Linear Data Structures

Minseok Jeon
DGIST

November 2, 2025

Contents

Introduction

Arrays

Linked Lists

Stacks

Queues

Deque & Circular Queue
Priority Queue

Comparison & Use Cases

© Lo N S s W=

Summary

Introduction

What Are Linear Data Structures?

Definition

Linear data structures are structures where elements are arranged sequentially, with
each element having at most one predecessor and one successor.

Covered Structures:

® Arrays (Static & Dynamic)
Linked Lists (Singly, Doubly, Circular)
Stacks (LIFO) [ANBMWCHDIE]
Queues (FIFO)

Deques & Circular Queues

Linear Arrangement

Sequential Order

® Priority Queues

Key Characteristic

Lo . . Y . an V2 Ul o Y . . \

Arrays

Arrays: The Foundation

Definition
An array is a contiguous block of memory storing elements of the same type in
sequential memory locations, providing O(1) indexing.

Key Properties:
® Contiguous memory allocation

® Direct access by index Array in Memory
® Fixed or dynamic size

[10]20][30]/40][50]
o [2 B[4
Index: 0 to 4

Cache-friendly (spatial locality)

Memory Address

addr[i] = base + i x sizeof(element)

Static vs Dynamic Arrays

- Dynamic Arrays
Static Arrays : :

. . . Resizable as needed
Fixed size at creation

Pros:
v Flexible size
v O(1) amortized append

v No size constraints

Pros:
v" No resize overhead
v Predictable memory
v’ Slightly faster
Cons:

Cons:

ional resi
x Cannot grow /shrink % Occasional resize (O(n))

x Extra capacity overhead
x Must know size pacty

.. X Unpredictable resizin
x Wasted or insufficient space > 2

Hramiplle

Dynamic Array Growth Strategy

How It Works:
1. Start with small capacity (e.g., 4)

2. When full, allocate new array (2x size) bython bxample

3. Copy all elements to new array B
4. Free old array P
6

7

Growth Sequence ¢
Capacity: 1 -2 -4 -8 — 16 — 32 ... 10
12

13

Amortized O(1) 15
16

For n insertions: "

class DynamicArray:

def

def

__init__(self):

self._capacity = 4

self._size = 0

self._data = [None] * 4

append (self, item):

if self._size == self._capacity:

self._resize (2 * self.

_capacity)

self._datal[self._size] = item

self._size += 1

_resize(self, new_cap):

new_data = [Nonel * new_cap

for i in range(self._size):
new_datal[i] = self._datali]

self._data = new_data

self._capacity = new_cap

Total copies=1+2+4+ ... +n=2n-1
Average: (2n-1)/n~ 2= 0(1)

Linear Data Structures

Array Performance Summary

Operation ‘ Static ‘ Dynamic ‘ Notes

Access by index 0(1) 0(1) Direct memory access
Search (unsorted) | O(n) O(n) Linear scan

Search (sorted) O(log n) O(log n) Binary search

Insert at end N/A O(1) amortized | May trigger resize
Insert at middle O(n) O(n) Shift elements

Delete O(n) O(n) Shift elements
Memory usage Exact Extra capacity | 25-50% overhead

When to Use Arrays
® Need fast random access by index

® Size is known or changes infrequently

® Mostly reading data, few insertions/deletions

Linked Lists

Introduction to Linked Lists

Definition

A linked list is a linear structure where elements (nodes) are stored non-contiguously in
memory. Each node contains data and a reference (pointer) to the next node.

Key Differences from Arrays:
x No random access (must traverse)
v Dynamic size (no preallocation) wSingly Linked List
v O(1) insert/delete at known position [10] {20 I¥{z0] wone

x Extra memory for pointers

x Poor cache locality

Types of Linked Lists

oinely Linked Doubly Linked

Each node points to next

only Pointers to next & prev Last points to first

ATEEET] - B

Memory: 1 pointer/node !\r/lemory:. épo}:ndt.ers/r.]ode Forms a circle

Traverse: Forward only ENVEEE S0 ClIESIenE No NULL end
Feature ‘ Singly Doubly ‘ Circular
Memory/node 1 pointer 2 pointers | 1-2 pointers
Forward traverse v v v
Backward traverse X v x (singly)
Insert at beginning 0(1) 0(1) O(1)

Insert at end O(n) or O(1)* 0(1) O(n) or O(1)*

Singly Linked List Implementation

Insert at End

1
2
3
Node Class 4
5
6
class Node: \ 7
def __init__(self, data): | 8
self.data = data 9
self.next = None | 10

i

def insert_at_end(self,

data):
new_node = Node(data)
if not self.head:
self.head = new_node
else:
current = self.head
while current.next: # 0(n)
current = current.next
current.next = new_node
self.size += 1

Insert at Beginning Delete Node

Minseok Jeon

1 def insert_at_beginning(self, data):
2 new_node = Node(data) | 2|
3 new_node.next = self.head | 3]
4 self.head = new_node ‘ 4‘
5 self.size += 1 | 5]
6| # 0(1) - just update head | 6]
e
8|

Linear Jj}a‘La Structures

T
1‘ def delete(self, data):

if self.head.data == data:
self.head = self.head.next
return True

current = self.head

while current.next:

if current.next.data == data:
current.next = current.next

At 11 Tt o

NS Eber 2, 2025

Linked List vs Array

Operation ‘ Array ‘ Linked List
Access by index 0(1) O(n)
Search O(n) O(n)
Insert at beginning O(n) 0(1)
Insert at end O(1) amortized | O(n) or O(1)*
Insert at middle O(n) O(1)**
Delete at beginning O(n) 0(1)
Delete at middle O(n) O(1)**
Memory overhead Low High (pointers)
Cache performance Excellent Poor

*O(1) with tail pointer, **If position is known

Use Arrays When Use Linked Lists When

® Need random access ® Frequent insertions/deletions
- C el VN

& Cr el S e e

Stacks

Stacks: LIFO Principle

Definition

A stack is a linear data structure following LIFO (Last In, First Out). The last element

added is the first one removed, like a stack of plates.

Core Operations (All O(1)):
® push(item): Add to top

® pop(): Remove from top

® peek(): View top without removing Staék'j@perations
® is_empty(): Check if empty 30 | - TOP
® size(): Get element count 20

10

3

Key Restriction pop

Only the top element is accessible. This
restriction is intentional and enables many

Stack Implementations

-Based Stack

Linked List-Based Stack

class ArrayStack:

def

def

def

def

def

__init__(self):
self._data = []

push(self, item):
self._data.append(item) # 0(1)

pop(self):
if self.is_empty():

raise IndexError ("empty")
return self._data.pop() # 0(1)

peek (self):
if self.is_empty():

raise IndexError ("empty")
return self._datal[-1] # 0(1)

is_empty(self):
return len(self._data) == 0

size(self):
return len(self._data)

© 0O~ A WNR

25

Linear ??1

class LinkedStack:
def __init__(self):
self._head = None
self._size = 0

def push(self, item):
new_node = Node(item)
new_node.next = self._head
self._head = new_node
self._size += 1 # 0(1)

def pop(self):
if self.is_empty():
raise IndexError ("empty")
item = self._head.data
self._head = self._head.next
self._size -= 1
return item # 0(1)

def peek(self):
if self.is_empty ():
raise IndexError ("empty")
return self._head.data

def is_empty(self):
return self._head is None

tta Structures’

Stack Applications

1. Function Call Stack

1 def factorial(m):

2 if n <= 1:

3 return 1

4 return n * factorial(m - 1)
5

6| # Call stack for factorial(3):
7| # factorial (3)

8| # factorial (2)

9| # factorial (1) <- TOP

10 # returns 1

11 # returns 2

12 # returns 6

2. Balanced Parentheses

1 def is_balanced(expr):

2/ stack = []

3 pairs = {(’:?)>, *[’:°]>, *{’:°}’}
4|

5 for char in expr:

Mgrjseok Jeon i¢ char in pairs:

]
\
\
\
}
Linepr Data Structures

1 class TextEditor:

2 def __init__(self):

3 self.text = ""

4 self.undo_stack = []

5 self.redo_stack = []

6

7 def write(self, text):

8 self.undo_stack.append(self.text)
9 self.text += text

10 self.redo_stack.clear ()

11

12 def undo(self):

13 if self.undo_stack:

14 self.redo_stack.append (
15 self.text)

16 self.text = \

17 self.undo_stack.pop ()
18

19 def redo(self):

20 if self.redo_stack:

21 self.undo_stack.append(
22 self.text)

23 self.text = \

24 self.redo_stack.pop()

November 2, 2025

Queues

Queues: FIFO Principle

Definition

A queue is a linear data structure following FIFO (First In, First Out). The first element
added is the first one removed, like a waiting line.

Core Operations (All O(1)):

enqueue(item): Add to rear

dequeue (): Remove from front

front (): View front without removing Queue Operations
is_empty(): Check if empty FRONT REAR

size(): Get element count dequeue [10][20][30][40] ¢ enqueue

Key Property

Fair processing: first come, first served

-

Queue Implementations

Naive (Bad!

class NaiveQueue:
def __init__(self):
self._data = []
def enqueue (self, item):
self._data.append(item) # 0(1)
def dequeue (self):
return self._data.pop(0) # 0(n)!
Shifts all elements left!

COWNOUAWNR

Linked List Queue

Using Deque od!)

I
1\from collections import deque

2|

3 class Queue:

4 def __init__(self):

5 self._data = deque ()

6

7‘ def enqueue (self, item):

8 self._data.append(item) # 0(1)
o

1 class LinkedQueue:
2 def __init__(self):
3 self._head = None
4 self._tail = None
5 self._size = 0
6
7 def enqueue (self, item):
8 new_node = Node (item)
9 if self._tail is None:
10 self._head = self._tail =
11 new_node
12 else:
13 self._tail.next = new_node
i 14 self._tail = new_node
| 15 self._size += 1 # 0(1)
| 16
| 17 def dequeue (self):
| 18 if self.is_empty():
| 19 raise IndexError ("empty")
‘ 20 item = self._head.data
‘ 21 self._head = self._head.next
Linear 224ta Structuresif self._head is None:

\

Queue Applications

1. Task Scheduling 3. BFS Traversal

1/ class TaskScheduler:

2 def __init__(self):

3 self.queue = Queue()

4

5 def add_task(self, task):

6 self.queue.enqueue (task)

7

8 def process_next(self):

9 if not self.queue.is_empty ():
10 task = self.queue.dequeue()
11 print (f"Processing: {taskl}")
12

13| # First added = first processed

2. Print Queue

T
l‘class PrintQueue:

1
\
2] def __init__(self):
3 self.queue = Queue ()
n |
5‘ def add_document (self, doc):

def bfs(graph, start):
visited = set()
queue = Queue ()
queue.enqueue (start)
visited.add(start)

while not queue.is_empty():
node = queue.dequeue ()
print (node)

for neighbor in graph([nodel:
if neighbor not in visited:
visited.add(neighbor)
queue . enqueue (neighbor)

Explores level by level

® Request handling (web servers)

91 self.queue.enqueue (doc) 1 me‘g,, Data ST"’“MessaEe dueues

Deque & Circular Queue

Deque (Double-Ended Queue)

Definition
A deque (pronounced "deck") allows insertion and deletion at both ends (front and
rear). It combines capabilities of stacks and queues.

Operations (All O(1)):

® add_front(item) D Struct
eque Structure

FRONT REAR

® remove_front() vorn ¥[10][20][30][40] ¥ enes

® remove _rear()

® add_rear(item)

¢ front(), rear) Use Cases
® Palindrome checking

Python Implementation e Sliding window problems

1 from collections import deque o Browser hlStory (fast
2
beok Jeon . back /forward)

Circular Queue

Definition
A circular queue reuses empty spaces when elements are dequeued. The rear wraps
around to the beginning when it reaches the end.

Why Circular?

® Regular queue: empty spaces at front
wasted Circular Queue

e Circular queue: reuses freed space

® Fixed capacity (efficient for buffers) Front

Key Formula ‘ ‘ ear

rear = (front + size) % capacity

front = (front + 1) I capacity | :

Priority Queue

Priority Queue Overview

Definition

A priority queue is an ADT where each element has an associated priority. Elements
with higher priority are dequeued first, regardless of insertion order.

Key Difference: ,
Visual Example

® Regular queue: FIFO

® Priority queue: Highest priority first Min Priority Queue

Regular:

Operations: G- s

® insert(item, priority): O(log n) E]ﬂl
® extract_min/max(): O(log n)

° k(): O(1
peek(): O(1)

. 1 import heapq
Sel)ll}l‘))nlelnentatlon inear Data 2¢cheap = []

Priority Queue Applications

1. Emergency Room 3. Dijkstra’s Algorithm

class EmergencyRoom:
def __init__(self):
self.queue PriorityQueue ()

def admit_patient(self, name,
Lower more critical
self.queue.insert (name,

severity):

severity)
def treat_next(self):

Treats most critical first
return self.queueAextract_min()

= EmergencyRoom ()

.admit_patient ("Alice", # Minor
.admit_patient ("Bob", 1) # Critical
.treat_next() # Bob (critical)

. Task Scheduler

T
l‘class TaskScheduler:
2/ def __init__(self):
3| self.pq PriorityQueue ()

Ju i

5)

|
|
b

Line!

1 def dijkstra(graph, start):

2 distances = {node: float(’inf’)

3 for node in graph}

4 distances [start] = 0

5 pq = PriorityQueue ()

6 pq.insert (start, 0)

7

8 while not pq.is_empty():

9 current = pq.extract_min ()

10

11 for neighbor, weight in \

12 graph[current]:

13 dist = distances[current] + \
14 weight

15 if dist < distances[neighbor]:
16 distances [neighbor] = dist
17 pq.insert(neighbor, dist)
18

19 return distances

Data StrgetUEs, ant_Adrivien cimiilatian

Comparison & Use Cases

Performance Summary

Structure ‘ Access ‘ Insert (begin) ‘ Insert (end) ‘ Delete (begin) ‘ Delete (end) ‘ Sea
Array 0O(1) O(n) O(n) O(n) O(n) o(
Dynamic Array | O(1) O(n) O(1)* O(n) 0(1) o(
Singly Linked O(n) 0(1) O(n)** 0O(1) O(n) o(
Doubly Linked O(n) 0(1) O(1) 0(1) 0(1) o(i
Stack N/A 0(1) N/A o(1) N/A N/
Queue N/A N/A 0(1) 0(1) N/A N/
Deque N/A 0(1) 0(1) 0(1) 0(1) N/
Priority Queue N/A O(log n) O(log n) O(log n) N/A O(i

*amortized, ¥**O(1) with tail pointer

Memory Overhead Comparison

® Array: Minimal (just elements) + potential unused capacity
® Singly Linked List: 1 pointer per node

Decision Guide: Which Structure to Use?

Need random

access?
YES NO
1
Array/Dynamic Need freq

Array insert/delete?
Priority-
At ends? based?

1 1
YES Priority
Queue
Both? One end?

1
Deque Stack/Queue

Real-World Use Cases

Scenario ‘ Structure ‘ Reason

Student grades (by ID) Dynamic Array Fast access by index,
known size

Text editor undo/redo Two Stacks LIFO matches undo/redo
behavior

Web server requests ‘ Queue ‘ FIFO ensures fairness

Music playlist Doubly Linked List | Easy forward/backward,
insert anywhere

CPU scheduling Priority Queue or | Priority-based or round-

Circular Queue robin

Browser history Deque Fast back/forward navi-

gation

\ideAn ctreaming hiiffar | Crvmy bae (N iias i Eived hiiffar c~cantinnialie

-

CWOONOUHWNF

GTAWN R

Common Mistakes to Avoid

1. Using list.pop(0) for Queue

BAD: 0(n) - shifts all elements!
queue = []

queue . append (1)

queue . pop (0)

GOOD: 0(1) with deque

from collections import deque
queue = deque ()
queue . append (1)
queue . popleft ()

2. Using Linked List for Random Access

BAD: if you need frequent access by index
linked_list.get(100) # 0(n) traversal

GOOD: use array
array [100] # 0(1)

Not Considering Cache Performance

Summary

Key Takeaways

Arrays
® O(1) access, cache-friendly, but O(n) insert/delete in middle

® Dynamic arrays: O(1) amortized append via doubling strategy

® Use when: need random access, size known/stable

Linked Lists
® O(1) insert/delete at known positions, dynamic size

® Singly: 1 pointer, forward only; Doubly: 2 pointers, bidirectional

® Use when: frequent insertions/deletions, no random access needed

Stacks & Queues
e Stack (LIFO): function calls, undo, expression parsing, DFS
® Queue (FIFO): task scheduling, BFS, fair processing

® Deque: flexible both ends, palindromes, sliding windows

Implementation Guidelines

From Scratch vs Libraries

Implement from scratch to learn:
® Understand internal mechanisms
® Practice pointer manipulation

® | earn complexity trade-offs

Use library implementations for production:
® Python: 1ist, collections.deque, heapq
® C++: std::vector, std::1list, std: :stack, std: :queue

® Java: ArrayList, LinkedList, Stack, PriorityQueue

Remember

® Choose based on most frequent operations

R | B S N | N N P R NI [Vl | P [CEN A S T ¢

Thank You!

Questions?

“The right data structure makes the algorithm simple.
The wrong data structure makes it impossible.”

	Introduction
	Arrays
	Linked Lists
	Stacks
	Queues
	Deque & Circular Queue
	Priority Queue
	Comparison & Use Cases
	Summary

