social networks
• Maps and roads
• Web links
• Dependencies

Minseok Jeon Non-Linear Data Structures November 2, 2025 38/42

Summary

Key Takeaways

Trees
• Binary trees, BSTs: O(log n) operations when balanced
• Traversals: Inorder (sorted), Preorder (copy), Postorder (delete), Level-order (BFS)
• Heaps: Priority queue, O(1) peek, O(log n) insert/extract
• Balanced trees (AVL, Red-Black): Guaranteed O(log n)

Graphs
• Adjacency matrix (dense) vs list (sparse)
• BFS: Shortest path, level-order, queue-based
• DFS: Cycle detection, topological sort, stack-based
• Both: O(V + E) time complexity

Applications Everywhere
File systems, databases, social networks, maps, compilers, machine learning, web rankingMinseok Jeon Non-Linear Data Structures November 2, 2025 40/42

Complexity Summary

Data Structure Search Insert Delete

BST (balanced) O(log n) O(log n) O(log n)
BST (worst) O(n) O(n) O(n)
AVL Tree O(log n) O(log n) O(log n)
Red-Black Tree O(log n) O(log n) O(log n)
Heap (min/max) O(n) O(log n) O(log n)
Heap (peek) O(1) - -

Graph Traversals
BFS and DFS both have O(V + E) time complexity

Minseok Jeon Non-Linear Data Structures November 2, 2025 41/42

Thank You!
Questions?

	Introduction
	Trees and Binary Search Trees
	Tree Traversals
	Heaps
	Balanced Trees
	Graphs
	Graph Traversals
	Applications
	Summary

