
Introduction to Data Structures

Minseok Jeon
DGIST

November 2, 2025

Contents

1. What Are Data Structures?

2. Time vs Space Trade-offs

3. Asymptotic Analysis & Big-O

4. Big-O of Common Operations

5. When to Choose a Structure

6. Abstraction and ADTs

7. Summary

What Are Data Structures?

Definition

Definition
A data structure is a specialized format for organizing, storing, and managing data in a
computer so that it can be accessed and modified efficiently.

Why We Need Them:
1. Efficiency

Right structure = milliseconds
Wrong structure = hours

2. Organization
Systematic data management

3. Reusability
Solve similar problems

4. Abstraction
Hide implementation details

Real-World Analogies
• Bookshelf → Array

Organized for easy retrieval
• Filing cabinet → Hash table

Labeled drawers
• Stack of plates → Stack

Take from top
• Store line → Queue

First come, first served
Minseok Jeon Introduction to DS November 2, 2025 4/33

Impact on Performance

Example: Checking if Element Exists
Using List (Array):

1 my_list = [1, 2, ... , 1000000]
2
3 if 999999 in my_list : # O(n)
4 print (" Found !")
5
6 # Must scan through all elements
7 # For 1M elements : slow!

Using Set (Hash Table):
1 my_set = {1, 2, ... , 1000000}
2
3 if 999999 in my_set : # O(1)
4 print (" Found !")
5
6 # Direct lookup
7 # For 1M elements : instant !

Key Insight
For 1 million elements, set lookup is nearly instantaneous while list scan takes significant
time. Choosing the right data structure matters!

Minseok Jeon Introduction to DS November 2, 2025 5/33

Time vs Space Trade-offs

The Fundamental Trade-off

Core Principle
Often, we can make an algorithm faster by using more memory, or save memory by
accepting slower execution.

Time Complexity
How runtime grows with input size

• Focus: Speed
• Measure: Operations
• Goal: Minimize time

Space Complexity
How memory usage grows with input size

• Focus: Memory
• Measure: Bytes/storage
• Goal: Minimize space

Reality Check
There’s rarely a solution that is both the fastest AND uses the least memory. Engineers
must choose based on constraints.Minseok Jeon Introduction to DS November 2, 2025 7/33

Trade-off Example 1: Memoization

Without Memoization
Slower, Less Memory

1 def fibonacci (n):
2 if n <= 1:
3 return n
4 return fibonacci (n -1) + fibonacci (n -2)
5
6 # Time: O(2^n) - exponential !
7 # Space : O(n) - recursion stack
8 # fib (40) takes several seconds

With Memoization
Faster, More Memory

1 cache = {}
2 def fibonacci_memo (n):
3 if n in cache :
4 return cache [n]
5 if n <= 1:
6 return n
7 result = fibonacci_memo (n -1) + fibonacci_memo (n

-2)
8 cache [n] = result
9 return cache [n]

10
11 # Time: O(n) - much better !
12 # Space : O(n) - cache storage
13 # fib (40) is instant

Trade-off: Used extra memory (cache) to gain massive speed improvement

Minseok Jeon Introduction to DS November 2, 2025 8/33

Trade-off Example 2: In-place vs Out-of-place

Out-of-place Algorithm
More Space, Simpler

1 def reverse_list (arr):
2 return arr [:: -1]
3

4 # Creates new array
5 # Space: O(n)
6 # Original preserved

Original
1 2 3 4

New Array
4 3 2 1

In-place Algorithm
Less Space, More Complex

1 def reverse_inplace (arr):
2 left , right = 0, len(arr) -1
3 while left < right:
4 temp = arr[left]
5 arr[left] = arr[right]
6 arr[right] = temp
7 left += 1
8 right -= 1
9

10 # Modifies original
11 # Space: O(1)

Before
1 2 3 4

After (same array)
4 3 2 1

Minseok Jeon Introduction to DS November 2, 2025 9/33

When to Choose What?

Optimize for Time When:
• Dealing with large datasets
• User experience matters
• Memory is abundant
• Real-time requirements
• Interactive applications

Examples
• Web servers (caching)
• Video games
• Trading systems
• Search engines

Optimize for Space When:
• Memory is limited
• Embedded systems
• Mobile devices
• Data too large for RAM
• Resource-constrained devices

Examples
• IoT devices
• Microcontrollers
• Big data processing
• Satellite systems

Minseok Jeon Introduction to DS November 2, 2025 10/33

Asymptotic Analysis & Big-O

Why Asymptotic Analysis?

The Problem with Exact Counts
Actual runtime depends on:

• Hardware (CPU speed, memory)
• Programming language
• Compiler optimizations
• Current system load

The Solution: Asymptotic Analysis
Focus on growth rate as input size approaches infinity

• Hardware-independent
• Language-independent
• Describes scalability
• Constants become insignificant with large n

Big-O Notation
Describes the upper bound of an algorithm’s growth rate (worst-case scenario)

Minseok Jeon Introduction to DS November 2, 2025 12/33

Common Big-O Classes

Notation Name Example n=100

O(1) Constant Array access, hash lookup 1
O(log n) Logarithmic Binary search ≈ 7
O(n) Linear Linear search, scan 100
O(n log n) Linearithmic Merge sort, quicksort ≈ 664
O(n2) Quadratic Nested loops, bubble sort 10,000
O(n3) Cubic Triple nested loops 1,000,000
O(2n) Exponential Recursive fibonacci ≈ 1030

O(n!) Factorial All permutations ≈ 10157

Visual Scale
For n = 100, O(2n) is universe-ending! Exponential growth is catastrophic.

Minseok Jeon Introduction to DS November 2, 2025 13/33

Big-O Growth Visualization

Input Size (n)

Operations

O(1)

O(log n)

O(n)

O(n log n)

O(n2)

O(2n)

From fastest (top) to slowest (bottom)

Key Observation
As n increases, differences between complexities become dramatic

Minseok Jeon Introduction to DS November 2, 2025 14/33

Big-O Rules

Rule 1: Drop Constants
O(2n) → O(n)
O(100) → O(1)
O(n/2) → O(n)
Why? Constants don’t affect growth rate

Rule 2: Drop Lower-Order Terms
O(n2 + n) → O(n2)
O(n2 + 100*n + 50) → O(n2)
O(n3 + n2 + n) → O(n3)
Why? Highest order dominates for large n

Rule 3: Different Variables
Two inputs? Use different variables!
Sequential: O(a + b)
Nested: O(a * b)

Rule 4: Worst Case
Big-O describes the worst-case scenario by default

Minseok Jeon Introduction to DS November 2, 2025 15/33

Big-O Examples

O(1) - Constant

1 def get_first (arr):
2 return arr [0]
3 # Always 1 operation

O(n) - Linear

1 def find_max (arr):
2 max_val = arr [0]
3 for num in arr: # n iterations
4 if num > max_val :
5 max_val = num
6 return max_val

O(n2) - Quadratic

1 def bubble_sort (arr):
2 n = len(arr)
3 for i in range (n): # n times
4 for j in range (n -1): # n times
5 if arr[j] > arr[j+1]:
6 arr[j], arr[j+1] = \
7 arr[j+1] , arr[j]

O(log n) - Logarithmic

1 def binary_search (arr , target):
2 left , right = 0, len(arr) - 1
3 while left <= right :
4 mid = (left + right) // 2
5 if arr[mid] == target :
6 return mid
7 elif arr[mid] < target :
8 left = mid + 1
9 else:

10 right = mid - 1
11 # Halves search space each time!
12 return -1

O(n log n) - Linearithmic

1 def merge_sort (arr):
2 if len(arr) <= 1:
3 return arr
4 mid = len(arr) // 2
5 left = merge_sort (arr [: mid])
6 right = merge_sort (arr[mid :])
7 return merge (left , right)
8 # log n divisions , n work per level

Minseok Jeon Introduction to DS November 2, 2025 16/33

Big-O of Common Operations

Sorting Algorithms Comparison

Algorithm Average Worst Space Stable?

Quick Sort O(n log n) O(n2) O(log n) No
Merge Sort O(n log n) O(n log n) O(n) Yes
Heap Sort O(n log n) O(n log n) O(1) No
Bubble Sort O(n2) O(n2) O(1) Yes
Insertion Sort O(n2) O(n2) O(1) Yes

Quick Selection Guide
• Need fast random access? → Arrays
• Need fast insertion/deletion at beginning? → Linked lists
• Need fast key-value lookup? → Hash tables
• Need sorted data with fast operations? → Balanced BSTs
• Need LIFO access? → Stacks
• Need FIFO access? → Queues
• Need min/max quickly? → Heaps

Minseok Jeon Introduction to DS November 2, 2025 18/33

When to Choose a Structure

Decision Framework

Questions to Ask
1. What operations will be most frequent?

• Lookups? → Hash table or BST
• Insertions/deletions? → Linked list or balanced tree
• Processing in order? → Queue
• Need to undo? → Stack

2. Do you need ordered data?
• Yes, sorted → BST, sorted array
• Yes, insertion order → Array, linked list
• No → Hash table (fastest)

3. Do you know the size in advance?
• Yes, fixed → Array
• No, dynamic → Linked list, dynamic array, hash table

4. What are your constraints?
• Limited memory → Space-efficient structures
• Need speed → Time-efficient structuresMinseok Jeon Introduction to DS November 2, 2025 20/33

Real-World Scenario 1: Phone Book

Requirements
• Fast lookup by name
• Alphabetical order useful
• Operations:

• Search (frequent)
• Insert (rare)
• Delete (rare)

Decision
Hash table for O(1) lookup
or BST for O(log n) with ordering

Implementation
1 # Using hash table
2 phone_book = {
3 "Alice": "555 -1234",
4 "Bob": "555 -5678"
5 }
6

7 # O(1) lookup
8 number = phone_book ["Alice"]

Minseok Jeon Introduction to DS November 2, 2025 21/33

Real-World Scenario 2: Browser History

Requirements
• Recent pages accessed frequently
• Navigate back and forward
• Operations:

• Push new page
• Go back (pop)
• Go forward (pop)

Decision
Two stacks:
- Back stack
- Forward stack

Implementation
1 back_stack = []
2 forward_stack = []
3
4 def visit_page (url):
5 back_stack . append (current_page)
6 forward_stack . clear ()
7 current_page = url
8
9 def go_back ():

10 if back_stack :
11 forward_stack . append (current_page)
12 current_page = back_stack .pop ()
13
14 def go_forward ():
15 if forward_stack :
16 back_stack . append (current_page)
17 current_page = forward_stack .pop ()

Minseok Jeon Introduction to DS November 2, 2025 22/33

Real-World Scenario 3: Print Queue

Requirements
• First document submitted prints first
• Operations:

• Add to queue (frequent)
• Remove from queue (frequent)

• FIFO behavior essential

Decision
Queue
(First In, First Out)

Implementation
1 from collections import deque
2

3 print_queue = deque ()
4

5 # Enqueue documents
6 print_queue . append ("doc1.pdf")
7 print_queue . append ("doc2.pdf")
8 print_queue . append ("doc3.pdf")
9

10 # Dequeue - FIFO
11 current_job = print_queue .

popleft ()
12 # "doc1.pdf" prints first

Minseok Jeon Introduction to DS November 2, 2025 23/33

Common Pitfalls

What NOT to Do
× Using lists for frequent lookups

(O(n) instead of O(1) with hash table)
× Using arrays when size is unknown

(Costly resizing)
× Using BST when order doesn’t matter

(Hash table is faster)
× Using recursive structures without considering stack overflow

(Deep recursion can crash)

General Guidelines
• Default to hash tables for key-value storage (most versatile)
• Use arrays when you need index-based access
• Use linked lists when you have many insertions/deletions
• Use trees when you need both ordering and fast operations
• Use specialized structures when they match your access pattern

Minseok Jeon Introduction to DS November 2, 2025 24/33

Abstraction and ADTs

Abstract Data Types (ADT)

Definition
An ADT defines a data type by its behavior (operations) rather than its
implementation. It specifies what operations can be performed, not how.

Key Principle
Separate the interface (what operations are available) from the implementation (how
they work internally)

Benefits
1. Flexibility

Change implementation without
affecting users

2. Simplicity
Hide internal complexity

3. Reusability
Same interface, different
implementations

4. Maintainability
Easier to update and fix

Real-World Analogy
ADT = Car Interface

• Steering wheel
• Gas pedal
• Brake

Implementation
• Electric car
• Gas car

Same interface, different internals!

Minseok Jeon Introduction to DS November 2, 2025 26/33

ADT Example: Stack

Stack ADT Interface
1 class StackADT :
2 def push(self , item): pass
3 def pop(self): pass
4 def peek(self): pass
5 def is_empty (self): pass
6
7 # Behavior : LIFO
8 # (Last In , First Out)

Implementation 1: Array
1 class ArrayStack (StackADT):
2 def __init__ (self):
3 self. _data = []
4
5 def push(self , item):
6 self. _data . append (item)
7
8 def pop(self):
9 return self. _data .pop ()

10
11 def peek(self):
12 return self. _data [-1]
13
14 def is_empty (self):
15 return len(self. _data) == 0

Implementation 2: Linked List
1 class LinkedStack (StackADT):
2 def __init__ (self):
3 self. _head = None
4 self. _size = 0
5
6 def push(self , item):
7 new_node = Node(item , self. _head)
8 self. _head = new_node
9 self. _size += 1

10
11 def pop(self):
12 if not self. _head :
13 raise IndexError (" empty ")
14 value = self. _head . value
15 self. _head = self. _head .next
16 self. _size -= 1
17 return value
18
19 def peek(self):
20 if not self. _head :
21 raise IndexError (" empty ")
22 return self. _head . value
23
24 def is_empty (self):
25 return self. _head is None

Same interface, different implementations! Users don’t need to know which one is
being used.

Minseok Jeon Introduction to DS November 2, 2025 27/33

ADT Hierarchy

ADT: List

Data Structure: Array

Python list

Data Structure: Linked List

Custom LinkedList

Three Levels
• ADT (Abstract): The concept/interface (e.g., "List")
• Data Structure (Logical): How data is organized (e.g., "Array" or "Linked List")
• Implementation (Physical): Actual code in a programming language

Minseok Jeon Introduction to DS November 2, 2025 28/33

Encapsulation in ADTs

Good: Hidden Implementation
1 class Stack :
2 def __init__ (self):
3 self. _data = [] # Private
4
5 def push(self , item):
6 self. _data . append (item)
7
8 def pop(self):
9 return self. _data .pop ()

10
11 # Users can ’t access _data directly
12 # Implementation can change !

✓ Implementation hidden
✓ Can swap to linked list easily
✓ Users can’t break invariants

Bad: Exposed Implementation
1 class BadStack :
2 def __init__ (self):
3 self.data = [] # Public !
4
5 def push(self , item):
6 self.data. append (item)
7
8 def pop(self):
9 return self.data.pop ()

10
11 # Problem :
12 stack = BadStack ()
13 stack .data = "oops!" # Breaks it!
14 stack .data. clear () # Ruins stack !

× Implementation exposed
× Users can break the stack
× Hard to change implementation

Minseok Jeon Introduction to DS November 2, 2025 29/33

Summary

Key Takeaways

1. Data Structures Matter
• Right structure = milliseconds, Wrong structure = hours
• Choose based on most frequent operations
• Understand time vs space trade-offs

2. Big-O Analysis
• Describes growth rate, not exact time
• Focus on scalability for large inputs
• Remember: O(1) < O(log n) < O(n) < O(n log n) < O(n2) < O(2n)
• Drop constants and lower-order terms

3. Common Operations
• Arrays: O(1) access, O(n) insert/delete in middle
• Hash tables: O(1) average lookup/insert/delete
• BSTs: O(log n) for balanced trees
• Stacks/Queues: O(1) push/pop

Minseok Jeon Introduction to DS November 2, 2025 31/33

Key Takeaways (continued)

4. Choosing Structures
• Ask: What operations are most frequent?
• Ask: Do you need ordering?
• Ask: What are your constraints (time/space)?
• Default to hash tables for key-value storage
• Use specialized structures when they match your pattern

5. Abstract Data Types
• Separate interface from implementation
• Hide internal details (encapsulation)
• Makes code flexible and maintainable
• Same interface, multiple implementations

Next Steps
Study specific data structures in depth: Arrays, Linked Lists, Stacks, Queues, Trees,
Graphs, Hash Tables, and more!

Minseok Jeon Introduction to DS November 2, 2025 32/33

Thank You!
Questions?

“Choosing the right data structure
is half the battle in algorithm design.”

	What Are Data Structures?
	Time vs Space Trade-offs
	Asymptotic Analysis & Big-O
	Big-O of Common Operations
	When to Choose a Structure
	Abstraction and ADTs
	Summary

