Introduction to Data Structures

Minseok Jeon
DGIST

November 2, 2025

Contents

1. What Are Data Structures?
2. Time vs Space Trade-offs

3. Asymptotic Analysis & Big-O
4. Big-O of Common Operations
5. When to Choose a Structure
6. Abstraction and ADTs

7. Summary

What Are Data Structures?

Definition

Definition
A data structure is a specialized format for organizing, storing, and managing data in a
computer so that it can be accessed and modified efficiently.

Why We Need Them:

1. Efficiency
Right structure = milliseconds ® Bookshelf — Array
Wrong structure = hours Organized for easy retrieval

2. Organization ¢ Filing cabinet — Hash table
Systematic data management Labeled drawers

3. Reusability ® Stack of plates — Stack
Solve similar problems Take from top

4. Abstraction e Store line — Queue

Hide implementation details First come, first served

~NOoO U A WN R

Impact on Performance

Example: Checking if Element Exists
Using List (Array):

Using Set (Hash Table):

my_list = [1, 2, ..., 1000000]

if 999999 in my_list: # 0(n)
print ("Found!")

Must scan through all elements
For 1M elements: slow!

~No oA WN R

my_set = {1, 2, ..., 1000000}

if 999999 in my_set: # 0(1)
print ("Found!")

Direct lookup
For 1M elements: instant!

Key Insight

For 1 million elements, set lookup is nearly instantaneous while list scan takes significant
time. Choosing the right data structure matters!

Introduction to DS

Time vs Space Trade-offs

The Fundamental Trade-off

Core Principle

Often, we can make an algorithm faster by using more memory, or save memory by
accepting slower execution.

Time Complexity Space Complexity

How runtime grows with input size How memory usage grows with input size
® Focus: Speed ® Focus: Memory
® Measure: Operations ® Measure: Bytes/storage
® Goal: Minimize time ® Goal: Minimize space

Reality Check

There's rarely a solution that is both the fastest AND uses the least memory. Engineers
must choose based on constraints.

Trade-off Example 1: Memoization

hout Memoization

Slower, Less Memory

def fibonacci(n):
if n <= 1:
return n
return fibonacci(n-1) + fibonacci(n-2)

Time: 0(2°n) - exponential!
Space: 0(n) - recursion stack
fib(40) takes several seconds

With Memoization

Faster, More Memory

cache = {}
def fibonacci_memo(n):

if n in cache:
return cache[n]
if n <= 1:
return n
result = fibonacci_memo(n-1) + fibonacci_memo (n
-2)
cache[n] = result
return cache[n]

Time: 0(n) - much better!
Space: 0(n) - cache storage
fib(40) is instant

Trade-off: Used extra memory (cache) to gain massive speed improvement

1 def reverse_list (arr):

2
3
4
5

6

Trade-off Example 2: In-place vs Out-of-place

Out-of-place Algorithm

More Space, Simpler

return arr[::-1]

Creates new array
Space: 0(n)
Original preserved

Original

New Array
™ r-1r/1r

In-place Algorithm

Less Space, More Complex

1 def reverse_inplace(arr):

2 left, right = 0, len(arr)-1
3 while left < right:

4 temp = arr[left]

5 arr[left] = arr[right]
6 arr [right] = temp

7 left += 1

8 right -= 1

10 # Modifies original
11 # Space: 0(1)

Before

When to Choose What?

Optimize for Time When: Optimize for Space When:

® Dealing with large datasets ® Memory is limited

® User experience matters ® Embedded systems

® Memory is abundant ® Mobile devices

® Real-time requirements ® Data too large for RAM

® Interactive applications ® Resource-constrained devices
® Web servers (caching) ® loT devices

® Video games ® Microcontrollers

e Trading systems * Big data processing

e Search engines ® Satellite systems

Asymptotic Analysis & Big-O

Why Asymptotic Analysis?

The Problem with Exact Counts

Actual runtime depends on:

Hardware (CPU speed, memory)
® Programming language
® Compiler optimizations

® Current system load

The Solution: Asymptotic Analysis

Focus on growth rate as input size approaches infinity
® Hardware-independent

® | anguage-independent

Describes scalability

Constants become insignificant with large n

Common Big-O Classes

Notation ‘ Name Example ‘ n=100
0(1) Constant Array access, hash lookup 1
O(log n) Logarithmic | Binary search ~ 7
O(n) Linear Linear search, scan 100
O(n log n) | Linearithmic | Merge sort, quicksort ~ 664
0(n?) Quadratic Nested loops, bubble sort | 10,000
O(n3) Cubic Triple nested loops 1,000,000
o(2") Exponential | Recursive fibonacci ~ 10%°
O(n!) Factorial All permutations ~ 10157

Visual Scale

For n = 100, O(2") is universe-ending! Exponential growth is catastrophic.

Big-O Growth Visualization

Operations
0(2’”)
O(n?)

O(n log n)
O(n)
O(log n)

— o()

=" Input Size (n)

From fastest (top) to slowest (bottom)

Big-O Rules

Rule 1: Drop Constants

O(2n) — O(n)
0(100) — O(1)
O(n/2) — O(n)

Why? Constants don't affect growth rate

Rule 3: Different Variables

Two inputs? Use different variables!
Sequential: O(a + b)

Nested: O(a * b)

Rule 2: Drop Lower-Order Terms

O(n? + n) — O(n?)
O(n? + 100*n + 50) — O(n?)
O(n® + n? + n) — O(n?)

Why? Highest order dominates for large n

Rule 4: Worst Case

Big-O Examples

O(1) - Constant

O(log n) - Logarithmic

T

1 def get_first(arr):

2| return arr [0]

3| # Always 1 operation
|

O(n) - Linear

1 def find_max(arr):

2 max_val = arr[0]

3 for num in arr: # n iterations
4 if num > max_val:

5 max_val = num

6 return max_val

1 def binary_search(arr, target):

2 left, right = 0, len(arr) - 1
3 while left <= right:

4 mid = (left + right) // 2
5 if arr[mid] == target:

6 return mid

7 elif arr[mid] < target:

8 left = mid + 1

9 else:

10 right = mid - 1

11 # Halves search space each time!
12 return -1

O(n?) - Quadratic

O(n log n) - Linearithmic

T
1 def merge_sort(arr):
2| if len(arr) <= 1:

T
1 def bubble_sort(arr):
N? n = len(arr)
srjseok Jeon

- i i o rance(n) -

T +Faimeao

3 return arr
4 mid = len(arr) // 2
|n$od§&ﬁontohggt = merge_sort (arr[:mid])

November 2, 2025

]
\
\
\
\
| 16/3

Big-O of Common Operations

Sorting Algorithms Comparison

Algorithm ‘ Average ‘ Worst ‘ Space ‘ Stable?
Quick Sort O(n log n) 0(n?) O(log n) No
Merge Sort O(n log n) | O(nlog n) | O(n) Yes
Heap Sort O(n log n) | O(nlogn) | O(1) No
Bubble Sort O(n?) 0(n?) 0(1) Yes
Insertion Sort O(n?) 0(n?) 0(1) Yes

Quick Selection Guide

® Need fast random access? — Arrays

Need fast insertion/deletion at beginning? — Linked lists

Need fast key-value lookup? — Hash tables

Need sorted data with fast operations? — Balanced BSTs
Need LIFO access? — Stacks

When to Choose a Structure

Decision Framework

Questions to Ask

1. What operations will be most frequent?
® | ookups? — Hash table or BST
® |nsertions/deletions? — Linked list or balanced tree
® Processing in order? — Queue
® Need to undo? — Stack
2. Do you need ordered data?
® Yes, sorted — BST, sorted array
® Yes, insertion order — Array, linked list
® No — Hash table (fastest)
3. Do you know the size in advance?

® Yes, fixed — Array
® No, dynamic — Linked list, dynamic array, hash table

4. What are your constraints?
® Limited memory — Space-efficient structures

A1l N 1 — e

Real-World Scenario 1: Phone Book

Requirements

® Fast lookup by name Implementation

® Alphabetical order useful

Using hash table
® QOperations: phone_book = {
® Search (frequent) "Alice": "555-1234",
® Insert (rare) "Bob": "b555-5678"

0(1) lookup

1
2
3
4

® Delete (rare) 50}
6
7
s number = phone_book["Alice"]

Decision

Hash table for O(1) lookup
or BST for O(log n) with ordering

Real-World Scenario 2: Browser History

Requirements

® Recent pages accessed frequently [mplementation

® Navigate back and forward 1 back_stack = []
2 forward_stack = []
° OperatlonS: i def visit (url):
_page (url):
[} 5 back_stack.append(current_page)
PUSh new page 6 forward_stack.clear ()
® Go back (pop) 7 current_page = url
8
® Go forward (pop) 9 def go_back():
10 if back_stack:
11 forward_stack.append (current_page)
12 current_page = back_stack.pop()
e 13
D6C181011 14 def go_forward():
15 if forward_stack:
Two stacks: 16 back_stack.append(current_page)
17 current_page = forward_stack.pop()

- Back stack
- Forward stack

Real-World Scenario 3: Print Queue

Implementation

Requirements 1 from collections import deque

® First document submitted prints first

] 3 print_queue = deque ()
® Operations: .
® Add to queue (frequent) 5/ # Enqueue documents
® Remove from queue (frequent) 6 print_queue.append("docl.pdf")
e FIFO behavior essential 7 print_queue.append("doc2.pdf")

8 print_queue.append("doc3.pdf")
9

o # Dequeus - FIFO

Queue 11 current_job = print_queue.

(First In, First Out) popleft ()
12| # "docl.pdf" prints first

Common Pitfalls

What NOT to Do

% Using lists for frequent lookups
(O(n) instead of O(1) with hash table)

x Using arrays when size is unknown
(Costly resizing)

x Using BST when order doesn’t matter
(Hash table is faster)

% Using recursive structures without considering stack overflow
(Deep recursion can crash)

General Guidelines

¢ Default to hash tables for key-value storage (most versatile)

® Use arrays when you need index-based access

P I D L D B LT . o 1 S .. MY B T L

Abstraction and ADTs

Abstract Data Types (ADT)

An ADT defines a data type by its behavior (operations) rather than its
implementation. It specifies what operations can be performed, not how.

Key Principle

Separate the interface (what operations are available) from the implementation (how
they work internally)

(Benefits
Benefits Real-World Analogy

1. Flexibility
Change implementation without ADT = Car Interface
affecting users ® Steering wheel

2. Simplicity ® Gas pedal

' D T Y L S 1

ADT Example: Stack

k ADT Interface

1| class StackADT: Implementation 2: Linked Lis
2 def push(self, item): pass
3 def pop(self): pass
4 do? peck(zald)s pass 1 class LinkedStack(StackADT):
5 def is_empty(self): pass 2 def __init__(self):
6 3 self._head = None
7| # Behavior: LIFO 4 self._size = 0
8| # (Last In, First Out) 5
6 def push(self, item):
7 new_node = Node(item, self._head)
8 self._head = new_node
9 self._size += 1
" 10
Implementation 1: Array 11 def pop(self):
12 if not self._head:
13 raise IndexError ("empty")
1 class ArrayStack(StackADT): 14 value = self._head.value
2 def __init__(self): 15 self._head = self._head.next
3 self._data = [] 16 self._size -= 1
4 17 return value
5 def push(self, item): 18
6 self._data.append(item) 19 def peek(self):
7 20 if not self._head:
8 def pop(self): 21 raise IndexError ("empty")
9 return self._data.pop() 22 return self._head.value
0 23

i

ADT Hierarchy

ADT: List

‘ Data Structure: Arrai Data Structure: Linked List‘

Python list ’Custom LinkedList‘

Three Levels
e ADT (Abstract): The concept/interface (e.g., "List")
¢ Data Structure (Logical): How data is organized (e.g., "Array" or "Linked List")

¢ Implementation (Physical): Actual code in a programming language

Encapsulation in ADTs

[Good: Hidden Implementation Jiaeiaasiboscd inbementation

Good: Hidden Implementation

1 class BadStack:
class Stack: 2 def __init__(self):
def __init__(self): 3 self.data = [] # Public!
self. _data = [] # Private 4
5 def push(self, item):
def push(self, item): 6 self.data.append(item)
self._data.append(item) 7
8 def pop(self):
def pop(self): 9 return self.data.pop()
return self._data.pop() 10
11 # Problem:
Users can’t access _data directly 12 stack = BadStack ()
Implementation can change! 13| stack.data = "oops!" # Breaks it!
14| stack.data.clear () # Ruins stack!

v Implementation hidden
v Can swap to linked list easily
V" Users can't break invariants

X Implementation exposed
x Users can break the stack
x Hard to change implementation

Summary

Key Takeaways

1. Data Structures Matter
® Right structure = milliseconds, Wrong structure = hours

® Choose based on most frequent operations

® Understand time vs space trade-offs

2. Big-O Analysis

® Describes growth rate, not exact time
® Focus on scalability for large inputs
® Remember: O(1) < O(log n) < O(n) < O(n log n) < O(n?) < O(2")

® Drop constants and lower-order terms

3. Common Operations

® Arrays: O(1) access, O(n) insert/delete in middle
® Hash tables: O(1) average lookup/insert/delete

Key Takeaways (continued)

4. Choosing Structures

® Ask: What operations are most frequent?

® Ask: Do you need ordering?

® Ask: What are your constraints (time/space)?
® Default to hash tables for key-value storage

® Use specialized structures when they match your pattern

5. Abstract Data Types

® Separate interface from implementation
® Hide internal details (encapsulation)
® Makes code flexible and maintainable

® Same interface, multiple implementations

DT Jeony o Introduction to DS November 2, 2025

Thank You!

Questions?

“Choosing the right data structure
is half the battle in algorithm design.”

	What Are Data Structures?
	Time vs Space Trade-offs
	Asymptotic Analysis & Big-O
	Big-O of Common Operations
	When to Choose a Structure
	Abstraction and ADTs
	Summary

