Linked Lists

Nodes Connected via Pointers for Flexible Insertions/Deletions

Minseok Jeon
DGIST

November 2, 2025

Outline

1. Introduction

2. Types of Linked Lists
2.1 Singly Linked List
2.2 Doubly Linked List
2.3 Circular Linked List

Head /Tail Pointers & Sentinels
Insertion & Deletion Complexities
Reversal & Middle Finding
Comparison with Arrays

Memory Overhead & Locality
Real-World Applications

Summary

© PSR

Introduction

What is a Linked List?

Definition

A linear data structure where elements (nodes) are connected via pointers, allowing
dynamic memory allocation and flexible insertions/deletions.

Key Characteristics:
¢ Non-contiguous memory storage
® Dynamic size (grows and shrinks at runtime)
® Each node contains data and pointer(s) to next/previous node(s)
® No random access (must traverse from head)

Why Learn Linked Lists?
® Foundation for stacks, queues, and other data structures
e Efficient insertions/deletions at known positions
® Understanding pointers and dynamic memory
® Common in interviews and real-world systems

Types of Linked Lists

Singly Linked List

Structure:
® Each node: data + next pointer
® Traversal: Forward only

® Memory: 1 pointer per node

Advantages: head 1 5

hd
hd

e /Simple implementation

® 'Less memory overhead
e /Efficient forward traversal Visual: head — [1|=] — [2|=] —
Disadvantages: [3[null]
® x No backward traversal
® x Delete needs previous node

® x No direct tail access

hd

©O~NOU A WN R

Singly Linked List: Implementation

class Node:
def __init__(self, data):

self.data = data
self .next = None

class SinglyLinkedList:
def init__(self):

self.head = None

def append(self, data):
new_node = Node(data)
if not self.head:
self.head = new_node
return

current = self.head

while current.next:
current = current.next

current.next = new_node

def display(self):
elements = []
current = self.head
while current:

elements.append (current.data)

current = current.next
return elements

Doubly Linked List

Structure:
® Fach node: data 4 next + prev
pointers
® Traversal: Both directions

® Memory: 2 pointers per node

Advantages:
® Bidirectional traversal
¢ 'Easier deletion (no prev needed)

® /' Can traverse from tail

Disadvantages:
® x More memory (2 pointers)

® x More complex implementation

® VUV Evtra mAintar maintansneao

head

null

Visual:
head — [null|l|=] < [«]2|—] +
[«|3|null] « tail

Doubly Linked List: Implementation

class DNode:
def __init__(self, data):
self.data = data
self .next = None
self .prev = None

class DoublyLinkedList:

def __init__(self):
self.head = None
self.tail = None

def append(self, data):
new_node = DNode (data)
if not self.head:

self.head = self.tail = new_node
return
new_node.prev = self.tail
self.tail.next = new_node
self.tail = new_node

def delete(self, node):
if node.prev:
node.prev.next = node.next
else:
self.head = node.next

if node.next:
node.next.prev = node.prev
else:

Circular Linked List

Structure:
® |ast node points to first (cycle)
® Can be singly or doubly circular

® No natural end/null pointer

Advantages:
® V' Traverse from any node
® v'Round-robin scheduling
® v'No null checks

Disadvantages:
® x Risk of infinite loops
e x Complex termination

® x Harder to detect end

s (D)

Use Cases:
® Round-robin CPU scheduling
® Music playlists (repeat mode)

® Buffer management

Comparison Table

Feature Singly Doubly

Memory/node 1 pointer 2 pointers 1-2 pointers
Backward traversal No Yes No (singly)
Delete with node Need prev 0(1)

Use case Simple lists Undo/redo

Round-robin

Head/Tail Pointers & Sentinels

Head and Tail Pointers

Head Pointer Only:
e Append: O(n) (traverse to end)
® Prepend: O(1)

e Simpler, less memory

Benefits of Tail Pointer:
® vO(1) append instead of O(n)
e /Efficient queue implementation
® ' Direct access to last element
Head + Tail Pointers:
Append: O(1) (direct tail access)
Prepend: O(1)

Both ends accessible

Trade-offs:

® Extra pointer to maintain

® Must update on append/delete

® Small memory overhead

Perfect for queues

Optimized List with Tail

1 class OptimizedList:

2 def __init__(self):

3 self.head = None

4 self.tail = None

5

6 def append(self, data):

7 # 0(1) with tail pointer
8 new_node = Node(data)

9 if not self.head:

10 self .head = self.tail = new_node
11 return

13 self.tail.next = new_node
14 self.tail = new_node

16 def prepend(self, data):

17 # 0(1)

Sentinel (Dummy) Nodes

Concept

Use dummy nodes at head (and optionally tail) to eliminate edge cases for empty lists

Benefits:
® Eliminates null checks for empty list
® 'Simplifies insertion/deletion code
® ' No special cases needed

e /' Cleaner, more uniform code

Trade-offs:
® x Extra memory for sentinel(s)
® X Slightly more complex initialization
® X Must skip sentinels during traversal

Sentinel Visualization

head — null

Without Sentinel: Empty list needs special handling

HEAD_SEN|— 1 k> 2 k> 3 [—{TAIL_SEN

With Sentinels (Doubly Linked):

Sentinel Implementation

class DoublyLinkedListWithSentinel:
def __init__(self):
self.head_sentinel = DNode (None)
self.tail_sentinel = DNode (None)
self.head_sentinel.next = self.tail_sentinel

self.tail_sentinel.prev = self.head_sentinel

1

2

3

4

5

6

7

8 def insert_before(self, node, data):
9 # Always valid, no edge cases
10 new_node = DNode(data)

11 new_node.prev = node.prev

12 new_node.next = node

13 node.prev.next = new_node

14 node.prev = new_node

15

16 def delete(self, node):

17 # Always valid, no edge cases
18 node.prev.next = node.next

19 node.next.prev = node.prev

20

21 def is_empty(self):
22 return self.head_sentinel.next == self.tail_sentinel

Insertion & Deletion Complexities

Insertion Operations

Insert at Position i:

Insert at Beginning (Prepend): ® Traverse to position i — 1

® Create new node ® Create new node

® Point to current head e Update pointers

® Update head ® Time: O(7)

e Time: O(1) .

Insert After Given Node:

Insert at End (Append): ® Have node reference

e Without tail: O(n) (traverse) ¢ Create new node

e With tail: O(1) (direct) ¢ Update pointers

e Time: O(1)

©0O~NOO A WN -

Insertion Examples

def prepend(self, data):

"""Insert at beginning - 0(1)"""
new_node = Node(data)
new_node.next = self.head

self.head = new_node

def append_fast(self, data):
"""Insert at end with tail - 0(1)"""

new_node = Node(data)
if not self.tail:
self.head = self.tail = new_node
else:
self.tail.next = new_node
self.tail = new_node

def insert_at (self, index, data):
"""Insert at position i - 0(i)"""
if index == 0:
self.prepend(data)
return

current = self.head
for _ in range(index - 1):
if not current:
raise IndexError("Index out of bounds")
current = current.next

new_node = Node(data)
new_node.next = current.next
current .next = new_node

Deletion Operations

Delete First Node:
® Move head to next
e Time: O(1)

Delete Last Node:
e Singly: O(n) (find second-to-last)
¢ Doubly with tail: O(1)

Delete Node with Value:
e Search for node: O(n)
® Update pointers: O(1)
e Total: O(n)

Delete Given Node:
® Singly: Need previous node
® Doubly: O(1) with node reference

Key Insight:
® Doubly linked lists excel at deletion
® Direct node access — O(1) delete

® Singly linked requires traversal

Complexity Summary Table

Operation Singly (no tail) Singly (tail) Doubly (tail)
Prepend o(1) O(1) o(1)
Append O(n) O(1) o(1)
Insert at i O(3) O(i) O(min(i,n — 1))
Delete first 0o(1) o(1) O(1)
Delete last O(n) O(n) 0O(1)
Delete at 4 O(7) O(i) O(min(i,n — 1))
Search O(n) O(n) O(n)
Access by index O(i) O(i) O(min(i,n — 7))

Reversal & Middle Finding

Reverse a Linked List: Iterative

Algorithm:
1. Initialize prev = None, current = head
2. While current not None:

® Save next_node = current.next
® Reverse: current.next = prev

® Move prev = current

® Move current = next_node

3. Update head = prev

Complexity:
e Time: O(n) - single pass

® Space: O(1) - constant space

Reverse Visualization

head
Before: @_> null

head

ater: "l A DH2=(~()

Reverse Implementation

1 def reverse_iterative(self):

2

3

4

5

def

"""Reverse linked list iteratively"""

prev = None
current = self.head

while current:

next_node = current.next # Save next

current .next = prev # Reverse pointer

prev = current # Move prev forward
current = next_node # Move current forward

self .head = prev
Time: 0(n), Space: 0(1)

reverse_recursive (self, node):
"""Reverse linked list recursively"""
if not node or not node.next;;

Find Middle of Linked List

Two-Pointer (Slow-Fast) Technique:
® Use two pointers: slow and fast
® Slow moves one step at a time
e Fast moves two steps at a time

When fast reaches end, slow is at middle

Complexity:
e Time: O(n) - single pass
® Space: O(1) - two pointers only

Advantages:
® No need to count nodes first
® Single traversal
® Works for odd and even length lists

Find Middle: Visualization

List: 1 -2 —+3—-4—-5

O
slow
fast

@

)
©
*)

®

®
®
®

fast

©0O~NOO A WN -

Middle Finding & Cycle Detection

def

def

find_middle (self):
"""Find middle using slow-fast pointers"""
if not self.head:

return None

slow = fast = self.head
while fast and fast.next:

slow = slow.next

fast = fast.next.next
return slow # Time: 0(n), Space: 0(1)
has_cycle(self):
"""Detect cycle using Floyd’s algorithm"""
if not self.head:

return False

slow = fast = self.head

while fast and fast.next:

slow = slow.next
fast = fast.next.next
if slow == fast:

return True # Cycle detected
return False

find_kth_from_end(self, k

Comparison with Arrays

Linked Lists vs Arrays

Operation Array Linked List
Random access 0(1) O(n)
Sequential access O(n) O(n)

Insert at beginning O(n) 0(1)

Insert at end O(1) amortized O(1) with tail
Insert at position @ O(n) O(1)

Delete at beginning O(n) 0(1)

Delete at end o(1) O(n) singly, O(1) doubly

Search O(n) or O(logn) O(n)

Memory Layout Comparison

Linked List:
Array: ® Scattered nodes
e Contiguous memory ® Follow pointers
® Address: base + i x sizeof(element) ® Poor cache locality
® Better cache locality ® Pointer overhead

® No pointer overhead

ESEIEIRIEY

Contiguous block

Scattered in memory

Advantages & Disadvantages

Arrays Advantages: Linked Lists Advantages:
v'O(1) insert/delete at known position

v'No wasted space

® v'O(1) random access

® ' Better cache locality

® 'Less memory overhead v'No element shifting

® Binary search possible v Easy split/merge

e /' Better for iteration

v'No reallocation

When to Use Arrays: When to Use Linked Lists:

® Frequent random access ® Frequent insertions/deletions

® Data size known Unknown /variable size

® Memory locality important ® No random access needed

® Need sorting/searching Implementing stacks/queues

® |teration primary operation Need to split/merge

Memory Overhead & Locality

Memory Overhead Analysis

Example: 5 integers

® Array:
® Memory: 5 X 4 bytes = 20 bytes (data only)
® Small overhead for array metadata

® Singly Linked List:
® Per node: 4 bytes (int) + 8 bytes (pointer) = 12 bytes
® Total: 5 x 12 = 60 bytes
® Overhead: 200% more than array!

e Doubly Linked List:
® Per node: 4 bytes (int) + 16 bytes (2 pointers) = 20 bytes
® Total: 5 x 20 = 100 bytes
® Overhead: 400% more than array!

Key Insight

Linked lists have significant memory overhead due to pointers

Cache Locality Impact

Array (Good Locality):
e Contiguous layout: [1][2][3][4][5]
e Cache line (64 bytes): loads multiple
elements

® Sequential access — cache-friendly

® [ast iteration

Performance:
® Most accesses hit cache (L1/L2)
® Prefetching effective

® Typical: 1-4 ns per element

Linked List (Poor Locality):

® Scattered: [1|—] ... [2|—=] ... [3]—] ...
® Cache line: only one node
® Pointer chasing — cache misses

® Slow iteration

Performance:

® Frequent cache misses
® Prefetching ineffective

® Typical: 5-10x slower than array

Real-World Impact

For iteration over 1 million elements, linked lists can be 5-10x slower due to cache misses

Optimization Techniques

Improving Linked List Performance:

1. Memory Pools:
® Allocate nodes from contiguous pool
® Better cache locality
® Reduces fragmentation

2. Unrolled Linked Lists:
® Store multiple elements per node
® Array-like access within node
® Balance between linked list and array

3. Skip Lists:
® Add express lanes for faster search
® O(logn) search instead of O(n)
® Probabilistic data structure

4. XOR Linked Lists:

® Store XOR of prev and next addresses

Real-World Applications

Application 1: Stack & Queue Implementation

Stack (LIFO): Queue (FIFO):

e Push: O(1) at head ¢ Enqueue: O(1) at tail

® Pop: O(1) from head ® Dequeue: O(1) from head

e Simple, efficient ® Need head and tail pointers
Operations: Operations:

® push(x): Add to head ® enqueue(x): Add to tail

® pop(): Remove from head ® dequeue(): Remove from head

® peek(): View head e front(): View head

Why Linked Lists?

Both ends accessible in O(1), dynamic size, no reallocation

Application 2: Browser History

Back/Forward Navigation:
® Use doubly linked list
e Current page = current node
® Back button: current = current.prev
® Forward button: current = current.next

® Visit new page: add node after current, clear forward history

Current page

google.com M youtube.com M github.com

Back Forward

Application 3: Music Playlist

Circular Linked List for Playlists:
® Last song points to first (repeat mode)
e Current song = current node
® Next song: current = current.next

® Previous song: traverse or use doubly circular

Add/remove songs dynamically

Application 4: Undo/Redo Functionality

Text Editor Undo/Redo:
Use doubly linked list of actions

e Current = current action
® Undo: current = current.prev, revert action
® Redo: current = current.next, apply action

e New action: add after current, clear redo history

Current

Undo

Application 5: LRU Cache

Least Recently Used Cache:

Doubly linked list 4+ hash table

List ordered by recency (head = most recent, tail = least recent)
Hash table: key — node (for O(1) access)

Get: move accessed node to head

Put: add to head, if full, remove tail

Complexity:
e Get: O(1) (hash lookup + move to head)
e Put: O(1) (hash insert + add to head)

Use Cases:
® Browser caching
® Database query cache
® Operating system page replacement

Other Real-World Applications

1. Operating Systems:

Process scheduling queues (ready, waiting)
Memory management (free lists)

File system directory entries

Device driver 1/0 queues

2. Hash Table Chaining:
® Each bucket is a linked list
® Handle collisions efficiently
® Dynamic size per bucket

3. Symbol Tables:
® Compiler symbol tables
® Variable scope management
® Function call stack frames

4. Graph Representations:
® Adjacency lists for graphs
® Each vertex has linked list of neighbors

Summary

Key Takeaways

Types of Linked Lists:
® Singly: Simple, one-way traversal
® Doubly: Bidirectional, easier deletion
e Circular: No end, round-robin scheduling

Optimization Techniques:
¢ Tail pointer: O(1) append
® Sentinel nodes: Eliminate edge cases
e Two-pointer: Efficient middle finding, cycle detection

Trade-offs:
® O(1) insertion/deletion at known positions vs O(n) random access
¢ Dynamic size vs memory overhead (pointers)
® Flexibility vs poor cache locality

When to Use Linked Lists

Choose Linked Lists When:
® Frequent insertions/deletions at arbitrary positions
® Size unknown or highly variable
® No need for random access
® |mplementing stacks, queues, or other ADTs
® Need to frequently split or merge lists

Choose Arrays When:
® Need frequent random access
® Size is known or stable
® Memory locality is critical
® Need to sort or perform binary search
® Primarily iterating over elements

Key Principle

Choose the data structure that optimizes forvour-most frequent operations

Practice Problems

Essential Linked List Problems:

Reverse a linked list (iterative and recursive)
Detect cycle in linked list (Floyd's algorithm)
Find middle of linked list (two pointers)
Merge two sorted linked lists

Remove n-th node from end

Check if linked list is palindrome

Find intersection of two linked lists

Remove duplicates from sorted/unsorted list
Add two numbers represented as linked lists
Flatten a multilevel doubly linked list

—_

© XN o W

H
e

Resources:
® |eetCode: Linked List problems (Easy to Hard)
® GeeksforGeeks: Comprehensive linked list articles
® Cracking the Coding Interview: Chapter on Linked Lists

Thank You!

Questions?

“A linked list is like a treasure hunt — each node points you to the next clue!”

Master linked lists and you'll understand the power of pointers!

	Introduction
	Types of Linked Lists
	Singly Linked List
	Doubly Linked List
	Circular Linked List

	Head/Tail Pointers & Sentinels
	Insertion & Deletion Complexities
	Reversal & Middle Finding
	Comparison with Arrays
	Memory Overhead & Locality
	Real-World Applications
	Summary

