Next Steps

Explore Advanced and Specialized Topics to Continue Growing

Minseok Jeon
DGIST

November 2, 2025

Outline

1. Introduction
2. Parallel & Distributed Data Structures
2.1 Concurrent Data Structures
2.2 Distributed Data Structures
2.3 Parallel Algorithms
3. Data Structures in Machine Learning
3.1 Tensors
3.2 Graph Neural Networks
3.3 Embeddings and Search
4. Persistent & Functional Data Structures
5. External Memory & Cache-Oblivious Structures
5.1 B-Trees for External Memory
5.2 LSM Trees
5.3 Cache-Oblivious Algorithms
6. Reading Research Papers
7. Summary

Introduction

Course Journey Recap

What You’ve Learned:

® Foundations: Arrays, linked lists, stacks, queues, hash tables

Trees & Graphs: Binary trees, BSTs, heaps, graph algorithms

Advanced Structures: Tries, B-trees, union-find, segment trees

Algorithms: Sorting, searching, graph traversal, dynamic programming

Applications: Real-world projects and interview preparation

You're Ready!

You now have a solid foundation in data structures and algorithms. This lecture explores
where to go next.

What’s Next?

Five Advanced Directions:
1. Parallel & Distributed Data Structures
® Multi-threaded and distributed computing
® Concurrent data structures, consistent hashing, CRDTs

2. Data Structures in Machine Learning
® Tensors, graph neural networks, embeddings
® Specialized structures for ML workflows

3. Persistent & Functional Data Structures
® |Immutable structures, version control
® Used in functional programming languages

4. External Memory & Cache-Oblivious Structures
® Optimizing for disk 1/0 and memory hierarchy
® B-trees, LSM trees, cache-aware algorithms

5. Reading Research Papers & Implementations

® |earning cutting-edge technlques
PO B R T el DN

Parallel & Distributed Data Structures

Why Parallel & Distributed?

Motivation:
_ Examples:
® Modern CPUs have multiple cores i
]) o ® Multi-threaded web servers
® Big data requires distributed systems Distributed databases (Cassandra

® Single-threaded = leaving performance MongoDB)
tabl
on table ® MapReduce frameworks (Hadoop,
® Cloud computing is inherently Spark)
distributed
Istribute ® P2P networks (BitTorrent, blockchain)
Challenges:
Goal:
® Race conditions
® Safe concurrency
® Deadlocks

® Scalability across machines

* Data consistency ® Fault tolerance

Network failures

Concurrent Data Structures

Thread-Safe Implementations:

¢ Lock-Free Structures
® Use atomic operations (CAS - Compare-And-Swap)
® No threads block waiting for locks
® Example: Lock-free queue, lock-free stack
® Complexity: Higher implementation complexity, better throughput

e Concurrent Hash Maps
® Java's ConcurrentHashMap: Lock striping (segment-level locks)
® C-++ concurrent containers: std: :concurrent_*
® Fine-grained locking for better concurrency

¢ Read-Write Locks
® Multiple readers, single writer
® Reader-writer problem solution
® Use case: Read-heavy workloads (caches, databases)

® Producer-Consumer Queues

Lock-Free Queue Example

Lock-Free Queue using CAS:

Head 1 Node 1 A Node 2

~

Tail

Enqueue (CAS)
1. Read tail
2. Create new node
3. CAS(tail.next, null, new)
4. CAS(tail, old, new)

Key ldea:
e Atomic CAS ensures no two threads modify same location simultaneously
® Retry on CAS failure (optimistic concurrency)
® No locks — no deadlocks, better scalahility

Distributed Hash Tables (DHT)

Consistent Hashing:
® Map keys and nodes to ring

Concept:
® Hash table across multiple machines ® Key stored on next node clockwise
® Decentralized, no single point of failure y Ad.dlhnbg/removmg nodes affects only
neighbors
® Each node responsible for key range . Usfd Memeached. Redis Cluster
Algorithms: Cassandra
¢ Chord: Ring topology, O(logn) lookup Benefits:

e Kademlia: XOR metric, used in

) ® Minimal key redistribution on node
BitTorrent

changes

® Consistent Hashing: Load balancing e Fault tolerance

® Horizontal scalability

Consistent Hashing Visualization

Hash space (0 to 232 — 1)

Key Assignment: Each key assigned to first node clockwise on ring

CRDTs: Conflict-Free Replicated Data Types

Concept:
® Designed for eventual consistency
® No coordination needed

® Merging replicas is commutative &
associative

® Guaranteed convergence

Types:
e G-Counter: Grow-only counter

® PN-Counter: Increment/decrement
counter

G-Set: Grow-only set
OR-Set: Observed-Remove set
LWW-Register: Last-Write-Wins

e

Example: G-Counter

® Each replica has array of counts (one
per node)

® Increment updates local count
® Merge takes element-wise max

® Value = sum of all counts

Applications:
¢ Collaborative editing (Google Docs)
¢ Distributed databases (Riak, Redis)
® Real-time synchronization

® Mobile apps with offline support

Parallel Algorithms Overview

Parallel Sorting: MapReduce Paradigm:
* Parallel Merge Sort: Divide array, sort ® Map: Process data in parallel
in parallel, merge ® Reduce: Aggregate results
e Parallel Quick Sort: Partition in ® Frameworks: Hadoop, Spark

parallel, recurse
® Fork-Join framework (Java, C++)

® Speedup: Near-linear with number of
cores 2. Shuffle: Group by word

Example: Word Count
1. Map: (doc — (word, 1) pairs)

3. Reduce: Sum counts per word
Parallel Prefix Sum:

® Tree-based reduction Synchronization:
e Applications: Stream compaction, radix ® Barriers for phase sync
sort ® Atomic operations

b GPU—frlendIy (CUDA, OpenCL) [Memory fences

Data Structures in Machine Learning

ML Data Structures Landscape

Why Specialized Structures?
® Machine learning operates on high-dimensional data
e Computational efficiency is critical (training time, inference latency)

® Memory optimization for large models and datasets

Specialized hardware (GPUs, TPUs) requires specific layouts

Key Structures:
1. Tensors: Multi-dimensional arrays for neural networks
2. Graph Structures: For graph neural networks
3. Embeddings: Nearest neighbor search in high dimensions
4

. Batch Processing: Efficient data loading and preprocessing

Tensors: Multi-Dimensional Arrays

Definition:

Generalization of vectors and matrices
0D: Scalar

1D: Vector

2D: Matrix

3D+: Tensor

Example: Image Tensor

e Shape: (batch, channels, height, width)
e (32, 3, 224, 224) = 32 RGB images of

224x224

® Memory: 32 x 3 x 224 x 224 x 4

hwtes ~ 10 MB

Storage Formats:
¢ Row-major (C-style): Last index
varies fastest

¢ Column-major (Fortran): First index
varies fastest

® Affects cache performance

Operations:

® Broadcasting: Automatic dimension
matching

® Reshaping: Change dimensions without
copying
e Slicing: Extract subtensors

® Element-wise ops: Add, multiply, etc.

Sparse Tensors

Motivation:
® Many tensors are sparse (mostly zeros)

e Example: Embeddings, text data,
graphs

® Dense storage wasteful

COO Format (Coordinate):
e Store: (indices, values)
e Example: (0,2): 5, (1,1): 3, (2,0): 7

® Good for: Construction, random access

CSR Format (Compressed Sparse Row):
e Store: row_ptr, col_indices, values
® More memory efficient than COO
® Fast row access

® Used in: Matrix multiplication, graph
algorithms

Example: 3x3 Sparse Matrix

N O O
O W O
O O WD

CSR:
row_ptr = [0, 1, 2, 3]
col..indices = [2, 1, 0]

GNN Graph Representations

Edge List:
Adjacency Matrix: e Simple (source, target, weight) tuples
® Dense O(V?) representation ® Easy to store and load
® Fast edge queries: O(1) ® Requires sorting for efficient queries
® Good for: Dense graphs, small graphs
. Libraries:

Matrix multiplication for message

passing ® NetworkX: Python graph library

PyTorch Geometric: GNN framework
Adjacency List:

® DGL: Deep Graph Library
® Sparse representation ® GraphSAGE, GCN: Message passing
® Space: O(V + E)
® Good for: Sparse graphs (most Applications:
real-world) ® Social networks

Iteration over neighbors: O(degree) ® Molecular structures

T~ ..

Embedding Structures

Embedding Tables:
® | ookup table for categorical features
® Maps discrete IDs to dense vectors

e Example: Word embeddings (word —
300D vector)

® |earned during training

Nearest Neighbor Search:
® Find similar embeddings
¢ Exact: Brute force O(n)

® Approximate: Much faster, slight
accuracy loss

Search Structures:

¢ KD-Trees: O(logn) for low
dimensions (d < 20)

e Ball Trees: Better for higher
dimensions

e HNSW: Hierarchical Navigable Small
World

® Graph-based approximate search
® Very fast: O(logn) queries
® FAISS: Facebook’s similarity search
library

® GPU acceleration
® Billions of vectors

Use Cases:

& Recommendation encines

Persistent & Functional Data Structures

Persistence: Preserving History

Definition
Persistent data structures preserve previous versions after modifications

Types of Persistence:
¢ Ephemeral: Standard mutable structures (old version destroyed)
e Partially Persistent: Access all versions, modify only latest
® Fully Persistent: Access and modify any version
e Confluently Persistent: Merge different versions

Benefits:
® Undo/redo functionality
® \ersion control systems
e Concurrent programming without locks
® Functional programming paradigm

Persistent Lists: Structural Sharing

Linked List with Sharing:

()—(2)—(G)— nu

Shared structure (not copied)

listl

list2

Key ldea:
e listl = [1, 2, 3]
list2 = cons(0, 1listl) = [0, 1, 2, 3]
Both lists coexist, sharing nodes [1, 2, 3]
Time: O(1) for cons, Space: O(1) per operation

Persistent Trees: Path Copying

Updating a Red-Black Tree:

path copy

Path Copying:
® Copy only nodes on path from root to modified node
e Other subtrees shared (not copied)
e Time: O(logn) per operation, Space: O(logn) per version
® QOld version still accessible through old root

Persistent Hash Maps: HAMT

Persistent Vectors:

Hash Array Mapped Trie (HAMT):

. . ® Clojure's persistent vector
Used in Clojure, Scala

® 32-way branching tree

32-way branching tree _)
® O(logzyn) = O(1) for practical sizes

Hash bits determine path o
e FEfficient append, update, lookup

Efficient updates with sharing

Complexity:
Structure: d y

® Root has 32 children (5 bits of hash)
® Each level consumes 5 bits
e Depth: [logs, n]

e Lookup: O(logsyn)
e Update: O(logsyn)
e Append: O(logs, n)
e For n < 326 ~ 10°: < 6 operations

Applications

Functional programming languages, concurrent systems, version control

External Memory & Cache-Oblivious
Structures

Memory Hierarchy Reality

External Memory Model:
® Data stored on disk
Limited RAM (cache)

Transfer data in blocks

Memory Hierarchy:

L1 Cache: 64 KB, 1 ns
L2 Cache: 256 KB, 4 ns
L3 Cache: 8 MB, 10 ns
RAM: 16 GB, 100 ns Cost Model:

SSD: 512 GB, 100 us Count block reads/writes

HDD: 2 TB. 10 ms ® |gnore in-memory computation
Block size: B elements

Goal: Minimize I/O operations

Gap: °
e RAM is 100x slower than L1

e Disk is 100,000x slower than RAM Why Care?
® |/0 is the bottleneck ® Big data doesn't fit in RAM

Y~ . 1.

Memory size: M elements

B-Trees: Disk-Optimized Trees

Operations:

Search: O(loggn) 1/Os

Insert: O(loggn) 1/0s

Delete: O(loggn) 1/0s

Range query: O(loggn + k/B) 1/0s

Design for Disk:
High branching factor (100-1000)

Each node = one disk block

Shallow tree (minimize 1/Os)
All leaves at same level B+ Trees:

e All data in leaves

Example:
Branching factor B = 100
Height: logqpo

® Internal nodes only keys

Leaves linked (range queries)

Used in: Databases (MySQL,
For n = 1 billion: height ~ 5 PostgreSQL)

5 disk reads for any query!
File Systems:

6 Avi/l NTEC Ritvfe 1ico R +rand

LSM Trees: Write-Optimized Structures

Log-Structured Merge Trees:
e Optimized for write-heavy workloads

® Used in: LevelDB, RocksDB,
Cassandra, HBase

® Trade read performance for write
throughput

Structure:
® Memtable: In-memory sorted map
e SSTables: Immutable sorted files on
disk

e Levels of increasing size (10x each level)

Operations:
e Write: Insert into memtable (O(logn))
® When full: Flush memtable to SSTable

® Read: Check memtable, then SSTables
(bloom filter helps)

e Compaction: Merge SSTables
periodically

Benefits:
® Fast writes (sequential 1/0)
® Good compression

e No fragmentation

Drawbacks:

e Slower reads

Cache-Oblivious Algorithms

Definition

Algorithms optimal for all levels of memory hierarchy without knowing cache parameters
(B, M)

Key ldea:
® Recursive divide-and-conquer
e Eventually fits in cache
® Automatically adapts to any cache size

Examples:
® Funnelsort: Cache-oblivious sorting
® O(N/Blogy; g N/B) 1/Os (optimal)
® Recursive merging with "funnels"
® Van Emde Boas Layout: Tree layout for cache efficiency
® Recursive decomposition
® Better cache performance than level-order

Reading Research Papers

Why Read Papers?

Benefits:

® | earn cutting-edge techniques before they're in textbooks

Understand the "why" behind algorithms, not just "how"
® Develop critical thinking and research skills

e Stay current with field developments

Prepare for graduate studies or research careers

Where to Find Papers:
¢ Conferences: STOC, FOCS, SODA (theory), SIGMOD, VLDB (databases)
¢ Archives: arXiv.org (cs.DS category), Google Scholar

Digital Libraries: ACM Digital Library, IEEE Xplore

Surveys: Start with survey papers for broad overviews

Three-Pass Reading Strategy

Pass 1: Quick Scan (5-10 min)
e Read: Title, abstract, introduction, conclusion
® Goal: Understand problem, why important, main contribution
® Decide: Is this paper relevant to me?

Pass 2: Careful Read (1 hour)
® Read entire paper, skip proofs
Focus on: Algorithm design, key insights, complexity analysis
Look at figures and examples carefully
Note: Questions, unclear parts, novel ideas

Pass 3: Deep Dive (4-5 hours)

® Re-implement algorithm from scratch
Verify proofs, work through examples
Challenge assumptions, think of improvements
Compare with related work

Key Sections to Focus On

Abstract:
® Problem statement
® Proposed solution

e Main results (complexity, bounds)

Introduction:
® Motivation (why this problem matters)
® Related work (what's been done)

e Contributions (what's new)

Preliminaries:
e Definitions and notation
® Problem model

® Background concepts

Main Algorithm:
® Pseudocode
® |nvariants and correctness

e Key insights

Analysis:
e Time/space complexity
® | ower bounds

e Optimality arguments

Experiments:
® Performance comparisons
® Real-world validation

® | imitations

Implementation Resources

Finding Implementations:

e GitHub: Search for paper title or
algorithm name

¢ Papers with Code: Links papers to
code

e Author websites: Often provide
reference implementations

Libraries:
e cp-algorithms.com: Competitive
programming algorithms
e KACTL: KTH's algorithm template
library

® Boost: C++ algorithm and data
structure library

Visualization:

® VisuAlgo: Interactive algorithm
visualizations

e Algorithm Visualizer: Step-by-step
animations

® Draw diagrams: Understanding
improves with visualization

Practice Projects:

® Implement a classic paper (Skip Lists,
Bloom Filters)

® Reproduce experimental results
® Compare with standard library

® Write explanatory blog post

Staying Current

Following the Field:

¢ arXiv RSS: Subscribe to cs.DS (Data Structures) category
Social Media: Follow researchers on Twitter/Mastodon
Blogs: Read technical blogs (Terry Tao, Shtetl-Optimized, etc.)
Conferences: Attend talks (many recorded and posted online)

Community Engagement:

Reading groups: Join or start a paper reading group
Study circles: Discuss papers with peers

Online forums: Stack Overflow, CS Theory StackExchange
Reddit: r/compsci, r/algorithms

Building Intuition:

Ask: "Why does this work? What's the key insight?"
Draw diagrams and work through examples

Identify the invariant or potential function

F ol T T T T S S S

Summary

Summary: Next Steps

Five Directions to Explore:

1. Parallel & Distributed Data Structures
® Concurrent structures, lock-free algorithms, CRDTs
® Distributed hash tables, consistent hashing

2. Machine Learning Data Structures
® Tensors, sparse formats, graph neural networks
® Embeddings, nearest neighbor search (HNSW, FAISS)

3. Persistent & Functional Structures
® Structural sharing, path copying, HAMT
® Applications in functional programming and version control

4. External Memory & Cache-Oblivious
® B-trees, LSM trees for disk optimization
® Cache-oblivious algorithms for memory hierarchy

5. Research Papers & Implementations
® Three-pass reading stratecv

Recommended Learning Path

Immediate Next Steps (1-3 months):
e Pick ONE direction that interests you most
® Read 2-3 introductory papers or textbook chapters
® Implement 1-2 basic structures from that area
® Build a small project demonstrating the concept

Medium Term (3-6 months):
® Dive deeper: Read 5-10 papers in chosen area
® |mplement more complex structures
e Contribute to open-source projects
® Write blog posts or tutorials explaining what you learned

Long Term (6-12 months):
® Explore second or third direction
® Work on research project or thesis
e Attend conferences (virtual or in-person)

Pl ol LN D P T T LY ol R R T Tt L

Recommended Resources

Textbooks:

e “Purely Functional Data Structures”
(Okasaki)

® “The Art of Multiprocessor
Programming” (Herlihy & Shavit)

e “Algorithms and Data Structures for
External Memory" (Vitter)

Online Courses:
e MIT 6.851: Advanced Data Structures
e Stanford CS166: Data Structures

® Coursera: Machine Learning
specializations

Websites:
® arXiv.org (cs.DS)
® Papers with Code
® cp-algorithms.com

® VisuAlgo.net

Communities:
® CS Theory StackExchange
® r/algorithms, r/compsci

® | ocal university reading groups

Final Thoughts

From basic arrays to advanced algorithms, you've built a strong foundation in data
structures and algorithms.

Key Takeaways:
® Data structures are everywhere in modern computing
® Specialization matters: Different domains need different structures
® | earning is continuous: New structures and algorithms constantly developed
® |mplementation deepens understanding: Don't just read, code!
® Community helps: Learn from others, share your knowledge

Parting Advice:
® Follow your curiosity
® Build projects you care about
® Don't be intimidated by research papers

e " Acl "\whu" ~Anctant|vs

Where to Apply Your Knowledge

Career Paths:
e Software Engineering: Backend systems, databases, search engines
® Research: Academic or industrial research labs
e Data Science/ML: Building scalable ML systems
® Systems Programming: Operating systems, compilers, databases
e Competitive Programming: Contests, algorithm challenges
Real-World Impact:
Design Google's search infrastructure
Build Facebook's graph database
Optimize Netflix's recommendation engine
Develop high-frequency trading systems
Create next-generation databases

The Future is Yours

Data structures and algorithms are the foundatien. What you build on top is up to you!

Thank You!

Best of luck in your journey!
Questions?

“The best way to predict the future is to invent it.” — Alan Kay

Now go forth and build amazing things with data structures!

Stay curious, keep learning, and never stop exploring!

	Introduction
	Parallel & Distributed Data Structures
	Concurrent Data Structures
	Distributed Data Structures
	Parallel Algorithms

	Data Structures in Machine Learning
	Tensors
	Graph Neural Networks
	Embeddings and Search

	Persistent & Functional Data Structures
	External Memory & Cache-Oblivious Structures
	B-Trees for External Memory
	LSM Trees
	Cache-Oblivious Algorithms

	Reading Research Papers
	Summary

