
Linear Data Structures

Minseok Jeon
DGIST

November 2, 2025

Contents

1. Introduction

2. Arrays

3. Linked Lists

4. Stacks

5. Queues

6. Deque & Circular Queue

7. Priority Queue

8. Comparison & Use Cases

9. Summary

Introduction

What Are Linear Data Structures?

Definition
Linear data structures are structures where elements are arranged sequentially, with
each element having at most one predecessor and one successor.

Covered Structures:
• Arrays (Static & Dynamic)
• Linked Lists (Singly, Doubly, Circular)
• Stacks (LIFO)
• Queues (FIFO)
• Deques & Circular Queues
• Priority Queues

Linear Arrangement

A B C D E

Sequential Order

Key Characteristic
Elements can be traversed in a single direction (or bidirectionally in some cases), making
them ideal for sequential processing.

Minseok Jeon Linear Data Structures November 2, 2025 4/37

Arrays

Arrays: The Foundation

Definition
An array is a contiguous block of memory storing elements of the same type in
sequential memory locations, providing O(1) indexing.

Key Properties:
• Contiguous memory allocation
• Direct access by index
• Fixed or dynamic size
• Cache-friendly (spatial locality)

Memory Address
addr[i] = base + i × sizeof(element)

Array in Memory

10
[0]

20
[1]

30
[2]

40
[3]

50
[4]

base

Index: 0 to 4

Minseok Jeon Linear Data Structures November 2, 2025 6/37

Static vs Dynamic Arrays

Static Arrays
Fixed size at creation

Pros:
✓ No resize overhead
✓ Predictable memory
✓ Slightly faster

Cons:
× Cannot grow/shrink
× Must know size
× Wasted or insufficient space

Examples
C: int arr[100];
Java: int[] arr = new int[100];

Dynamic Arrays
Resizable as needed

Pros:
✓ Flexible size
✓ O(1) amortized append
✓ No size constraints

Cons:
× Occasional resize (O(n))
× Extra capacity overhead
× Unpredictable resizing

Examples
Python: list
C++: std::vector
Java: ArrayList

Minseok Jeon Linear Data Structures November 2, 2025 7/37

Dynamic Array Growth Strategy
How It Works:

1. Start with small capacity (e.g., 4)
2. When full, allocate new array (2× size)
3. Copy all elements to new array
4. Free old array

Growth Sequence
Capacity: 1 → 2 → 4 → 8 → 16 → 32 ...

Amortized O(1)
For n insertions:
Total copies = 1 + 2 + 4 + ... + n = 2n - 1
Average: (2n - 1)/n ≈ 2 = O(1)

Python Example
1 class DynamicArray :
2 def __init__ (self):
3 self. _capacity = 4
4 self. _size = 0
5 self. _data = [None] * 4
6
7 def append (self , item):
8 if self. _size == self. _capacity :
9 self. _resize (2 * self.

_capacity)
10 self. _data [self. _size] = item
11 self. _size += 1
12
13 def _resize (self , new_cap):
14 new_data = [None] * new_cap
15 for i in range (self. _size):
16 new_data [i] = self. _data [i]
17 self. _data = new_data
18 self. _capacity = new_cap

Minseok Jeon Linear Data Structures November 2, 2025 8/37

Array Performance Summary

Operation Static Dynamic Notes

Access by index O(1) O(1) Direct memory access
Search (unsorted) O(n) O(n) Linear scan
Search (sorted) O(log n) O(log n) Binary search
Insert at end N/A O(1) amortized May trigger resize
Insert at middle O(n) O(n) Shift elements
Delete O(n) O(n) Shift elements
Memory usage Exact Extra capacity 25-50% overhead

When to Use Arrays
• Need fast random access by index
• Size is known or changes infrequently
• Mostly reading data, few insertions/deletions
• Want cache-friendly performance

Minseok Jeon Linear Data Structures November 2, 2025 9/37

Linked Lists

Introduction to Linked Lists

Definition
A linked list is a linear structure where elements (nodes) are stored non-contiguously in
memory. Each node contains data and a reference (pointer) to the next node.

Key Differences from Arrays:
× No random access (must traverse)
✓ Dynamic size (no preallocation)
✓ O(1) insert/delete at known position
× Extra memory for pointers
× Poor cache locality

Singly Linked List
10 20 30 None

Head

Minseok Jeon Linear Data Structures November 2, 2025 11/37

Types of Linked Lists

Singly Linked
Each node points to next
only

A B C ×

Memory: 1 pointer/node
Traverse: Forward only

Doubly Linked
Pointers to next & prev

A B C

Memory: 2 pointers/node
Traverse: Both directions

Circular
Last points to first

A B C

Forms a circle
No NULL end

Feature Singly Doubly Circular

Memory/node 1 pointer 2 pointers 1-2 pointers
Forward traverse ✓ ✓ ✓
Backward traverse × ✓ × (singly)
Insert at beginning O(1) O(1) O(1)
Insert at end O(n) or O(1)* O(1) O(n) or O(1)*

*O(1) with tail pointer

Minseok Jeon Linear Data Structures November 2, 2025 12/37

Singly Linked List Implementation

Node Class
1 class Node:
2 def __init__ (self , data):
3 self.data = data
4 self.next = None

Insert at Beginning
1 def insert_at_beginning (self , data):
2 new_node = Node(data)
3 new_node .next = self.head
4 self.head = new_node
5 self.size += 1
6 # O(1) - just update head

Insert at End
1 def insert_at_end (self , data):
2 new_node = Node(data)
3 if not self.head:
4 self.head = new_node
5 else:
6 current = self.head
7 while current .next: # O(n)
8 current = current .next
9 current .next = new_node

10 self.size += 1

Delete Node
1 def delete (self , data):
2 if self.head.data == data:
3 self.head = self.head.next
4 return True
5
6 current = self.head
7 while current .next:
8 if current .next.data == data:
9 current .next = current .next.next

10 return True
11 current = current .next
12 return False

Minseok Jeon Linear Data Structures November 2, 2025 13/37

Linked List vs Array

Operation Array Linked List

Access by index O(1) O(n)
Search O(n) O(n)
Insert at beginning O(n) O(1)
Insert at end O(1) amortized O(n) or O(1)*
Insert at middle O(n) O(1)**
Delete at beginning O(n) O(1)
Delete at middle O(n) O(1)**
Memory overhead Low High (pointers)
Cache performance Excellent Poor

*O(1) with tail pointer, **If position is known

Use Arrays When
• Need random access
• Size known/stable
• Mostly reading
• Want cache performance

Use Linked Lists When
• Frequent insertions/deletions
• Size unknown/dynamic
• No random access needed
• Memory fragmentation OK

Minseok Jeon Linear Data Structures November 2, 2025 14/37

Stacks

Stacks: LIFO Principle

Definition
A stack is a linear data structure following LIFO (Last In, First Out). The last element
added is the first one removed, like a stack of plates.

Core Operations (All O(1)):
• push(item): Add to top
• pop(): Remove from top
• peek(): View top without removing
• is_empty(): Check if empty
• size(): Get element count

Key Restriction
Only the top element is accessible. This
restriction is intentional and enables many
algorithms.

Stack Operations

10
20
30 TOP

push

pop

Minseok Jeon Linear Data Structures November 2, 2025 16/37

Stack Implementations

Array-Based Stack
1 class ArrayStack :
2 def __init__ (self):
3 self. _data = []
4
5 def push(self , item):
6 self. _data . append (item) # O(1)
7
8 def pop(self):
9 if self. is_empty ():

10 raise IndexError (" empty ")
11 return self. _data .pop () # O(1)
12
13 def peek(self):
14 if self. is_empty ():
15 raise IndexError (" empty ")
16 return self. _data [-1] # O(1)
17
18 def is_empty (self):
19 return len(self. _data) == 0
20
21 def size(self):
22 return len(self. _data)

Linked List-Based Stack
1 class LinkedStack :
2 def __init__ (self):
3 self. _head = None
4 self. _size = 0
5
6 def push(self , item):
7 new_node = Node(item)
8 new_node .next = self. _head
9 self. _head = new_node

10 self. _size += 1 # O(1)
11
12 def pop(self):
13 if self. is_empty ():
14 raise IndexError (" empty ")
15 item = self. _head .data
16 self. _head = self. _head .next
17 self. _size -= 1
18 return item # O(1)
19
20 def peek(self):
21 if self. is_empty ():
22 raise IndexError (" empty ")
23 return self. _head .data
24
25 def is_empty (self):
26 return self. _head is NoneMinseok Jeon Linear Data Structures November 2, 2025 17/37

Stack Applications

1. Function Call Stack
1 def factorial (n):
2 if n <= 1:
3 return 1
4 return n * factorial (n - 1)
5
6 # Call stack for factorial (3):
7 # factorial (3)
8 # factorial (2)
9 # factorial (1) <- TOP

10 # returns 1
11 # returns 2
12 # returns 6

2. Balanced Parentheses
1 def is_balanced (expr):
2 stack = []
3 pairs = {’(’:’)’, ’[’:’]’, ’{’:’}’}
4
5 for char in expr:
6 if char in pairs :
7 stack . append (char)
8 elif char in pairs . values ():
9 if not stack or \

10 pairs [stack .pop ()] != char:
11 return False
12 return len(stack) == 0
13
14 # "([{}]) " -> True
15 # "([)]" -> False

3. Undo/Redo

1 class TextEditor :
2 def __init__ (self):
3 self.text = ""
4 self. undo_stack = []
5 self. redo_stack = []
6
7 def write (self , text):
8 self. undo_stack . append (self.text)
9 self.text += text

10 self. redo_stack . clear ()
11
12 def undo(self):
13 if self. undo_stack :
14 self. redo_stack . append (
15 self.text)
16 self.text = \
17 self. undo_stack .pop ()
18
19 def redo(self):
20 if self. redo_stack :
21 self. undo_stack . append (
22 self.text)
23 self.text = \
24 self. redo_stack .pop ()

Other Uses
• Expression evaluation
• DFS traversal
• Backtracking algorithms
• Browser history

Minseok Jeon Linear Data Structures November 2, 2025 18/37

Queues

Queues: FIFO Principle

Definition
A queue is a linear data structure following FIFO (First In, First Out). The first element
added is the first one removed, like a waiting line.

Core Operations (All O(1)):
• enqueue(item): Add to rear
• dequeue(): Remove from front
• front(): View front without removing
• is_empty(): Check if empty
• size(): Get element count

Key Property
Fair processing: first come, first served

Queue Operations

10 20 30 40dequeue enqueue
FRONT REAR

Minseok Jeon Linear Data Structures November 2, 2025 20/37

Queue Implementations

Naive (Bad!)

1 class NaiveQueue :
2 def __init__ (self):
3 self. _data = []
4
5 def enqueue (self , item):
6 self. _data . append (item) # O(1)
7
8 def dequeue (self):
9 return self. _data .pop (0) # O(n)!

10 # Shifts all elements left!

Using Deque (Good!)

1 from collections import deque
2
3 class Queue :
4 def __init__ (self):
5 self. _data = deque ()
6
7 def enqueue (self , item):
8 self. _data . append (item) # O(1)
9

10 def dequeue (self):
11 if self. is_empty ():
12 raise IndexError (" empty ")
13 return self. _data . popleft () # O(1)
14
15 def front (self):
16 return self. _data [0]

Linked List Queue
1 class LinkedQueue :
2 def __init__ (self):
3 self. _head = None
4 self. _tail = None
5 self. _size = 0
6
7 def enqueue (self , item):
8 new_node = Node(item)
9 if self. _tail is None:

10 self. _head = self. _tail = \
11 new_node
12 else:
13 self. _tail .next = new_node
14 self. _tail = new_node
15 self. _size += 1 # O(1)
16
17 def dequeue (self):
18 if self. is_empty ():
19 raise IndexError (" empty ")
20 item = self. _head .data
21 self. _head = self. _head .next
22 if self. _head is None:
23 self. _tail = None
24 self. _size -= 1
25 return item # O(1)

Minseok Jeon Linear Data Structures November 2, 2025 21/37

Queue Applications

1. Task Scheduling
1 class TaskScheduler :
2 def __init__ (self):
3 self. queue = Queue ()
4
5 def add_task (self , task):
6 self. queue . enqueue (task)
7
8 def process_next (self):
9 if not self. queue . is_empty ():

10 task = self. queue . dequeue ()
11 print (f" Processing : {task}")
12
13 # First added = first processed

2. Print Queue
1 class PrintQueue :
2 def __init__ (self):
3 self. queue = Queue ()
4
5 def add_document (self , doc):
6 self. queue . enqueue (doc)
7
8 def print_next (self):
9 if not self. queue . is_empty ():

10 doc = self. queue . dequeue ()
11 print (f" Printing : {doc}")

3. BFS Traversal
1 def bfs(graph , start):
2 visited = set ()
3 queue = Queue ()
4 queue . enqueue (start)
5 visited .add(start)
6
7 while not queue . is_empty ():
8 node = queue . dequeue ()
9 print (node)

10
11 for neighbor in graph [node]:
12 if neighbor not in visited :
13 visited .add(neighbor)
14 queue . enqueue (neighbor)
15
16 # Explores level by level

Other Uses
• Request handling (web servers)
• Message queues
• Buffering (streaming)
• Simulation systems

Minseok Jeon Linear Data Structures November 2, 2025 22/37

Deque & Circular Queue

Deque (Double-Ended Queue)

Definition
A deque (pronounced "deck") allows insertion and deletion at both ends (front and
rear). It combines capabilities of stacks and queues.

Operations (All O(1)):
• add_front(item)
• add_rear(item)
• remove_front()
• remove_rear()
• front(), rear()

Python Implementation
1 from collections import deque
2
3 dq = deque ()
4 dq. appendleft (10) # add_front
5 dq. append (20) # add_rear
6 dq. popleft () # remove_front
7 dq.pop () # remove_rear

Deque Structure

10 20 30 40both ends

FRONT REAR

Use Cases
• Palindrome checking
• Sliding window problems
• Browser history (fast

back/forward)
• Work stealing queues

Minseok Jeon Linear Data Structures November 2, 2025 24/37

Circular Queue

Definition
A circular queue reuses empty spaces when elements are dequeued. The rear wraps
around to the beginning when it reaches the end.

Why Circular?
• Regular queue: empty spaces at front

wasted
• Circular queue: reuses freed space
• Fixed capacity (efficient for buffers)

Key Formula
rear = (front + size) % capacity
front = (front + 1) % capacity

Applications
• CPU scheduling (round-robin)
• Streaming buffers
• Traffic light systems
• Memory management

Circular Queue

30

40

50

Front

Rear

After dequeue twice, then
enqueue(40,50):
Rear wrapped around to use freed
space!

Minseok Jeon Linear Data Structures November 2, 2025 25/37

Priority Queue

Priority Queue Overview

Definition
A priority queue is an ADT where each element has an associated priority. Elements
with higher priority are dequeued first, regardless of insertion order.

Key Difference:
• Regular queue: FIFO
• Priority queue: Highest priority first

Operations:
• insert(item, priority): O(log n)
• extract_min/max(): O(log n)
• peek(): O(1)

Implementation
Typically uses binary heap for O(log n)
operations

Visual Example
Min Priority Queue

Regular:
5 3 8 1 → 5

Priority:
1 3 5 8 → 1

Python Usage
1 import heapq
2 heap = []
3 heapq . heappush (heap , (1, "High"))
4 heapq . heappush (heap , (5, "Low"))
5 item = heapq . heappop (heap) # "High"

Minseok Jeon Linear Data Structures November 2, 2025 27/37

Priority Queue Applications

1. Emergency Room
1 class EmergencyRoom :
2 def __init__ (self):
3 self. queue = PriorityQueue ()
4
5 def admit_patient (self , name , severity):
6 # Lower = more critical
7 self. queue . insert (name , severity)
8
9 def treat_next (self):

10 # Treats most critical first
11 return self. queue . extract_min ()
12
13 er = EmergencyRoom ()
14 er. admit_patient (" Alice ", 5) # Minor
15 er. admit_patient ("Bob", 1) # Critical
16 er. treat_next () # Bob (critical)

2. Task Scheduler
1 class TaskScheduler :
2 def __init__ (self):
3 self.pq = PriorityQueue ()
4
5 def add_task (self , task , deadline):
6 # Earlier deadline = higher priority
7 self.pq. insert (task , deadline)
8
9 def do_next_task (self):

10 return self.pq. extract_min ()

3. Dijkstra’s Algorithm
1 def dijkstra (graph , start):
2 distances = {node: float (’inf ’)
3 for node in graph }
4 distances [start] = 0
5 pq = PriorityQueue ()
6 pq. insert (start , 0)
7
8 while not pq. is_empty ():
9 current = pq. extract_min ()

10
11 for neighbor , weight in \
12 graph [current]:
13 dist = distances [current] + \
14 weight
15 if dist < distances [neighbor]:
16 distances [neighbor] = dist
17 pq. insert (neighbor , dist)
18
19 return distances

Other Uses
• Event-driven simulation
• Huffman coding
• A* pathfinding
• Median maintenance

Minseok Jeon Linear Data Structures November 2, 2025 28/37

Comparison & Use Cases

Performance Summary

Structure Access Insert (begin) Insert (end) Delete (begin) Delete (end) Search

Array O(1) O(n) O(n) O(n) O(n) O(n)
Dynamic Array O(1) O(n) O(1)* O(n) O(1) O(n)
Singly Linked O(n) O(1) O(n)** O(1) O(n) O(n)
Doubly Linked O(n) O(1) O(1) O(1) O(1) O(n)
Stack N/A O(1) N/A O(1) N/A N/A
Queue N/A N/A O(1) O(1) N/A N/A
Deque N/A O(1) O(1) O(1) O(1) N/A
Priority Queue N/A O(log n) O(log n) O(log n) N/A O(n)

*amortized, **O(1) with tail pointer

Memory Overhead Comparison
• Array: Minimal (just elements) + potential unused capacity
• Singly Linked List: 1 pointer per node
• Doubly Linked List: 2 pointers per node
• Circular Queue: Fixed capacity array

Minseok Jeon Linear Data Structures November 2, 2025 30/37

Decision Guide: Which Structure to Use?

Need random
access?

YES
↓

Array/Dynamic
Array

NO
↓

Need freq
insert/delete?

At ends?
↓

YES

Both?
↓

Deque

One end?
↓

Stack/Queue

Priority-
based?

↓
Priority
Queue

Minseok Jeon Linear Data Structures November 2, 2025 31/37

Real-World Use Cases

Scenario Structure Reason

Student grades (by ID) Dynamic Array Fast access by index,
known size

Text editor undo/redo Two Stacks LIFO matches undo/redo
behavior

Web server requests Queue FIFO ensures fairness
Music playlist Doubly Linked List Easy forward/backward,

insert anywhere
CPU scheduling Priority Queue or

Circular Queue
Priority-based or round-
robin

Browser history Deque Fast back/forward navi-
gation

Video streaming buffer Circular Queue Fixed buffer, continuous
read/write

Expression parser Stack Handle nested structures
BFS graph traversal Queue Level-by-level exploration
DFS graph traversal Stack Depth-first exploration

Minseok Jeon Linear Data Structures November 2, 2025 32/37

Common Mistakes to Avoid

1. Using list.pop(0) for Queue

1 # BAD: O(n) - shifts all elements !
2 queue = []
3 queue . append (1)
4 queue .pop (0)
5
6 # GOOD: O(1) with deque
7 from collections import deque
8 queue = deque ()
9 queue . append (1)

10 queue . popleft ()

2. Using Linked List for Random Access
1 # BAD: if you need frequent access by index
2 linked_list .get (100) # O(n) traversal
3
4 # GOOD: use array
5 array [100] # O(1)

3. Not Considering Cache Performance
• Array: [1][2][3][4] - contiguous, excellent cache
• Linked List: scattered in memory, poor cache
• For large datasets, array can be 10-100× faster even with O(n) ops!

Minseok Jeon Linear Data Structures November 2, 2025 33/37

Summary

Key Takeaways

Arrays
• O(1) access, cache-friendly, but O(n) insert/delete in middle
• Dynamic arrays: O(1) amortized append via doubling strategy
• Use when: need random access, size known/stable

Linked Lists
• O(1) insert/delete at known positions, dynamic size
• Singly: 1 pointer, forward only; Doubly: 2 pointers, bidirectional
• Use when: frequent insertions/deletions, no random access needed

Stacks & Queues
• Stack (LIFO): function calls, undo, expression parsing, DFS
• Queue (FIFO): task scheduling, BFS, fair processing
• Deque: flexible both ends, palindromes, sliding windows

Priority Queue
• Priority-based processing, O(log n) ops with heap
• Use when: need highest/lowest priority element quickly
• Applications: Dijkstra’s, scheduling, event simulation

Minseok Jeon Linear Data Structures November 2, 2025 35/37

Implementation Guidelines

From Scratch vs Libraries
Implement from scratch to learn:

• Understand internal mechanisms
• Practice pointer manipulation
• Learn complexity trade-offs

Use library implementations for production:
• Python: list, collections.deque, heapq
• C++: std::vector, std::list, std::stack, std::queue
• Java: ArrayList, LinkedList, Stack, PriorityQueue

Remember
• Choose based on most frequent operations
• Consider cache performance for large datasets
• Test with realistic data sizes
• Profile before optimizing

Minseok Jeon Linear Data Structures November 2, 2025 36/37

Thank You!
Questions?

“The right data structure makes the algorithm simple.
The wrong data structure makes it impossible.”

	Introduction
	Arrays
	Linked Lists
	Stacks
	Queues
	Deque & Circular Queue
	Priority Queue
	Comparison & Use Cases
	Summary

