
Interview & Competitive Programming Prep
Targeted Practice to Master Patterns and Speed

Minseok Jeon
DGIST

November 2, 2025

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 1/52

Outline

1. Introduction
2. Common Patterns

2.1 Two Pointers Pattern
2.2 Sliding Window Pattern
2.3 Stack Patterns
2.4 Queue Patterns

3. Daily Problem-Solving Routine
4. Time Complexity Estimation
5. Pattern Recognition
6. Mock Interviews
7. Progress Tracking
8. Summary

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 2/52

Introduction

Course Overview

Goal
Master data structures and algorithms for technical interviews and competitive
programming

Key Topics:
• Common patterns for arrays, strings, stacks, queues
• Daily problem-solving routines
• Time complexity estimation techniques
• Pattern recognition and templates
• Mock interviews and reviews
• Progress tracking and metrics

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 4/52

Why This Preparation Matters

Technical Interviews:
• FAANG companies emphasize DSA
• 45-60 minute coding interviews
• Communication is crucial
• Optimization expected
• Pattern recognition wins

Competitive Programming:
• Speed + accuracy under time pressure
• Multiple problems in limited time
• Edge case handling
• Template mastery
• Algorithm optimization

Key Insight
Success requires deliberate practice with patterns, not just solving random problems

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 5/52

Common Patterns

Pattern Category Overview

Data Structure Common Patterns Time Complexity
Arrays/Strings Two pointers, Sliding window O(n)
Stacks Monotonic stack, Parentheses O(n)
Queues BFS, Sliding window max O(n)
Hash Tables Frequency count, Anagrams O(n)

Learning Strategy:
1. Recognize the pattern from problem description
2. Apply the standard template
3. Modify template for specific constraints
4. Verify with test cases

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 7/52

Two Pointers: Concept

Pattern Description:
• Use two indices moving through data
• Avoid nested loops (O(n2) → O(n))
• Works on sorted or unsorted arrays

Variants:
• Opposite direction (start/end)
• Same direction (fast/slow)
• Multiple arrays

Signal Words:
• “Pairs summing to...”
• “Remove duplicates”
• “Reverse in-place”
• “Container/water problem”
• “Palindrome check”

Complexity:
• Time: O(n) single pass
• Space: O(1) in-place

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 8/52

Two Pointers: Template

1 def two_pointers_template (arr):
2 """ Opposite direction pointers ."""
3 left , right = 0, len(arr) - 1
4

5 while left < right:
6 # Check condition
7 if condition_met (arr[left], arr[right]):
8 # Process and move both
9 left += 1

10 right -= 1
11 elif need_larger_value :
12 left += 1
13 else:
14 right -= 1
15

16 return result

Example: Two Sum (Sorted Array)
• Given sorted array, find indices where arr[i] + arr[j] == target
• If sum too small → move left pointer right
• If sum too large → move right pointer left

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 9/52

Two Pointers: Visual Example

Problem: Container with Most Water

0 1 2 3 4 5 6 7 8

L R

Width = 8

Height = min(1,7) = 1

Area = 8 × 1 = 8

Strategy:
• Start with widest container (left=0, right=n-1)
• Area = min(height[left], height[right]) × (right - left)
• Move pointer with smaller height inward
• Track maximum area

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 10/52

Sliding Window: Concept

Pattern Description:
• Maintain a window over data
• Expand/contract window dynamically
• Track window properties
• Avoid recomputing from scratch

Types:
• Fixed size: Window size constant
• Variable size: Window grows/shrinks

Signal Words:
• “Contiguous subarray”
• “Longest substring”
• “Maximum/minimum in window”
• “K consecutive elements”

Complexity:
• Time: O(n) (each element visited ≤ 2

times)
• Space: O(k) for window state

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 11/52

Sliding Window: Template
1 def sliding_window_variable (s):
2 """ Variable size sliding window ."""
3 left = 0
4 result = 0
5 window = {} # Track window state
6
7 for right in range (len(s)):
8 # Expand window : add s[right]
9 window [s[right]] = window .get(s[right], 0) + 1

10
11 # Contract window if condition violated
12 while window_invalid (window):
13 window [s[left]] -= 1
14 if window [s[left]] == 0:
15 del window [s[left]]
16 left += 1
17
18 # Update result with current window
19 result = max(result , right - left + 1)
20
21 return result
22
23 def sliding_window_fixed (arr , k):
24 """ Fixed size sliding window ."""
25 window_sum = sum(arr [:k]) # Initial window
26 max_sum = window_sum
27
28 for i in range (k, len(arr)):
29 window_sum = window_sum - arr[i-k] + arr[i] # Slide
30 max_sum = max(max_sum , window_sum)
31
32 return max_sum

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 12/52

Sliding Window: Example
Problem: Longest Substring Without Repeating Characters

s = "abcabcbb"

Step Window Left Right Max Length
1 [a] 0 0 1
2 [a,b] 0 1 2
3 [a,b,c] 0 2 3
4 [a,b,c,a] → [b,c,a] 1 3 3
5 [b,c,a,b] → [c,a,b] 2 4 3
6 [c,a,b,c] → [a,b,c] 3 5 3

Answer: 3 (substring “abc”)

Key Idea:
• Use hash map to track character positions
• When duplicate found, contract window from left
• Track maximum window size seen

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 13/52

Stack Patterns: Overview

Common Stack Patterns:
• Monotonic stack: Next

greater/smaller element
• Parentheses matching: Valid

expressions
• Expression evaluation: Calculator,

RPN
• Backtracking: DFS traversal

Signal Words:
• “Next greater element”
• “Valid parentheses”
• “Evaluate expression”
• “Largest rectangle”
• “Trapping rain water”

Why Stacks?
• LIFO matches nested structures
• Efficient backtracking
• O(1) push/pop operations

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 14/52

Monotonic Stack Pattern
1 def next_greater_element (nums):
2 """ Find next greater element for each element ."""
3 n = len(nums)
4 result = [-1] * n
5 stack = [] # Store indices
6
7 for i in range (n):
8 # While current element is greater than stack top
9 while stack and nums[i] > nums[stack [-1]]:

10 idx = stack .pop ()
11 result [idx] = nums[i]
12 stack . append (i)
13
14 return result
15
16 # Example : nums = [2, 1, 2, 4, 3]
17 # Result : [4, 2, 4, -1, -1]

Key Idea:
• Maintain stack in increasing/decreasing order
• Pop elements that violate monotonic property
• Each element pushed and popped once → O(n)

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 15/52

Monotonic Stack: Visual Example
Problem: Daily Temperatures
Given temperatures = [73, 74, 75, 71, 69, 72, 76, 73], find how many days until warmer
temperature.

Day 0

73◦

Day 1

74◦

Day 2

75◦

Day 3

71◦

Day 4

69◦

Day 5

72◦

Day 6

76◦

Day 7

73◦
1 day 1 day 2 days

Answer: [1, 1, 4, 2, 1, 1, 0, 0]

Algorithm:
• Use stack to store indices of temperatures
• For each day, pop all colder days and record distance
• Decreasing monotonic stack ensures O(n) time

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 16/52

Valid Parentheses Pattern

1 def is_valid_parentheses (s):
2 """ Check if parentheses are balanced ."""
3 stack = []
4 pairs = {’(’: ’)’, ’[’: ’]’, ’{’: ’}’}
5

6 for char in s:
7 if char in pairs: # Opening bracket
8 stack. append (char)
9 else: # Closing bracket

10 if not stack or pairs[stack [-1]] != char:
11 return False
12 stack.pop ()
13

14 return len(stack) == 0
15

16 # Examples :
17 # "()" -> True
18 # "() []{}" -> True
19 # "(]" -> False
20 # "([)]" -> False
21 # "{[]}" -> True

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 17/52

Queue Patterns: Overview

Common Queue Patterns:
• BFS traversal: Level-order, shortest

path
• Sliding window maximum: Deque

optimization
• Level processing: Binary tree levels
• Multi-source BFS: Multiple starting

points

Signal Words:
• “Level order traversal”
• “Shortest path”
• “Minimum steps”
• “Layer by layer”
• “Sliding window maximum”

Why Queues?
• FIFO ensures level-order processing
• Guarantees shortest path in unweighted

graphs
• Natural for breadth-first exploration

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 18/52

BFS Template
1 from collections import deque
2
3 def bfs_template (start):
4 """ Standard BFS traversal ."""
5 queue = deque ([start])
6 visited = { start }
7
8 while queue :
9 node = queue . popleft ()

10
11 # Process current node
12 process (node)
13
14 # Add neighbors
15 for neighbor in get_neighbors (node):
16 if neighbor not in visited :
17 visited .add(neighbor)
18 queue . append (neighbor)
19
20 return result
21
22 def bfs_level_order (root):
23 """ BFS with level tracking ."""
24 if not root:
25 return []
26
27 queue = deque ([root])
28 result = []
29
30 while queue :
31 level_size = len(queue)
32 level = []
33
34 for _ in range (level_size):
35 node = queue . popleft ()
36 level . append (node.val)
37
38 if node.left:
39 queue . append (node.left)
40 if node. right :
41 queue . append (node. right)
42
43 result . append (level)
44
45 return result

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 19/52

BFS: Visual Example
Binary Tree Level Order Traversal

3

9 20

15 7

Level 0: [3]

Level 1: [9, 20]

Level 2: [15, 7]

Result: [[3], [9, 20], [15, 7]]

Key Points:
• Process nodes level by level using queue
• Track level size to separate levels
• Each node visited exactly once → O(n)

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 20/52

Daily Problem-Solving Routine

Building Consistent Practice Habits

Core Principle
Consistency beats intensity. Daily practice builds pattern recognition and speed.

Recommended Schedule:
• Morning (30 min): 1 medium problem, fresh mind
• Evening (20 min): Review solution, optimize, add to notes
• Weekly (2 hours): Mock interview session
• Monthly: Review all problems, identify weak areas

Difficulty Progression:
• Week 1-2: Easy problems (build confidence)
• Week 3-4: Mix 70% easy, 30% medium
• Week 5+: Mix 30% easy, 60% medium, 10% hard

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 22/52

Topic Rotation Strategy

Weekly Rotation:
• Monday: Arrays/Strings
• Tuesday: Stacks/Queues
• Wednesday: Trees/Graphs
• Thursday: Dynamic Programming
• Friday: Hash Tables/Heaps
• Saturday: Mixed review
• Sunday: Mock interview

Why Rotation?
• Prevents burnout on single topic
• Builds breadth of knowledge
• Reinforces pattern recognition
• Mimics interview randomness

Time Boxing:
• Easy: 15-20 min
• Medium: 25-35 min
• Hard: 40-50 min
• Stop and review solution if stuck

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 23/52

Review Cycle: Spaced Repetition

Time
Day 0 Day 1 Week 1 Month 1

Solve Review 1 Review 2 Review 3

Memory Retention

Review Schedule:
• Day 1: Re-solve without looking at notes (should be fresh)
• Week 1: Solve again, focus on optimization
• Month 1: Final review, add to template library if pattern

Goal: Move problems from short-term to long-term memory
Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 24/52

Problem-Solving Workflow
1. Read & Understand (2-3 min)

• Read problem carefully, underline key constraints
• Ask clarifying questions (inputs, outputs, edge cases)
• Identify problem type/pattern

2. Plan Approach (3-5 min)
• Discuss brute force solution first
• Identify optimizations (data structure, algorithm)
• Estimate time/space complexity

3. Code Solution (15-20 min)
• Write clean, readable code
• Use meaningful variable names
• Add comments for complex logic

4. Test & Debug (5-7 min)
• Test with example cases
• Check edge cases (empty, single element, large input)
• Fix bugs systematically

5. Optimize & Discuss (3-5 min)
• Discuss alternative approaches
• Analyze trade-offs
• Consider follow-up questions

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 25/52

Time Complexity Estimation

Big-O Notation: Quick Reference

Notation Name Example
O(1) Constant Hash table lookup
O(log n) Logarithmic Binary search
O(n) Linear Single array pass
O(n log n) Linearithmic Merge sort, heap operations
O(n2) Quadratic Nested loops
O(n3) Cubic Triple nested loops
O(2n) Exponential Recursive backtracking
O(n!) Factorial All permutations

Golden Rule
If unsure, count nested loops and recursion depth. Each nesting level typically multiplies
complexity.

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 27/52

Input Size Guidelines

Input Size n Maximum Acceptable Complexity
n ≤ 10 O(n!), O(2n)
n ≤ 20 O(2n)
n ≤ 100 O(n3)

n ≤ 1, 000 O(n2)
n ≤ 10, 000 O(n2) with small constant
n ≤ 100, 000 O(n log n)

n ≤ 1, 000, 000 O(n) or O(n log n)
n ≤ 10, 000, 000 O(n)

Rule of Thumb:
• Modern computers: ∼ 108 to 109 operations per second
• Time limit typically 1-2 seconds
• Estimate: n × complexity factor < 108

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 28/52

Complexity Analysis Examples

Example 1: Nested Loops

for i in range(n) :
for j in range(n) :

// O(1) work

Analysis: O(n × n) = O(n2)

Example 2: Divide and Conquer

T (n) = 2T (n/2) + O(n)

Analysis: O(n log n) (Merge Sort)

Example 3: Binary Search Tree

while node ̸= null :
node = node.left or right

Analysis: O(log n) balanced, O(n) worst

Example 4: Sliding Window

for right in range(n) :
while invalid :

left+ = 1

Analysis: O(n) (each element visited ≤ 2
times)

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 29/52

Space-Time Tradeoffs

When to Use Extra Space:
• Hash maps for O(1) lookup
• Memoization in DP
• Caching intermediate results
• Preprocessing for multiple queries

Example: Two Sum
• Brute force: O(n2) time, O(1) space
• Hash map: O(n) time, O(n) space

When to Save Space:
• Memory-constrained systems
• Large datasets
• In-place modifications allowed
• Space complexity matters

Example: Reverse Array
• Extra array: O(n) space
• Two pointers in-place: O(1) space

Interview Tip
Always discuss both time and space complexity. Mention trade-offs explicitly.

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 30/52

Pattern Recognition

Common Problem Categories

Category Signal Words Approach
Sliding Window Contiguous subarray, substring Two pointers, hash map
Two Pointers Sorted array, pairs, palindrome Opposite or same direction
Backtracking All combinations, permutations Recursive DFS with pruning
Dynamic Programming Optimal, maximum/minimum Memoization or tabulation
Graph Traversal Connected components, paths DFS for paths, BFS for shortest
Binary Search Sorted, find target/range Divide search space
Greedy Locally optimal choices Sort + greedy selection
Divide & Conquer Break into subproblems Merge sort, quick sort pattern

Pattern Recognition Strategy:
1. Read problem, identify keywords
2. Check constraints (sorted? tree? graph?)
3. Recall similar problems solved before
4. Apply matching template

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 32/52

Template Library: Binary Search
1 def binary_search_exact (arr , target):
2 """ Find exact target ."""
3 left , right = 0, len(arr) - 1
4 while left <= right :
5 mid = left + (right - left) // 2
6 if arr[mid] == target :
7 return mid
8 elif arr[mid] < target :
9 left = mid + 1

10 else:
11 right = mid - 1
12 return -1
13
14 def binary_search_left_bound (arr , target):
15 """ Find leftmost occurrence ."""
16 left , right = 0, len(arr)
17 while left < right :
18 mid = left + (right - left) // 2
19 if arr[mid] < target :
20 left = mid + 1
21 else:
22 right = mid
23 return left
24
25 def binary_search_on_answer (check , low , high):
26 """ Binary search on answer space ."""
27 while low < high:
28 mid = low + (high - low) // 2
29 if check (mid):
30 high = mid
31 else:
32 low = mid + 1
33 return low

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 33/52

Template Library: Backtracking
1 def backtrack_template (nums):
2 """ Generate all combinations / permutations ."""
3 result = []
4
5 def backtrack (path , start):
6 # Base case: path complete
7 if is_complete (path):
8 result . append (path [:]) # Copy current path
9 return

10
11 # Recursive case: try all choices
12 for i in range (start , len(nums)):
13 # Choose
14 path. append (nums[i])
15
16 # Explore
17 backtrack (path , i + 1) # i+1 for combinations , 0 for permutations
18
19 # Unchoose (backtrack)
20 path.pop ()
21
22 backtrack ([] , 0)
23 return result
24
25 # Pruning optimization :
26 def backtrack_with_pruning (path , start):
27 if not is_valid (path): # Prune invalid paths early
28 return
29 # ... rest of backtracking logic

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 34/52

Similar Problem Mapping

Recognizing Problem Variations:

New Problem Maps To
Coin Change Unbounded Knapsack DP
House Robber Linear DP with non-adjacent constraint
Longest Increasing Subsequence DP or Binary Search
Edit Distance 2D DP (Levenshtein distance)
Word Break DP with string matching
Maximum Subarray Kadane’s algorithm
Trapping Rain Water Two pointers or monotonic stack
Merge Intervals Sorting + greedy
Number of Islands DFS/BFS on grid
Clone Graph DFS/BFS with hash map

Strategy: Maintain a mental library of classic problems. New problems are often
variations.

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 35/52

Mock Interviews

Mock Interview Structure
Simulating Real Interview Conditions (45-60 min):

1. Introduction (2-3 min)
• Brief self-introduction
• Interviewer explains format

2. Problem Presentation (2-3 min)
• Read problem carefully
• Ask clarifying questions
• Confirm understanding

3. Discussion (5-10 min)
• Explain brute force approach
• Discuss optimizations
• Agree on approach with interviewer

4. Coding (20-25 min)
• Write clean, commented code
• Think aloud while coding
• Handle edge cases

5. Testing (5-10 min)
• Walk through test cases
• Identify and fix bugs

6. Follow-up (5 min)
• Discuss optimizations
• Answer follow-up questions

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 37/52

Communication Best Practices
Do’s:

• Think aloud consistently
• Ask clarifying questions
• Explain your reasoning
• Discuss trade-offs
• Admit when stuck, ask for hints
• Be open to feedback
• Stay calm and positive

Example Phrases:
• “I’m thinking of using a hash map

because...”
• “The time complexity would be O(n)

since...”
• “Let me trace through an example...”
• “Could I get a hint on...?”

Don’ts:
• Code in silence
• Jump to coding without discussion
• Ignore interviewer’s hints
• Get defensive about mistakes
• Give up when stuck
• Skip testing
• Ignore edge cases

Red Flags:
• Not asking questions
• Poor variable naming
• Skipping complexity analysis
• Not testing solution
• Messy, unreadable code

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 38/52

Mock Interview Platforms
Free Platforms:

• LeetCode Mock Interviews: Timed
problems with evaluation

• Pramp: Peer-to-peer mock interviews
• CodeSignal: Assessment practice
• HackerRank: Interview prep kits

Paid Platforms:
• interviewing.io: Anonymous interviews

with engineers
• Exponent: Mock interviews with

feedback
• Brilliant.org: Interactive problem

solving

Practice Partners:
• Study groups
• Friends preparing for interviews
• Online communities (Reddit, Discord)
• University career services

Recording & Review:
• Record your sessions (with permission)
• Review recordings later
• Identify communication gaps
• Track improvement over time

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 39/52

Post-Mortem Analysis
After Each Mock Interview:

1. What Went Well:
• Clear communication
• Correct solution found
• Good time management
• Handled edge cases

2. What to Improve:
• Missed initial edge case (empty array)
• Took too long to code (30 min instead of 20 min)
• Didn’t discuss space complexity
• Nervous, spoke too fast

3. Alternative Approaches:
• Could have used DP instead of recursion
• Hash map would have been simpler
• Greedy approach also works here

4. Action Items:
• Practice similar problems (10 more DP problems)
• Review edge case checklist before coding
• Work on speaking pace and clarity

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 40/52

Progress Tracking

Problem Log Template

Spreadsheet/Notion Tracking:

Date Problem Difficulty Time Status Notes
11/01 Two Sum Easy 15 min ✓ Hash map approach
11/01 Valid Parentheses Easy 20 min ✓ Stack, clean solution
11/02 Longest Substring Medium 45 min ✓ Struggled with sliding window
11/02 Merge Intervals Medium 35 min ✓ Sorting + greedy
11/03 Binary Tree Level Order Medium 30 min ✓ BFS with queue
11/03 Coin Change Medium 60 min × Need to review DP

Key Metrics to Track:
• Solve time per difficulty
• Success rate per topic
• Common mistakes
• Review schedule adherence

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 42/52

Topic Coverage Checklist

Data Structures:
✓ Arrays (85% proficiency)
✓ Strings (80% proficiency)
✓ Stacks (90% proficiency)
✓ Queues (85% proficiency)
✓ Hash Tables (80% proficiency)
△ Trees (65% proficiency)
△ Graphs (60% proficiency)
× Heaps (45% proficiency)
× Tries (40% proficiency)

Algorithms:
✓ Two Pointers (85%)
✓ Sliding Window (80%)
✓ Binary Search (85%)
△ Backtracking (60%)
△ Dynamic Programming (55%)
× Graph Algorithms (50%)
✓ Sorting (90%)
△ Greedy (65%)

Legend:
✓ ≥ 80%: Strong
△ 50-79%: Needs practice
× < 50%: Priority focusMinseok Jeon Interview & Competitive Programming Prep November 2, 2025 43/52

Speed Metrics and Goals

Difficulty Target Time Current Avg Status
Easy 15-20 min 18 min ✓On track
Medium 25-35 min 40 min △ Need improvement
Hard 40-50 min 65 min × Priority

Speed Improvement Strategies:
• Focus on pattern recognition (reduce planning time)
• Master templates (reduce coding time)
• Practice typing speed and shortcuts
• Time-box practice sessions
• Review fast solutions from top submissions

Goal
Reduce medium problem time to 30 min within 2 months through daily practice

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 44/52

Identifying Weak Areas
Analysis Methods:

1. Problem Log Analysis
• Filter by unsolved or struggled problems
• Group by topic/pattern
• Identify recurring difficulties

2. Time Analysis
• Which topics take longest?
• Where do you get stuck? (planning, coding, debugging)
• Compare to target times

3. Success Rate by Topic
• % solved on first try
• % requiring hint/solution lookup
• % passing all test cases

4. Mock Interview Feedback
• Interviewer notes
• Communication issues
• Technical gaps

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 45/52

Contest Participation

Weekly Contests:
• LeetCode Weekly/Biweekly:

Saturday/Sunday
• Codeforces: Multiple times per week
• AtCoder Beginner Contest: Weekly
• CodeChef: Long/short contests

Benefits:
• Time pressure practice
• Ranking/percentile tracking
• Exposure to new problems
• Community solutions

Contest Strategy:
• Read all problems first (5 min)
• Solve easiest problems first
• Submit early and often
• Don’t get stuck on one problem
• Review solutions after contest

Rating Goals:
• LeetCode: Target 1800+ (top 10%)
• Codeforces: Target Expert (1600+)
• Track rating trends monthly

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 46/52

Summary

Key Takeaways
1. Master Common Patterns

• Two pointers, sliding window, monotonic stack, BFS
• Templates save time and reduce errors
• Pattern recognition is the key to speed

2. Consistent Daily Practice
• 1-3 problems daily with topic rotation
• Spaced repetition for long-term retention
• Time-boxed sessions to build speed

3. Complexity Analysis
• Estimate before coding (saves time)
• Know input size → complexity mapping
• Discuss time/space trade-offs

4. Communication Matters
• Think aloud in interviews
• Ask clarifying questions
• Explain approach before coding

5. Track and Optimize
• Log every problem solved
• Identify weak areas systematically
• Participate in contests for benchmarking

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 48/52

12-Week Study Plan
Structured Preparation Timeline:

• Weeks 1-2: Foundations
• Easy problems only (arrays, strings, stacks, queues)
• Build confidence and basic pattern recognition
• Target: 40-50 easy problems

• Weeks 3-4: Expand Patterns
• Mix 60% easy, 40% medium
• Trees, graphs, hash tables
• Target: 30 easy + 20 medium

• Weeks 5-8: Core Medium Problems
• Mix 30% easy, 60% medium, 10% hard
• Focus on DP, backtracking, advanced patterns
• Weekly mock interviews
• Target: 15 easy + 40 medium + 5 hard

• Weeks 9-12: Interview Ready
• Mix 20% easy, 60% medium, 20% hard
• Company-specific problem lists
• 2x mock interviews per week
• Target: 10 easy + 35 medium + 15 hard

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 49/52

Resources and References
Problem Platforms:

• LeetCode (most popular)
• HackerRank
• Codeforces
• AtCoder
• CodeChef

Books:
• “Cracking the Coding Interview” (Gayle

Laakmann McDowell)
• “Elements of Programming Interviews”
• “Competitive Programming” (Halim &

Halim)

Online Resources:
• NeetCode (pattern roadmap)
• AlgoExpert (curated problems)
• Blind 75 (essential problems)
• Grind 75 (study plan)

Communities:
• r/leetcode
• LeetCode Discuss
• Codeforces Blogs
• Discord servers

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 50/52

Final Advice

Remember
Interview preparation is a marathon, not a sprint. Consistent practice beats cramming.

Mental Preparation:
• Don’t compare yourself to others (focus on your growth)
• It’s okay to struggle with problems
• Learn from mistakes (they’re valuable)
• Take breaks to avoid burnout
• Celebrate small wins (solved a hard problem!)

During the Interview:
• Stay calm and think clearly
• Communication is 50% of success
• It’s okay to ask for hints
• Show your problem-solving process
• Be enthusiastic and positive

You’ve Got This!
With consistent practice and pattern mastery, you will succeed!

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 51/52

Thank You!
Questions?

“The only way to learn to program is by writing programs.” – Dennis Ritchie

Apply this wisdom to interview prep:
The only way to get better is by solving problems daily!

Good luck with your interviews!

Minseok Jeon Interview & Competitive Programming Prep November 2, 2025 52/52

	Introduction
	Common Patterns
	Two Pointers Pattern
	Sliding Window Pattern
	Stack Patterns
	Queue Patterns

	Daily Problem-Solving Routine
	Time Complexity Estimation
	Pattern Recognition
	Mock Interviews
	Progress Tracking
	Summary

