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Introduction



Course Journey Recap

What You’ve Learned:
• Foundations: Arrays, linked lists, stacks, queues, hash tables
• Trees & Graphs: Binary trees, BSTs, heaps, graph algorithms
• Advanced Structures: Tries, B-trees, union-find, segment trees
• Algorithms: Sorting, searching, graph traversal, dynamic programming
• Applications: Real-world projects and interview preparation

You’re Ready!
You now have a solid foundation in data structures and algorithms. This lecture explores
where to go next.
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What’s Next?
Five Advanced Directions:

1. Parallel & Distributed Data Structures
• Multi-threaded and distributed computing
• Concurrent data structures, consistent hashing, CRDTs

2. Data Structures in Machine Learning
• Tensors, graph neural networks, embeddings
• Specialized structures for ML workflows

3. Persistent & Functional Data Structures
• Immutable structures, version control
• Used in functional programming languages

4. External Memory & Cache-Oblivious Structures
• Optimizing for disk I/O and memory hierarchy
• B-trees, LSM trees, cache-aware algorithms

5. Reading Research Papers & Implementations
• Learning cutting-edge techniques
• Implementing from academic papersMinseok Jeon Next Steps November 2, 2025 5/42



Parallel & Distributed Data Structures



Why Parallel & Distributed?
Motivation:

• Modern CPUs have multiple cores
• Big data requires distributed systems
• Single-threaded = leaving performance

on table
• Cloud computing is inherently

distributed

Challenges:
• Race conditions
• Deadlocks
• Data consistency
• Network failures

Examples:
• Multi-threaded web servers
• Distributed databases (Cassandra,

MongoDB)
• MapReduce frameworks (Hadoop,

Spark)
• P2P networks (BitTorrent, blockchain)

Goal:
• Safe concurrency
• Scalability across machines
• Fault tolerance
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Concurrent Data Structures
Thread-Safe Implementations:

• Lock-Free Structures
• Use atomic operations (CAS - Compare-And-Swap)
• No threads block waiting for locks
• Example: Lock-free queue, lock-free stack
• Complexity: Higher implementation complexity, better throughput

• Concurrent Hash Maps
• Java’s ConcurrentHashMap: Lock striping (segment-level locks)
• C++ concurrent containers: std::concurrent_*
• Fine-grained locking for better concurrency

• Read-Write Locks
• Multiple readers, single writer
• Reader-writer problem solution
• Use case: Read-heavy workloads (caches, databases)

• Producer-Consumer Queues
• Bounded/unbounded blocking queues
• Multiple producers, multiple consumers
• Use case: Task scheduling, work distribution
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Lock-Free Queue Example

Lock-Free Queue using CAS:

Head Node 1 Node 2 Tail

Enqueue (CAS)
1. Read tail

2. Create new node
3. CAS(tail.next, null, new)

4. CAS(tail, old, new)

Key Idea:
• Atomic CAS ensures no two threads modify same location simultaneously
• Retry on CAS failure (optimistic concurrency)
• No locks → no deadlocks, better scalabilityMinseok Jeon Next Steps November 2, 2025 9/42



Distributed Hash Tables (DHT)

Concept:
• Hash table across multiple machines
• Decentralized, no single point of failure
• Each node responsible for key range

Algorithms:
• Chord: Ring topology, O(log n) lookup
• Kademlia: XOR metric, used in

BitTorrent
• Consistent Hashing: Load balancing

Consistent Hashing:
• Map keys and nodes to ring
• Key stored on next node clockwise
• Adding/removing nodes affects only

neighbors
• Used in: Memcached, Redis Cluster,

Cassandra

Benefits:
• Minimal key redistribution on node

changes
• Fault tolerance
• Horizontal scalability
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Consistent Hashing Visualization

Node A

Node BNode C

Node D

Key 1

Key 2

Key 3

Hash space (0 to 232 − 1)

Key Assignment: Each key assigned to first node clockwise on ring
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CRDTs: Conflict-Free Replicated Data Types
Concept:

• Designed for eventual consistency
• No coordination needed
• Merging replicas is commutative &

associative
• Guaranteed convergence

Types:
• G-Counter: Grow-only counter
• PN-Counter: Increment/decrement

counter
• G-Set: Grow-only set
• OR-Set: Observed-Remove set
• LWW-Register: Last-Write-Wins

register

Example: G-Counter
• Each replica has array of counts (one

per node)
• Increment updates local count
• Merge takes element-wise max
• Value = sum of all counts

Applications:
• Collaborative editing (Google Docs)
• Distributed databases (Riak, Redis)
• Real-time synchronization
• Mobile apps with offline support

Key Property
CRDTs achieve strong eventual consistency without consensus protocols
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Parallel Algorithms Overview
Parallel Sorting:

• Parallel Merge Sort: Divide array, sort
in parallel, merge

• Parallel Quick Sort: Partition in
parallel, recurse

• Fork-Join framework (Java, C++)
• Speedup: Near-linear with number of

cores

Parallel Prefix Sum:
• Tree-based reduction
• Applications: Stream compaction, radix

sort
• GPU-friendly (CUDA, OpenCL)

MapReduce Paradigm:
• Map: Process data in parallel
• Reduce: Aggregate results
• Frameworks: Hadoop, Spark

Example: Word Count
1. Map: (doc → (word, 1) pairs)
2. Shuffle: Group by word
3. Reduce: Sum counts per word

Synchronization:
• Barriers for phase sync
• Atomic operations
• Memory fences
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Data Structures in Machine Learning



ML Data Structures Landscape

Why Specialized Structures?
• Machine learning operates on high-dimensional data
• Computational efficiency is critical (training time, inference latency)
• Memory optimization for large models and datasets
• Specialized hardware (GPUs, TPUs) requires specific layouts

Key Structures:
1. Tensors: Multi-dimensional arrays for neural networks
2. Graph Structures: For graph neural networks
3. Embeddings: Nearest neighbor search in high dimensions
4. Batch Processing: Efficient data loading and preprocessing
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Tensors: Multi-Dimensional Arrays

Definition:
• Generalization of vectors and matrices
• 0D: Scalar
• 1D: Vector
• 2D: Matrix
• 3D+: Tensor

Example: Image Tensor
• Shape: (batch, channels, height, width)
• (32, 3, 224, 224) = 32 RGB images of

224x224
• Memory: 32 × 3 × 224 × 224 × 4

bytes ≈ 19 MB

Storage Formats:
• Row-major (C-style): Last index

varies fastest
• Column-major (Fortran): First index

varies fastest
• Affects cache performance

Operations:
• Broadcasting: Automatic dimension

matching
• Reshaping: Change dimensions without

copying
• Slicing: Extract subtensors
• Element-wise ops: Add, multiply, etc.

Frameworks:
• NumPy, PyTorch, TensorFlow, JAX
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Sparse Tensors

Motivation:
• Many tensors are sparse (mostly zeros)
• Example: Embeddings, text data,

graphs
• Dense storage wasteful

COO Format (Coordinate):
• Store: (indices, values)
• Example: (0,2): 5, (1,1): 3, (2,0): 7
• Good for: Construction, random access

CSR Format (Compressed Sparse Row):
• Store: row_ptr, col_indices, values
• More memory efficient than COO
• Fast row access
• Used in: Matrix multiplication, graph

algorithms

Example: 3x3 Sparse Matrix0 0 5
0 3 0
7 0 0


CSR:
row_ptr = [0, 1, 2, 3]
col_indices = [2, 1, 0]
values = [5, 3, 7]
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GNN Graph Representations

Adjacency Matrix:
• Dense O(V 2) representation
• Fast edge queries: O(1)
• Good for: Dense graphs, small graphs
• Matrix multiplication for message

passing

Adjacency List:
• Sparse representation
• Space: O(V + E)
• Good for: Sparse graphs (most

real-world)
• Iteration over neighbors: O(degree)

Edge List:
• Simple (source, target, weight) tuples
• Easy to store and load
• Requires sorting for efficient queries

Libraries:
• NetworkX: Python graph library
• PyTorch Geometric: GNN framework
• DGL: Deep Graph Library
• GraphSAGE, GCN: Message passing

Applications:
• Social networks
• Molecular structures
• Recommendation systemsMinseok Jeon Next Steps November 2, 2025 18/42



Embedding Structures

Embedding Tables:
• Lookup table for categorical features
• Maps discrete IDs to dense vectors
• Example: Word embeddings (word →

300D vector)
• Learned during training

Nearest Neighbor Search:
• Find similar embeddings
• Exact: Brute force O(n)
• Approximate: Much faster, slight

accuracy loss

Search Structures:
• KD-Trees: O(log n) for low

dimensions (d < 20)
• Ball Trees: Better for higher

dimensions
• HNSW: Hierarchical Navigable Small

World
• Graph-based approximate search
• Very fast: O(log n) queries

• FAISS: Facebook’s similarity search
library

• GPU acceleration
• Billions of vectors

Use Cases:
• Recommendation engines
• Image search
• Semantic search
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Persistent & Functional Data Structures



Persistence: Preserving History

Definition
Persistent data structures preserve previous versions after modifications

Types of Persistence:
• Ephemeral: Standard mutable structures (old version destroyed)
• Partially Persistent: Access all versions, modify only latest
• Fully Persistent: Access and modify any version
• Confluently Persistent: Merge different versions

Benefits:
• Undo/redo functionality
• Version control systems
• Concurrent programming without locks
• Functional programming paradigm
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Persistent Lists: Structural Sharing

Linked List with Sharing:

1 2 3 nulllist1

0list2
Shared structure (not copied)

New node

Key Idea:
• list1 = [1, 2, 3]
• list2 = cons(0, list1) = [0, 1, 2, 3]
• Both lists coexist, sharing nodes [1, 2, 3]
• Time: O(1) for cons, Space: O(1) per operation
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Persistent Trees: Path Copying

Updating a Red-Black Tree:

5

3 7

Old root

5

3 7

9

shared

New root
path copy

Path Copying:
• Copy only nodes on path from root to modified node
• Other subtrees shared (not copied)
• Time: O(log n) per operation, Space: O(log n) per version
• Old version still accessible through old root
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Persistent Hash Maps: HAMT

Hash Array Mapped Trie (HAMT):
• Used in Clojure, Scala
• 32-way branching tree
• Hash bits determine path
• Efficient updates with sharing

Structure:
• Root has 32 children (5 bits of hash)
• Each level consumes 5 bits
• Depth: ⌈log32 n⌉

Persistent Vectors:
• Clojure’s persistent vector
• 32-way branching tree
• O(log32 n) ≈ O(1) for practical sizes
• Efficient append, update, lookup

Complexity:
• Lookup: O(log32 n)
• Update: O(log32 n)
• Append: O(log32 n)
• For n < 326 ≈ 109: ≤ 6 operations

Applications
Functional programming languages, concurrent systems, version control
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External Memory & Cache-Oblivious
Structures



Memory Hierarchy Reality

Memory Hierarchy:
• L1 Cache: 64 KB, 1 ns
• L2 Cache: 256 KB, 4 ns
• L3 Cache: 8 MB, 10 ns
• RAM: 16 GB, 100 ns
• SSD: 512 GB, 100 µs
• HDD: 2 TB, 10 ms

Gap:
• RAM is 100x slower than L1
• Disk is 100,000x slower than RAM
• I/O is the bottleneck

External Memory Model:
• Data stored on disk
• Limited RAM (cache)
• Transfer data in blocks
• Goal: Minimize I/O operations

Cost Model:
• Count block reads/writes
• Ignore in-memory computation
• Block size: B elements
• Memory size: M elements

Why Care?
• Big data doesn’t fit in RAM
• Databases on disk
• Cache performance critical
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B-Trees: Disk-Optimized Trees

Design for Disk:
• High branching factor (100-1000)
• Each node = one disk block
• Shallow tree (minimize I/Os)
• All leaves at same level

Example:
• Branching factor B = 100
• Height: log100 n

• For n = 1 billion: height ≈ 5
• 5 disk reads for any query!

Operations:
• Search: O(logB n) I/Os
• Insert: O(logB n) I/Os
• Delete: O(logB n) I/Os
• Range query: O(logB n + k/B) I/Os

B+ Trees:
• All data in leaves
• Internal nodes only keys
• Leaves linked (range queries)
• Used in: Databases (MySQL,

PostgreSQL)

File Systems:
• ext4, NTFS, Btrfs use B-treesMinseok Jeon Next Steps November 2, 2025 27/42



LSM Trees: Write-Optimized Structures

Log-Structured Merge Trees:
• Optimized for write-heavy workloads
• Used in: LevelDB, RocksDB,

Cassandra, HBase
• Trade read performance for write

throughput

Structure:
• Memtable: In-memory sorted map
• SSTables: Immutable sorted files on

disk
• Levels of increasing size (10x each level)

Operations:
• Write: Insert into memtable (O(log n))
• When full: Flush memtable to SSTable
• Read: Check memtable, then SSTables

(bloom filter helps)
• Compaction: Merge SSTables

periodically

Benefits:
• Fast writes (sequential I/O)
• Good compression
• No fragmentation

Drawbacks:
• Slower reads
• Write amplification (compaction)
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Cache-Oblivious Algorithms

Definition
Algorithms optimal for all levels of memory hierarchy without knowing cache parameters
(B, M)

Key Idea:
• Recursive divide-and-conquer
• Eventually fits in cache
• Automatically adapts to any cache size

Examples:
• Funnelsort: Cache-oblivious sorting

• O(N/B logM/B N/B) I/Os (optimal)
• Recursive merging with "funnels"

• Van Emde Boas Layout: Tree layout for cache efficiency
• Recursive decomposition
• Better cache performance than level-order

• Matrix Multiplication: Recursive blocking
• Divide matrices into quadrants
• Recurse until fits in cache
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Reading Research Papers



Why Read Papers?

Benefits:
• Learn cutting-edge techniques before they’re in textbooks
• Understand the "why" behind algorithms, not just "how"
• Develop critical thinking and research skills
• Stay current with field developments
• Prepare for graduate studies or research careers

Where to Find Papers:
• Conferences: STOC, FOCS, SODA (theory), SIGMOD, VLDB (databases)
• Archives: arXiv.org (cs.DS category), Google Scholar
• Digital Libraries: ACM Digital Library, IEEE Xplore
• Surveys: Start with survey papers for broad overviews
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Three-Pass Reading Strategy
Pass 1: Quick Scan (5-10 min)

• Read: Title, abstract, introduction, conclusion
• Goal: Understand problem, why important, main contribution
• Decide: Is this paper relevant to me?

Pass 2: Careful Read (1 hour)
• Read entire paper, skip proofs
• Focus on: Algorithm design, key insights, complexity analysis
• Look at figures and examples carefully
• Note: Questions, unclear parts, novel ideas

Pass 3: Deep Dive (4-5 hours)
• Re-implement algorithm from scratch
• Verify proofs, work through examples
• Challenge assumptions, think of improvements
• Compare with related work
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Key Sections to Focus On
Abstract:

• Problem statement
• Proposed solution
• Main results (complexity, bounds)

Introduction:
• Motivation (why this problem matters)
• Related work (what’s been done)
• Contributions (what’s new)

Preliminaries:
• Definitions and notation
• Problem model
• Background concepts

Main Algorithm:
• Pseudocode
• Invariants and correctness
• Key insights

Analysis:
• Time/space complexity
• Lower bounds
• Optimality arguments

Experiments:
• Performance comparisons
• Real-world validation
• Limitations

Pro Tip
Don’t get stuck on proofs in first read. Focus on intuition and main ideas.
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Implementation Resources
Finding Implementations:

• GitHub: Search for paper title or
algorithm name

• Papers with Code: Links papers to
code

• Author websites: Often provide
reference implementations

Libraries:
• cp-algorithms.com: Competitive

programming algorithms
• KACTL: KTH’s algorithm template

library
• Boost: C++ algorithm and data

structure library

Visualization:
• VisuAlgo: Interactive algorithm

visualizations
• Algorithm Visualizer: Step-by-step

animations
• Draw diagrams: Understanding

improves with visualization

Practice Projects:
• Implement a classic paper (Skip Lists,

Bloom Filters)
• Reproduce experimental results
• Compare with standard library
• Write explanatory blog post
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Staying Current
Following the Field:

• arXiv RSS: Subscribe to cs.DS (Data Structures) category
• Social Media: Follow researchers on Twitter/Mastodon
• Blogs: Read technical blogs (Terry Tao, Shtetl-Optimized, etc.)
• Conferences: Attend talks (many recorded and posted online)

Community Engagement:
• Reading groups: Join or start a paper reading group
• Study circles: Discuss papers with peers
• Online forums: Stack Overflow, CS Theory StackExchange
• Reddit: r/compsci, r/algorithms

Building Intuition:
• Ask: "Why does this work? What’s the key insight?"
• Draw diagrams and work through examples
• Identify the invariant or potential function
• Connect new structures to ones you already knowMinseok Jeon Next Steps November 2, 2025 35/42



Summary



Summary: Next Steps
Five Directions to Explore:

1. Parallel & Distributed Data Structures
• Concurrent structures, lock-free algorithms, CRDTs
• Distributed hash tables, consistent hashing

2. Machine Learning Data Structures
• Tensors, sparse formats, graph neural networks
• Embeddings, nearest neighbor search (HNSW, FAISS)

3. Persistent & Functional Structures
• Structural sharing, path copying, HAMT
• Applications in functional programming and version control

4. External Memory & Cache-Oblivious
• B-trees, LSM trees for disk optimization
• Cache-oblivious algorithms for memory hierarchy

5. Research Papers & Implementations
• Three-pass reading strategy
• Finding and implementing cutting-edge algorithms
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Recommended Learning Path
Immediate Next Steps (1-3 months):

• Pick ONE direction that interests you most
• Read 2-3 introductory papers or textbook chapters
• Implement 1-2 basic structures from that area
• Build a small project demonstrating the concept

Medium Term (3-6 months):
• Dive deeper: Read 5-10 papers in chosen area
• Implement more complex structures
• Contribute to open-source projects
• Write blog posts or tutorials explaining what you learned

Long Term (6-12 months):
• Explore second or third direction
• Work on research project or thesis
• Attend conferences (virtual or in-person)
• Consider graduate studies if interested in researchMinseok Jeon Next Steps November 2, 2025 38/42



Recommended Resources
Textbooks:

• “Purely Functional Data Structures”
(Okasaki)

• “The Art of Multiprocessor
Programming” (Herlihy & Shavit)

• “Algorithms and Data Structures for
External Memory” (Vitter)

Online Courses:
• MIT 6.851: Advanced Data Structures
• Stanford CS166: Data Structures
• Coursera: Machine Learning

specializations

Websites:
• arXiv.org (cs.DS)
• Papers with Code
• cp-algorithms.com
• VisuAlgo.net

Communities:
• CS Theory StackExchange
• r/algorithms, r/compsci
• Local university reading groups
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Final Thoughts

You’ve Come Far!
From basic arrays to advanced algorithms, you’ve built a strong foundation in data
structures and algorithms.

Key Takeaways:
• Data structures are everywhere in modern computing
• Specialization matters: Different domains need different structures
• Learning is continuous: New structures and algorithms constantly developed
• Implementation deepens understanding: Don’t just read, code!
• Community helps: Learn from others, share your knowledge

Parting Advice:
• Follow your curiosity
• Build projects you care about
• Don’t be intimidated by research papers
• Ask "why" constantly
• Enjoy the journey of discovery!
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Where to Apply Your Knowledge
Career Paths:

• Software Engineering: Backend systems, databases, search engines
• Research: Academic or industrial research labs
• Data Science/ML: Building scalable ML systems
• Systems Programming: Operating systems, compilers, databases
• Competitive Programming: Contests, algorithm challenges

Real-World Impact:
• Design Google’s search infrastructure
• Build Facebook’s graph database
• Optimize Netflix’s recommendation engine
• Develop high-frequency trading systems
• Create next-generation databases

The Future is Yours
Data structures and algorithms are the foundation. What you build on top is up to you!Minseok Jeon Next Steps November 2, 2025 41/42



Thank You!
Best of luck in your journey!

Questions?

“The best way to predict the future is to invent it.” – Alan Kay

Now go forth and build amazing things with data structures!

Stay curious, keep learning, and never stop exploring!
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