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Introduction



What Are Linear Data Structures?

Definition

Linear data structures are structures where elements are arranged sequentially, with
each element having at most one predecessor and one successor.

Covered Structures:

® Arrays (Static & Dynamic)
Linked Lists (Singly, Doubly, Circular)
Stacks (LIFO) [ANBMWCHDIE]
Queues (FIFO)

Deques & Circular Queues

Linear Arrangement

Sequential Order

® Priority Queues

Key Characteristic
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Arrays



Arrays: The Foundation

Definition
An array is a contiguous block of memory storing elements of the same type in
sequential memory locations, providing O(1) indexing.

Key Properties:
® Contiguous memory allocation

® Direct access by index Array in Memory
® Fixed or dynamic size

[10]20][30]/40][50]
o [ 2 B[4
Index: 0 to 4

Cache-friendly (spatial locality)

Memory Address

addr[i] = base + i x sizeof(element)



Static vs Dynamic Arrays

- Dynamic Arrays
Static Arrays : :

. . . Resizable as needed
Fixed size at creation

Pros:
v Flexible size
v O(1) amortized append

v No size constraints

Pros:
v" No resize overhead
v Predictable memory
v’ Slightly faster
Cons:

Cons:

ional resi
x Cannot grow /shrink % Occasional resize (O(n))

x Extra capacity overhead
x Must know size pacty

.. X Unpredictable resizin
x Wasted or insufficient space > 2

Hramiplle



Dynamic Array Growth Strategy

How It Works:
1. Start with small capacity (e.g., 4)

2. When full, allocate new array (2x size) bython bxample

3. Copy all elements to new array B
4. Free old array P
6

7

Growth Sequence ¢
Capacity: 1 -2 -4 -8 — 16 — 32 ... 10
12

13

Amortized O(1) 15
16

For n insertions: "

class DynamicArray:

def

def

__init__(self):

self._capacity = 4

self._size = 0

self._data = [None] * 4

append (self, item):

if self._size == self._capacity:

self._resize (2 * self.

_capacity)

self._datal[self._size] = item

self._size += 1

_resize(self, new_cap):

new_data = [Nonel * new_cap

for i in range(self._size):
new_datal[i] = self._datali]

self._data = new_data

self._capacity = new_cap

Total copies=1+2+4+ ... +n=2n-1
Average: (2n-1)/n~ 2= 0(1)

Linear Data Structures




Array Performance Summary

Operation ‘ Static ‘ Dynamic ‘ Notes

Access by index 0(1) 0(1) Direct memory access
Search (unsorted) |  O(n) O(n) Linear scan

Search (sorted) O(log n) O(log n) Binary search

Insert at end N/A O(1) amortized | May trigger resize
Insert at middle O(n) O(n) Shift elements

Delete O(n) O(n) Shift elements
Memory usage Exact Extra capacity | 25-50% overhead

When to Use Arrays
® Need fast random access by index

® Size is known or changes infrequently

® Mostly reading data, few insertions/deletions
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Introduction to Linked Lists

Definition

A linked list is a linear structure where elements (nodes) are stored non-contiguously in
memory. Each node contains data and a reference (pointer) to the next node.

Key Differences from Arrays:
x No random access (must traverse)
v Dynamic size (no preallocation) wSingly Linked List
v O(1) insert/delete at known position [10] {20 I¥{z0] wone

x Extra memory for pointers

x Poor cache locality



Types of Linked Lists

oinely Linked Doubly Linked

Each node points to next

only Pointers to next & prev Last points to first

ATEEET] - B

Memory: 1 pointer/node !\r/lemory:. épo}:ndt.ers/r.]ode Forms a circle

Traverse: Forward only ENVEEE S0 ClIESIenE No NULL end
Feature ‘ Singly Doubly ‘ Circular
Memory/node 1 pointer 2 pointers | 1-2 pointers
Forward traverse v v v
Backward traverse X v x (singly)
Insert at beginning 0(1) 0(1) O(1)

Insert at end O(n) or O(1)* 0(1) O(n) or O(1)*



Singly Linked List Implementation

Insert at End

1
2
3
Node Class 4
5
6
class Node: \ 7
def __init__(self, data): | 8
self.data = data 9
self.next = None | 10

i

def insert_at_end(self,

data):
new_node = Node(data)
if not self.head:
self.head = new_node
else:
current = self.head
while current.next: # 0(n)
current = current.next
current.next = new_node
self.size += 1

Insert at Beginning Delete Node

Minseok Jeon

1 def insert_at_beginning(self, data):
2 new_node = Node(data) | 2|
3 new_node.next = self.head | 3]
4 self.head = new_node ‘ 4‘
5 self.size += 1 | 5]
6| # 0(1) - just update head | 6]
e
8|

Linear Jj}a‘La Structures

T
1‘ def delete(self, data):

if self.head.data == data:
self.head = self.head.next
return True

current = self.head

while current.next:

if current.next.data == data:
current.next = current.next

At 11 Tt o
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Linked List vs Array

Operation ‘ Array ‘ Linked List
Access by index 0(1) O(n)
Search O(n) O(n)
Insert at beginning O(n) 0(1)
Insert at end O(1) amortized | O(n) or O(1)*
Insert at middle O(n) O(1)**
Delete at beginning O(n) 0(1)
Delete at middle O(n) O(1)**
Memory overhead Low High (pointers)
Cache performance Excellent Poor

*O(1) with tail pointer, **If position is known

Use Arrays When Use Linked Lists When

® Need random access ® Frequent insertions/deletions
- C el VN
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Stacks



Stacks: LIFO Principle

Definition

A stack is a linear data structure following LIFO (Last In, First Out). The last element

added is the first one removed, like a stack of plates.

Core Operations (All O(1)):
® push(item): Add to top

® pop(): Remove from top

® peek(): View top without removing Staék'j@perations
® is_empty(): Check if empty 30 | - TOP
® size(): Get element count 20

10

3

Key Restriction pop

Only the top element is accessible. This
restriction is intentional and enables many



Stack Implementations

-Based Stack

Linked List-Based Stack

class ArrayStack:

def

def

def

def

def

__init__(self):
self._data = []

push(self, item):
self._data.append(item) # 0(1)

pop(self):
if self.is_empty():

raise IndexError ("empty")
return self._data.pop() # 0(1)

peek (self):
if self.is_empty():

raise IndexError ("empty")
return self._datal[-1] # 0(1)

is_empty(self):
return len(self._data) == 0

size(self):
return len(self._data)

© 0O~ A WNR

25

Linear ??1

class LinkedStack:
def __init__(self):
self._head = None
self._size = 0

def push(self, item):
new_node = Node(item)
new_node.next = self._head
self._head = new_node
self._size += 1 # 0(1)

def pop(self):
if self.is_empty():
raise IndexError ("empty")
item = self._head.data
self._head = self._head.next
self._size -= 1
return item # 0(1)

def peek(self):
if self.is_empty ():
raise IndexError ("empty")
return self._head.data

def is_empty(self):
return self._head is None

tta Structures’




Stack Applications

1. Function Call Stack

1 def factorial(m):

2 if n <= 1:

3 return 1

4 return n * factorial(m - 1)
5

6| # Call stack for factorial(3):
7| # factorial (3)

8| # factorial (2)

9| # factorial (1) <- TOP

10 # returns 1

11 # returns 2

12 # returns 6

2. Balanced Parentheses

1 def is_balanced(expr):

2/ stack = []

3 pairs = {(’:?)>, *[’:°]>, *{’:°}’}
4|

5 for char in expr:

Mgrjseok Jeon  i¢ char in pairs:

]
\
\
\
}
Linepr Data Structures

1 class TextEditor:

2 def __init__(self):

3 self.text = ""

4 self.undo_stack = []

5 self.redo_stack = []

6

7 def write(self, text):

8 self.undo_stack.append(self.text)
9 self.text += text

10 self.redo_stack.clear ()

11

12 def undo(self):

13 if self.undo_stack:

14 self.redo_stack.append (
15 self.text)

16 self.text = \

17 self.undo_stack.pop ()
18

19 def redo(self):

20 if self.redo_stack:

21 self.undo_stack.append(
22 self.text)

23 self.text = \

24 self.redo_stack.pop()

November 2, 2025
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Queues: FIFO Principle

Definition

A queue is a linear data structure following FIFO (First In, First Out). The first element
added is the first one removed, like a waiting line.

Core Operations (All O(1)):

enqueue(item): Add to rear

dequeue (): Remove from front

front (): View front without removing Queue Operations
is_empty(): Check if empty FRONT REAR

size(): Get element count dequeue [10][20][30][40] ¢ enqueue

Key Property

Fair processing: first come, first served



-

Queue Implementations

Naive (Bad!

class NaiveQueue:
def __init__(self):
self._data = []
def enqueue (self, item):
self._data.append(item) # 0(1)
def dequeue (self):
return self._data.pop(0) # 0(n)!
# Shifts all elements left!

COWNOUAWNR

Linked List Queue

Using Deque od!)

I
1\from collections import deque

2|

3 class Queue:

4 def __init__(self):

5 self._data = deque ()

6

7‘ def enqueue (self, item):

8 self._data.append(item) # 0(1)
o

1 class LinkedQueue:
2 def __init__(self):
3 self._head = None
4 self._tail = None
5 self._size = 0
6
7 def enqueue (self, item):
8 new_node = Node (item)
9 if self._tail is None:
10 self._head = self._tail =
11 new_node
12 else:
13 self._tail.next = new_node
i 14 self._tail = new_node
| 15 self._size += 1 # 0(1)
| 16
| 17 def dequeue (self):
| 18 if self.is_empty():
| 19 raise IndexError ("empty")
‘ 20 item = self._head.data
‘ 21 self._head = self._head.next
Linear 224ta Structuresif self._head is None:

\




Queue Applications

1. Task Scheduling 3. BFS Traversal

1/ class TaskScheduler:

2 def __init__(self):

3 self.queue = Queue()

4

5 def add_task(self, task):

6 self.queue.enqueue (task)

7

8 def process_next(self):

9 if not self.queue.is_empty ():
10 task = self.queue.dequeue()
11 print (f"Processing: {taskl}")
12

13| # First added = first processed

2. Print Queue

T
l‘class PrintQueue:

1
\
2] def __init__(self):
3 self.queue = Queue ()
n |
5‘ def add_document (self, doc):

def bfs(graph, start):
visited = set()
queue = Queue ()
queue.enqueue (start)
visited.add(start)

while not queue.is_empty():
node = queue.dequeue ()
print (node)

for neighbor in graph([nodel:
if neighbor not in visited:
visited.add(neighbor)
queue . enqueue (neighbor)

# Explores level by level

® Request handling (web servers)

91 self.queue.enqueue (doc) 1 me‘g,, Data ST"’“MessaEe dueues




Deque & Circular Queue



Deque (Double-Ended Queue)

Definition
A deque (pronounced "deck") allows insertion and deletion at both ends (front and
rear). It combines capabilities of stacks and queues.

Operations (All O(1)):

® add_front(item) D Struct
eque Structure

FRONT REAR

® remove_front() vorn ¥[10][20][30][40] ¥ enes

® remove _rear()

® add_rear(item)

¢ front(), rear ) Use Cases
® Palindrome checking

Python Implementation e Sliding window problems

1 from collections import deque o Browser hlStory (fast
2
beok Jeon . back /forward)



Circular Queue

Definition
A circular queue reuses empty spaces when elements are dequeued. The rear wraps
around to the beginning when it reaches the end.

Why Circular?

® Regular queue: empty spaces at front
wasted Circular Queue

e Circular queue: reuses freed space

® Fixed capacity (efficient for buffers) Front

Key Formula ‘ ‘ ear

rear = (front + size) % capacity

front = (front + 1) I capacity | :
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Priority Queue Overview

Definition

A priority queue is an ADT where each element has an associated priority. Elements
with higher priority are dequeued first, regardless of insertion order.

Key Difference: ,
Visual Example

® Regular queue: FIFO

® Priority queue: Highest priority first Min Priority Queue

Regular:

Operations: G- s

® insert(item, priority): O(log n) E]ﬂl
® extract_min/max(): O(log n)

° k(): O(1
peek(): O(1)

. 1 import heapq
Sel)ll}l‘))nlelnentatlon inear Data 2¢cheap = []




Priority Queue Applications

1. Emergency Room 3. Dijkstra’s Algorithm

class EmergencyRoom:
def __init__(self):
self.queue PriorityQueue ()

def admit_patient(self, name,
# Lower more critical
self.queue.insert (name,

severity):

severity)
def treat_next(self):

# Treats most critical first
return self.queueAextract_min()

= EmergencyRoom ()

.admit_patient ("Alice", # Minor
.admit_patient ("Bob", 1) # Critical
.treat_next() # Bob (critical)

. Task Scheduler

T
l‘class TaskScheduler:
2/ def __init__(self):
3| self.pq PriorityQueue ()

Ju i

5)

|
|
b

Line!

1 def dijkstra(graph, start):

2 distances = {node: float(’inf’)

3 for node in graph}

4 distances [start] = 0

5 pq = PriorityQueue ()

6 pq.insert (start, 0)

7

8 while not pq.is_empty():

9 current = pq.extract_min ()

10

11 for neighbor, weight in \

12 graph[current]:

13 dist = distances[current] + \
14 weight

15 if dist < distances[neighbor]:
16 distances [neighbor] = dist
17 pq.insert(neighbor, dist)
18

19 return distances

Data StrgetUEs, ant_Adrivien cimiilatian
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Performance Summary

Structure ‘ Access ‘ Insert (begin) ‘ Insert (end) ‘ Delete (begin) ‘ Delete (end) ‘ Sea
Array 0O(1) O(n) O(n) O(n) O(n) o(
Dynamic Array | O(1) O(n) O(1)* O(n) 0(1) o(
Singly Linked O(n) 0(1) O(n)** 0O(1) O(n) o(
Doubly Linked O(n) 0(1) O(1) 0(1) 0(1) o(i
Stack N/A 0(1) N/A o(1) N/A N/
Queue N/A N/A 0(1) 0(1) N/A N/
Deque N/A 0(1) 0(1) 0(1) 0(1) N/
Priority Queue N/A O(log n) O(log n) O(log n) N/A O(i

*amortized, ¥**O(1) with tail pointer

Memory Overhead Comparison

® Array: Minimal (just elements) + potential unused capacity
® Singly Linked List: 1 pointer per node



Decision Guide: Which Structure to Use?

Need random

access?
YES NO
1
Array/Dynamic Need freq

Array insert/delete?
Priority-
At ends? based?

1 1
YES Priority
Queue
Both? One end?

1
Deque Stack/Queue




Real-World Use Cases

Scenario ‘ Structure ‘ Reason

Student grades (by ID) Dynamic Array Fast access by index,
known size

Text editor undo/redo Two Stacks LIFO matches undo/redo
behavior

Web server requests ‘ Queue ‘ FIFO ensures fairness

Music playlist Doubly Linked List | Easy forward/backward,
insert anywhere

CPU scheduling Priority Queue or | Priority-based or round-

Circular Queue robin

Browser history Deque Fast back/forward navi-

gation

\ideAn ctreaming hiiffar | Crvmy bae (N iias i Eived hiiffar c~cantinnialie
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Common Mistakes to Avoid

1. Using list.pop(0) for Queue

# BAD: 0(n) - shifts all elements!
queue = []

queue . append (1)

queue . pop (0)

# GOOD: 0(1) with deque

from collections import deque
queue = deque ()
queue . append (1)
queue . popleft ()

2. Using Linked List for Random Access

# BAD: if you need frequent access by index
linked_list.get(100) # 0(n) traversal

# GOOD: use array
array [100] # 0(1)

Not Considering Cache Performance



Summary



Key Takeaways

Arrays
® O(1) access, cache-friendly, but O(n) insert/delete in middle

® Dynamic arrays: O(1) amortized append via doubling strategy

® Use when: need random access, size known/stable

Linked Lists
® O(1) insert/delete at known positions, dynamic size

® Singly: 1 pointer, forward only; Doubly: 2 pointers, bidirectional

® Use when: frequent insertions/deletions, no random access needed

Stacks & Queues
e Stack (LIFO): function calls, undo, expression parsing, DFS
® Queue (FIFO): task scheduling, BFS, fair processing

® Deque: flexible both ends, palindromes, sliding windows



Implementation Guidelines

From Scratch vs Libraries

Implement from scratch to learn:
® Understand internal mechanisms
® Practice pointer manipulation

® | earn complexity trade-offs

Use library implementations for production:
® Python: 1ist, collections.deque, heapq
® C++: std::vector, std::1list, std: :stack, std: :queue

® Java: ArrayList, LinkedList, Stack, PriorityQueue

Remember

® Choose based on most frequent operations

R | B S N | N N P R NI [Vl | P [ CEN A S T ¢



Thank You!

Questions?

“The right data structure makes the algorithm simple.
The wrong data structure makes it impossible.”
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