
Linked Lists
Nodes Connected via Pointers for Flexible Insertions/Deletions

Minseok Jeon
DGIST

November 2, 2025

Minseok Jeon Linked Lists November 2, 2025 1/49

Outline

1. Introduction
2. Types of Linked Lists

2.1 Singly Linked List
2.2 Doubly Linked List
2.3 Circular Linked List

3. Head/Tail Pointers & Sentinels
4. Insertion & Deletion Complexities
5. Reversal & Middle Finding
6. Comparison with Arrays
7. Memory Overhead & Locality
8. Real-World Applications
9. Summary

Minseok Jeon Linked Lists November 2, 2025 2/49

Introduction

What is a Linked List?

Definition
A linear data structure where elements (nodes) are connected via pointers, allowing
dynamic memory allocation and flexible insertions/deletions.

Key Characteristics:
• Non-contiguous memory storage
• Dynamic size (grows and shrinks at runtime)
• Each node contains data and pointer(s) to next/previous node(s)
• No random access (must traverse from head)

Why Learn Linked Lists?
• Foundation for stacks, queues, and other data structures
• Efficient insertions/deletions at known positions
• Understanding pointers and dynamic memory
• Common in interviews and real-world systems

Minseok Jeon Linked Lists November 2, 2025 4/49

Types of Linked Lists

Singly Linked List
Structure:
• Each node: data + next pointer
• Traversal: Forward only
• Memory: 1 pointer per node

Advantages:
• ✓Simple implementation
• ✓Less memory overhead
• ✓Efficient forward traversal

Disadvantages:
• × No backward traversal
• × Delete needs previous node
• × No direct tail access

head 1 2 3 null

Visual: head → [1|→] → [2|→] →
[3|null]

Minseok Jeon Linked Lists November 2, 2025 6/49

Singly Linked List: Implementation
1 class Node:
2 def __init__ (self , data):
3 self.data = data
4 self.next = None
5
6 class SinglyLinkedList :
7 def __init__ (self):
8 self.head = None
9

10 def append (self , data):
11 new_node = Node(data)
12 if not self.head:
13 self.head = new_node
14 return
15
16 current = self.head
17 while current .next:
18 current = current .next
19 current .next = new_node
20
21 def display (self):
22 elements = []
23 current = self.head
24 while current :
25 elements . append (current .data)
26 current = current .next
27 return elements

Minseok Jeon Linked Lists November 2, 2025 7/49

Doubly Linked List
Structure:
• Each node: data + next + prev

pointers
• Traversal: Both directions
• Memory: 2 pointers per node

Advantages:
• ✓Bidirectional traversal
• ✓Easier deletion (no prev needed)
• ✓Can traverse from tail

Disadvantages:
• × More memory (2 pointers)
• × More complex implementation
• × Extra pointer maintenance

null
1 2 3

null

head tail

Visual:
head → [null|1|→] ↔ [←|2|→] ↔
[←|3|null] ← tail

Minseok Jeon Linked Lists November 2, 2025 8/49

Doubly Linked List: Implementation
1 class DNode :
2 def __init__ (self , data):
3 self.data = data
4 self.next = None
5 self.prev = None
6
7 class DoublyLinkedList :
8 def __init__ (self):
9 self.head = None

10 self.tail = None
11
12 def append (self , data):
13 new_node = DNode (data)
14 if not self.head:
15 self.head = self.tail = new_node
16 return
17
18 new_node .prev = self.tail
19 self.tail.next = new_node
20 self.tail = new_node
21
22 def delete (self , node):
23 if node.prev:
24 node.prev.next = node.next
25 else:
26 self.head = node.next
27
28 if node.next:
29 node.next.prev = node.prev
30 else:
31 self.tail = node.prev

Minseok Jeon Linked Lists November 2, 2025 9/49

Circular Linked List
Structure:
• Last node points to first (cycle)
• Can be singly or doubly circular
• No natural end/null pointer

Advantages:
• ✓Traverse from any node
• ✓Round-robin scheduling
• ✓No null checks

Disadvantages:
• × Risk of infinite loops
• × Complex termination
• × Harder to detect end

1 2

34

head

Use Cases:
• Round-robin CPU scheduling
• Music playlists (repeat mode)
• Buffer management

Minseok Jeon Linked Lists November 2, 2025 10/49

Comparison Table

Feature Singly Doubly Circular
Memory/node 1 pointer 2 pointers 1-2 pointers
Backward traversal No Yes No (singly)
Delete with node Need prev O(1) Need prev
Use case Simple lists Undo/redo Round-robin

Minseok Jeon Linked Lists November 2, 2025 11/49

Head/Tail Pointers & Sentinels

Head and Tail Pointers

Head Pointer Only:
• Append: O(n) (traverse to end)
• Prepend: O(1)
• Simpler, less memory

Head + Tail Pointers:
• Append: O(1) (direct tail access)
• Prepend: O(1)
• Both ends accessible
• Perfect for queues

Benefits of Tail Pointer:
• ✓O(1) append instead of O(n)
• ✓Efficient queue implementation
• ✓Direct access to last element

Trade-offs:
• Extra pointer to maintain
• Must update on append/delete
• Small memory overhead

Minseok Jeon Linked Lists November 2, 2025 13/49

Optimized List with Tail

1 class OptimizedList :
2 def __init__ (self):
3 self.head = None
4 self.tail = None
5

6 def append (self , data):
7 # O(1) with tail pointer
8 new_node = Node(data)
9 if not self.head:

10 self.head = self.tail = new_node
11 return
12

13 self.tail.next = new_node
14 self.tail = new_node
15

16 def prepend (self , data):
17 # O(1)
18 new_node = Node(data)
19 new_node .next = self.head
20 self.head = new_node
21 if not self.tail:
22 self.tail = new_node

Minseok Jeon Linked Lists November 2, 2025 14/49

Sentinel (Dummy) Nodes

Concept
Use dummy nodes at head (and optionally tail) to eliminate edge cases for empty lists

Benefits:
• ✓Eliminates null checks for empty list
• ✓Simplifies insertion/deletion code
• ✓No special cases needed
• ✓Cleaner, more uniform code

Trade-offs:
• × Extra memory for sentinel(s)
• × Slightly more complex initialization
• × Must skip sentinels during traversal

Minseok Jeon Linked Lists November 2, 2025 15/49

Sentinel Visualization

Without Sentinel:

head → null

Empty list needs special handling

With Sentinels (Doubly Linked):

HEAD_SEN 1 2 3 TAIL_SEN

Always valid, no edge cases

Minseok Jeon Linked Lists November 2, 2025 16/49

Sentinel Implementation

1 class DoublyLinkedListWithSentinel :
2 def __init__ (self):
3 self. head_sentinel = DNode (None)
4 self. tail_sentinel = DNode (None)
5 self. head_sentinel .next = self. tail_sentinel
6 self. tail_sentinel .prev = self. head_sentinel
7
8 def insert_before (self , node , data):
9 # Always valid , no edge cases

10 new_node = DNode (data)
11 new_node .prev = node.prev
12 new_node .next = node
13 node.prev.next = new_node
14 node.prev = new_node
15
16 def delete (self , node):
17 # Always valid , no edge cases
18 node.prev.next = node.next
19 node.next.prev = node.prev
20
21 def is_empty (self):
22 return self. head_sentinel .next == self. tail_sentinel

Minseok Jeon Linked Lists November 2, 2025 17/49

Insertion & Deletion Complexities

Insertion Operations

Insert at Beginning (Prepend):
• Create new node
• Point to current head
• Update head
• Time: O(1)

Insert at End (Append):
• Without tail: O(n) (traverse)
• With tail: O(1) (direct)

Insert at Position i:
• Traverse to position i− 1
• Create new node
• Update pointers
• Time: O(i)

Insert After Given Node:
• Have node reference
• Create new node
• Update pointers
• Time: O(1)

Minseok Jeon Linked Lists November 2, 2025 19/49

Insertion Examples
1 def prepend (self , data):
2 """ Insert at beginning - O(1) """
3 new_node = Node(data)
4 new_node .next = self.head
5 self.head = new_node
6
7 def append_fast (self , data):
8 """ Insert at end with tail - O(1) """
9 new_node = Node(data)

10 if not self.tail:
11 self.head = self.tail = new_node
12 else:
13 self.tail.next = new_node
14 self.tail = new_node
15
16 def insert_at (self , index , data):
17 """ Insert at position i - O(i)"""
18 if index == 0:
19 self. prepend (data)
20 return
21
22 current = self.head
23 for _ in range (index - 1):
24 if not current :
25 raise IndexError (" Index out of bounds ")
26 current = current .next
27
28 new_node = Node(data)
29 new_node .next = current .next
30 current .next = new_nodeMinseok Jeon Linked Lists November 2, 2025 20/49

Deletion Operations

Delete First Node:
• Move head to next
• Time: O(1)

Delete Last Node:
• Singly: O(n) (find second-to-last)
• Doubly with tail: O(1)

Delete Node with Value:
• Search for node: O(n)
• Update pointers: O(1)
• Total: O(n)

Delete Given Node:
• Singly: Need previous node
• Doubly: O(1) with node reference

Key Insight:
• Doubly linked lists excel at deletion
• Direct node access → O(1) delete
• Singly linked requires traversal

Minseok Jeon Linked Lists November 2, 2025 21/49

Complexity Summary Table

Operation Singly (no tail) Singly (tail) Doubly (tail)
Prepend O(1) O(1) O(1)
Append O(n) O(1) O(1)
Insert at i O(i) O(i) O(min(i, n− i))
Delete first O(1) O(1) O(1)
Delete last O(n) O(n) O(1)
Delete at i O(i) O(i) O(min(i, n− i))
Search O(n) O(n) O(n)
Access by index O(i) O(i) O(min(i, n− i))

Minseok Jeon Linked Lists November 2, 2025 22/49

Reversal & Middle Finding

Reverse a Linked List: Iterative

Algorithm:
1. Initialize prev = None, current = head
2. While current not None:

• Save next_node = current.next
• Reverse: current.next = prev
• Move prev = current
• Move current = next_node

3. Update head = prev

Complexity:
• Time: O(n) - single pass
• Space: O(1) - constant space

Minseok Jeon Linked Lists November 2, 2025 24/49

Reverse Visualization

Before: 1 2 3 4 null

head

After: null 1 2 3 4

head

Minseok Jeon Linked Lists November 2, 2025 25/49

Reverse Implementation

1 def reverse_iterative (self):
2 """ Reverse linked list iteratively """
3 prev = None
4 current = self.head
5

6 while current :
7 next_node = current .next # Save next
8 current .next = prev # Reverse pointer
9 prev = current # Move prev forward

10 current = next_node # Move current forward
11

12 self.head = prev
13 # Time: O(n), Space: O(1)
14

15 def reverse_recursive (self , node):
16 """ Reverse linked list recursively """
17 if not node or not node.next:
18 self.head = node
19 return node
20

21 rest = self. reverse_recursive (node.next)
22 node.next.next = node # Reverse pointer
23 node.next = None
24

25 return rest
26 # Time: O(n), Space: O(n) for recursion stack

Minseok Jeon Linked Lists November 2, 2025 26/49

Find Middle of Linked List
Two-Pointer (Slow-Fast) Technique:
• Use two pointers: slow and fast
• Slow moves one step at a time
• Fast moves two steps at a time
• When fast reaches end, slow is at middle

Complexity:
• Time: O(n) - single pass
• Space: O(1) - two pointers only

Advantages:
• No need to count nodes first
• Single traversal
• Works for odd and even length lists

Minseok Jeon Linked Lists November 2, 2025 27/49

Find Middle: Visualization

List: 1 → 2 → 3 → 4 → 5

1 2 3 4 5

slow
fast

1 2 3 4 5
slow

fast

Middle: 3

Minseok Jeon Linked Lists November 2, 2025 28/49

Middle Finding & Cycle Detection
1 def find_middle (self):
2 """ Find middle using slow -fast pointers """
3 if not self.head:
4 return None
5
6 slow = fast = self.head
7
8 while fast and fast.next:
9 slow = slow.next

10 fast = fast.next.next
11
12 return slow # Time: O(n), Space : O(1)
13
14 def has_cycle (self):
15 """ Detect cycle using Floyd ’s algorithm """
16 if not self.head:
17 return False
18
19 slow = fast = self.head
20
21 while fast and fast.next:
22 slow = slow.next
23 fast = fast.next.next
24
25 if slow == fast:
26 return True # Cycle detected
27
28 return False
29
30 def find_kth_from_end (self , k):
31 """ Find k-th node from end """
32 fast = slow = self.head
33
34 # Move fast k steps ahead
35 for _ in range (k):
36 if not fast:
37 return None
38 fast = fast.next
39
40 # Move both until fast reaches end
41 while fast:
42 slow = slow.next
43 fast = fast.next
44
45 return slow

Minseok Jeon Linked Lists November 2, 2025 29/49

Comparison with Arrays

Linked Lists vs Arrays

Operation Array Linked List
Random access O(1) O(n)
Sequential access O(n) O(n)
Insert at beginning O(n) O(1)
Insert at end O(1) amortized O(1) with tail
Insert at position i O(n) O(i)
Delete at beginning O(n) O(1)
Delete at end O(1) O(n) singly, O(1) doubly
Search O(n) or O(log n) O(n)

Minseok Jeon Linked Lists November 2, 2025 31/49

Memory Layout Comparison

Array:
• Contiguous memory
• Address: base + i × sizeof(element)
• Better cache locality
• No pointer overhead

1 2 3 4 5

Contiguous block

Linked List:
• Scattered nodes
• Follow pointers
• Poor cache locality
• Pointer overhead

1
2

3
4

Scattered in memory

Minseok Jeon Linked Lists November 2, 2025 32/49

Advantages & Disadvantages
Arrays Advantages:
• ✓O(1) random access
• ✓Better cache locality
• ✓Less memory overhead
• ✓Binary search possible
• ✓Better for iteration

When to Use Arrays:
• Frequent random access
• Data size known
• Memory locality important
• Need sorting/searching
• Iteration primary operation

Linked Lists Advantages:
• ✓O(1) insert/delete at known position
• ✓No wasted space
• ✓No element shifting
• ✓Easy split/merge
• ✓No reallocation

When to Use Linked Lists:
• Frequent insertions/deletions
• Unknown/variable size
• No random access needed
• Implementing stacks/queues
• Need to split/merge

Minseok Jeon Linked Lists November 2, 2025 33/49

Memory Overhead & Locality

Memory Overhead Analysis
Example: 5 integers

• Array:
• Memory: 5 × 4 bytes = 20 bytes (data only)
• Small overhead for array metadata

• Singly Linked List:
• Per node: 4 bytes (int) + 8 bytes (pointer) = 12 bytes
• Total: 5 × 12 = 60 bytes
• Overhead: 200% more than array!

• Doubly Linked List:
• Per node: 4 bytes (int) + 16 bytes (2 pointers) = 20 bytes
• Total: 5 × 20 = 100 bytes
• Overhead: 400% more than array!

Key Insight
Linked lists have significant memory overhead due to pointersMinseok Jeon Linked Lists November 2, 2025 35/49

Cache Locality Impact
Array (Good Locality):
• Contiguous layout: [1][2][3][4][5]
• Cache line (64 bytes): loads multiple

elements
• Sequential access → cache-friendly
• Fast iteration

Performance:
• Most accesses hit cache (L1/L2)
• Prefetching effective
• Typical: 1-4 ns per element

Linked List (Poor Locality):
• Scattered: [1|→] ... [2|→] ... [3|→] ...
• Cache line: only one node
• Pointer chasing → cache misses
• Slow iteration

Performance:
• Frequent cache misses
• Prefetching ineffective
• Typical: 5-10x slower than array

Real-World Impact
For iteration over 1 million elements, linked lists can be 5-10x slower due to cache misses

Minseok Jeon Linked Lists November 2, 2025 36/49

Optimization Techniques
Improving Linked List Performance:

1. Memory Pools:
• Allocate nodes from contiguous pool
• Better cache locality
• Reduces fragmentation

2. Unrolled Linked Lists:
• Store multiple elements per node
• Array-like access within node
• Balance between linked list and array

3. Skip Lists:
• Add express lanes for faster search
• O(log n) search instead of O(n)
• Probabilistic data structure

4. XOR Linked Lists:
• Store XOR of prev and next addresses
• Save one pointer per node
• More complex but space-efficient

Minseok Jeon Linked Lists November 2, 2025 37/49

Real-World Applications

Application 1: Stack & Queue Implementation

Stack (LIFO):
• Push: O(1) at head
• Pop: O(1) from head
• Simple, efficient

Operations:
• push(x): Add to head
• pop(): Remove from head
• peek(): View head

Queue (FIFO):
• Enqueue: O(1) at tail
• Dequeue: O(1) from head
• Need head and tail pointers

Operations:
• enqueue(x): Add to tail
• dequeue(): Remove from head
• front(): View head

Why Linked Lists?
Both ends accessible in O(1), dynamic size, no reallocation

Minseok Jeon Linked Lists November 2, 2025 39/49

Application 2: Browser History

Back/Forward Navigation:
• Use doubly linked list
• Current page = current node
• Back button: current = current.prev
• Forward button: current = current.next
• Visit new page: add node after current, clear forward history

google.com youtube.com github.com

Current page

Back Forward

Minseok Jeon Linked Lists November 2, 2025 40/49

Application 3: Music Playlist
Circular Linked List for Playlists:
• Last song points to first (repeat mode)
• Current song = current node
• Next song: current = current.next
• Previous song: traverse or use doubly circular
• Add/remove songs dynamically

Song 1 Song 2

Song 3Song 4

Now playing

Minseok Jeon Linked Lists November 2, 2025 41/49

Application 4: Undo/Redo Functionality

Text Editor Undo/Redo:
• Use doubly linked list of actions
• Current = current action
• Undo: current = current.prev, revert action
• Redo: current = current.next, apply action
• New action: add after current, clear redo history

Type "A" Type "B" Delete Type "C"
Current

Undo Redo

Minseok Jeon Linked Lists November 2, 2025 42/49

Application 5: LRU Cache
Least Recently Used Cache:
• Doubly linked list + hash table
• List ordered by recency (head = most recent, tail = least recent)
• Hash table: key → node (for O(1) access)
• Get: move accessed node to head
• Put: add to head, if full, remove tail

Complexity:
• Get: O(1) (hash lookup + move to head)
• Put: O(1) (hash insert + add to head)

Use Cases:
• Browser caching
• Database query cache
• Operating system page replacement

Minseok Jeon Linked Lists November 2, 2025 43/49

Other Real-World Applications
1. Operating Systems:

• Process scheduling queues (ready, waiting)
• Memory management (free lists)
• File system directory entries
• Device driver I/O queues

2. Hash Table Chaining:
• Each bucket is a linked list
• Handle collisions efficiently
• Dynamic size per bucket

3. Symbol Tables:
• Compiler symbol tables
• Variable scope management
• Function call stack frames

4. Graph Representations:
• Adjacency lists for graphs
• Each vertex has linked list of neighbors
• Space-efficient for sparse graphs

Minseok Jeon Linked Lists November 2, 2025 44/49

Summary

Key Takeaways
Types of Linked Lists:
• Singly: Simple, one-way traversal
• Doubly: Bidirectional, easier deletion
• Circular: No end, round-robin scheduling

Optimization Techniques:
• Tail pointer: O(1) append
• Sentinel nodes: Eliminate edge cases
• Two-pointer: Efficient middle finding, cycle detection

Trade-offs:
• O(1) insertion/deletion at known positions vs O(n) random access
• Dynamic size vs memory overhead (pointers)
• Flexibility vs poor cache locality

Minseok Jeon Linked Lists November 2, 2025 46/49

When to Use Linked Lists
Choose Linked Lists When:
• Frequent insertions/deletions at arbitrary positions
• Size unknown or highly variable
• No need for random access
• Implementing stacks, queues, or other ADTs
• Need to frequently split or merge lists

Choose Arrays When:
• Need frequent random access
• Size is known or stable
• Memory locality is critical
• Need to sort or perform binary search
• Primarily iterating over elements

Key Principle
Choose the data structure that optimizes for your most frequent operationsMinseok Jeon Linked Lists November 2, 2025 47/49

Practice Problems
Essential Linked List Problems:

1. Reverse a linked list (iterative and recursive)
2. Detect cycle in linked list (Floyd’s algorithm)
3. Find middle of linked list (two pointers)
4. Merge two sorted linked lists
5. Remove n-th node from end
6. Check if linked list is palindrome
7. Find intersection of two linked lists
8. Remove duplicates from sorted/unsorted list
9. Add two numbers represented as linked lists

10. Flatten a multilevel doubly linked list

Resources:
• LeetCode: Linked List problems (Easy to Hard)
• GeeksforGeeks: Comprehensive linked list articles
• Cracking the Coding Interview: Chapter on Linked ListsMinseok Jeon Linked Lists November 2, 2025 48/49

Thank You!
Questions?

“A linked list is like a treasure hunt – each node points you to the next clue!”

Master linked lists and you’ll understand the power of pointers!

Minseok Jeon Linked Lists November 2, 2025 49/49

	Introduction
	Types of Linked Lists
	Singly Linked List
	Doubly Linked List
	Circular Linked List

	Head/Tail Pointers & Sentinels
	Insertion & Deletion Complexities
	Reversal & Middle Finding
	Comparison with Arrays
	Memory Overhead & Locality
	Real-World Applications
	Summary

