Interview & Competitive Programming Prep
Targeted Practice to Master Patterns and Speed

Minseok Jeon
DGIST

November 2, 2025

Outline

1. Introduction

2. Common Patterns
2.1 Two Pointers Pattern
2.2 Sliding Window Pattern
2.3 Stack Patterns
2.4 Queue Patterns

Daily Problem-Solving Routine
Time Complexity Estimation
Pattern Recognition

Mock Interviews

Progress Tracking

e B A

Summary

Introduction

Course Overview

Master data structures and algorithms for technical interviews and competitive
programming

Key Topics:

e Common patterns for arrays, strings, stacks, queues

Daily problem-solving routines

® Time complexity estimation techniques

Pattern recognition and templates
® Mock interviews and reviews

® Progress tracking and metrics

Why This Preparation Matters

Technical Interviews: Competitive Programming:
® FAANG companies emphasize DSA ® Speed + accuracy under time pressure
® 45-60 minute coding interviews ® Multiple problems in limited time
® Communication is crucial ® Edge case handling
® Template mastery

e Optimization expected

® Pattern recognition wins Algorithm optimization

Key Insight

Success requires deliberate practice with patterns, not just solving random problems

Common Patterns

Pattern Category Overview

Data Structure Common Patterns Time Complexity
Arrays/Strings Two pointers, Sliding window O(n)
Stacks Monotonic stack, Parentheses O(n)
Queues BFS, Sliding window max O(n)
Hash Tables Frequency count, Anagrams O(n)

Learning Strategy:
1. Recognize the pattern from problem description
2. Apply the standard template
3. Modify template for specific constraints

4. Verify with test cases

Two Pointers: Concept

Pattern Description:
® Use two indices moving through data
® Avoid nested loops (O(n?) — O(n))

® \Works on sorted or unsorted arrays

Variants:
¢ Opposite direction (start/end)
® Same direction (fast/slow)

® Multiple arrays

Signal Words:
® “Pairs summing to..."
® “Remove duplicates”
® “Reverse in-place”

e “Container/water problem”

“Palindrome check”

Complexity:
e Time: O(n) single pass
® Space: O(1) in-place

Two Pointers: Template

1 def

two_pointers_template (arr):
"""Opposite direction pointers.
left, right = 0, len(arr) - 1

while left < right:
Check condition
if condition_met (arr[left],
Process and move both

left += 1
right -= 1
elif need_larger_value:
left += 1
else:
right -= 1

return result

" —— ”~~ £ O~ o 1T A N

arr [right]):

Two Pointers: Visual Example

Problem: Container with Most Water

Minseok Jeon ﬂ\teliview:;& Comﬂ!etitive Isrogra}mrﬁing Prep November 2, 2025 10/5

Sliding Window: Concept

Pattern Description:
e Maintain a window over data
® Expand/contract window dynamically
® Track window properties

® Avoid recomputing from scratch

Types:
® Fixed size: Window size constant

e Variable size: Window grows/shrinks

Signal Words:
e “Contiguous subarray”
® “longest substring”
¢ “"Maximum/minimum in window”

e “K consecutive elements”

Complexity:
e Time: O(n) (each element visited < 2
times)
® Space: O(k) for window state

©0O~NOO A WN -

Sliding Window: Template

def

def

sliding_window_variable(s):
"""Variable size sliding wi
left = 0

result = 0

window = {} # Track window

for right in range(len(s)):
Expand window: add s[
window[s[right]] = wind

Contract window if co

ndow . ""n

state

right]

ow.get(s[right], 0) + 1

ndition violated

while window_invalid(window):

window [s[left]] -=
if window([s[left]]

del windowl[s[le
left += 1

1
== 0:
£t1]

Update result with current window

result = max(result, ri
return result

sliding_window_fixed(arr, k
"""Fixed size sliding windo
window_sum = sum(arr[:k])
max_sum = window_sum

for i in range(k, len(arr))
window_sum = window_sum
max_sum = max (max_sum,

ght - left + 1)

D8
Ww.
Initial window

win

- arr[i-k] + arr[il
window_sum)

Slide

Sliding Window: Example

Problem: Longest Substring Without Repeating Characters

s = "abcabcbb"

Step Window Left Right Max Length
1 Ta] 0 0 1
2 [a.b] 0 1 2
3 [a,b,c] 0 2 3
4 [a,b,c,a] — [b,c,a] 1 3 3
5 [b,c,a,b] — [c,a,b] 2 4 3
6 [c,a,b,c] — [a,b,c] 3 5 3

Answer: 3 (substring “abc”)

Key ldea:
® Use hash map to track character positions
® When duplicate found, contract window from left
® Track maximum window size seen

Stack Patterns: Overview

Common Stack Patterns:

® Monotonic stack: Next
greater/smaller element

¢ Parentheses matching: Valid
expressions

e Expression evaluation: Calculator,
RPN

® Backtracking: DFS traversal

Signal Words:
® “Next greater element”
® “Valid parentheses”
e “Evaluate expression”
® “largest rectangle”

® “Trapping rain water”

Why Stacks?
e LIFO matches nested structures
e Efficient backtracking
® O(1) push/pop operations

-
COOWNOUTHWNH

R el
~NoO oA WN R

Monotonic Stack Pattern

def next_greater_element (nums):
"""Find next greater element for each element."""

n = len(nums)
result = [-1] * n
stack = [] # Store indices

for i in range(n):
While current element is greater than stack top
while stack and nums[i] > nums[stack[-1]]:
idx = stack.pop()
result[idx] = nums[i]
stack.append (i)
return result

Example: nums = [2, 1, 2, 4, 3]

Result: [4, 2, 4, -1, -1]

Key ldea:
® Maintain stack in increasing/decreasing order
® Pop elements that violate monotonic property

® Each element pushed and popped once — O(n)

Monotonic Stack: Visual Example

Problem: Daily Temperatures
Given temperatures = [73, 74, 75, 71, 69, 72, 76, 73], find how many days until warmer

temperature.

; 1 day, 2 days 76°

1 day o 75°
3y o— o
! e Sl 72° 3

69°

Valid Parentheses Pattern

1 def is_valid_parentheses(s):

2 """Check if parentheses are balanced."""
3 stack = []

s pesleg = £0@0y)0, v0ve 909, Q%3 U193
5

6 for char in s:

7 if char in pairs: # Opening bracket
8 stack.append (char)

9 else: # Closing bracket

10 if not stack or pairs[stack[-1]] != char:
11 return False

12 stack.pop ()

13

14 return len(stack) == 0

16 # Examples:
w3 " (O)" -> True

Queue Patterns: Overview

Common Queue Patterns:

e BFS traversal: Level-order, shortest
path

¢ Sliding window maximum: Deque
optimization
® | evel processing: Binary tree levels

e Multi-source BFS: Multiple starting
points

Signal Words:
e “|evel order traversal”
® “Shortest path”
® “Minimum steps”
e “Layer by layer”

e “Sliding window maximum”

Why Queues?
® FIFO ensures level-order processing
e Guarantees shortest path in unweighted
graphs

e Natural for breadth-first exploration

BFS Template

from collections import deque

def

def

bfs_template(start):
"""Standard BFS traversal."""
queue = deque([start])
visited = {start}

while queue:
node = queue.popleft ()

Process current node
process (node)

Add neighbors
for neighbor in get_neighbors(node):
if neighbor not in visited:
visited.add(neighbor)
queue . append (neighbor)

return result

bfs_level_order (root):
"""BFS with level tracking."""
if not root:

return []

queue = deque ([root])
result = []

while queue:

BFS: Visual Example

Binary Tree Level Order Traversal

-~
&

Result: [[3], [9, 20], [15, 7]]

'V "™ * 4

Daily Problem-Solving Routine

Building Consistent Practice Habits

Core Principle

Consistency beats intensity. Daily practice builds pattern recognition and speed.

Recommended Schedule:

® Morning (30 min): 1 medium problem, fresh mind

Evening (20 min): Review solution, optimize, add to notes

Weekly (2 hours): Mock interview session

Monthly: Review all problems, identify weak areas

Difficulty Progression:
® Week 1-2: Easy problems (build confidence)
e Week 3-4: Mix 70% easy, 30% medium
® Week 5+: Mix 30% easy, 60% medium, 10% hard

Topic Rotation Strategy

Weekly Rotation:

Monday: Arrays/Strings
Tuesday: Stacks/Queues
Wednesday: Trees/Graphs
Thursday: Dynamic Programming
Friday: Hash Tables/Heaps
Saturday: Mixed review

Sunday: Mock interview

Why Rotation?
® Prevents burnout on single topic
® Builds breadth of knowledge
® Reinforces pattern recognition

® Mimics interview randomness

Time Boxing:
e Easy: 15-20 min
® Medium: 25-35 min
® Hard: 40-50 min

® Stop and review solution if stuck

Review Cycle: Spaced Repetition

Memory Retention

N N ~
N N Se
\ \ ~
\ \ ~
Solve Revi\ew 1 Re«/i\ew 2 Re
® ® ® > Time
Day 0 Day 1 Week 1 Month 1

Review Schedule:
¢ Day 1: Re-solve without looking at notes (should be fresh)
e Week 1: Solve again, focus on optimization

e Month 1: Final review, add to template library if pattern

Goal: Move problems from short-term to long-term memory

Problem-Solving Workflow

1. Read & Understand (2-3 min)
® Read problem carefully, underline key constraints
® Ask clarifying questions (inputs, outputs, edge cases)
® |dentify problem type/pattern

2. Plan Approach (3-5 min)
® Discuss brute force solution first
® |dentify optimizations (data structure, algorithm)
® Estimate time/space complexity

3. Code Solution (15-20 min)
® Write clean, readable code
® Use meaningful variable names
® Add comments for complex logic

4. Test & Debug (5-7 min)
® Test with example cases
® Check edge cases (empty, single element, large input)
® Fix bugs systematically

Time Complexity Estimation

Big-O Notation: Quick Reference

Notation Name Example

0O(1) Constant Hash table lookup

O(logn) Logarithmic ~ Binary search

O(n) Linear Single array pass

O(nlogn) Linearithmic Merge sort, heap operations
O(n?) Quadratic Nested loops

O(n?) Cubic Triple nested loops

o(2") Exponential Recursive backtracking
O(n!) Factorial All permutations

Golden Rule

If unsure, count nested loops and recursion depth. Each nesting level typically multiplies
complexity.

Input Size Guidelines

Input Size n Maximum Acceptable Complexity

n <10 O(n!), O(2™)
n < 20 o2m)
n < 100 O(n3)
n < 1,000 O(n?)
n < 10,000 O(n?) with small constant
n < 100, 000 O(nlogn)
n < 1,000, 000 O(n) or O(nlogn)
n < 10,000,000 O(n)

Rule of Thumb:
® Modern computers: ~ 108 to 10 operations per second
e Time limit typically 1-2 seconds
e Estimate: n x complexity factor < 10%

Complexity Analysis Examples

Example 1: Nested Loops

for i in range(n) :
for j in range(n) :

// O(1) work
Analysis: O(n x n) = O(n?)
Example 2: Divide and Conquer
T(n)=2T(n/2)+ O(n)

Analysis: O(nlogn) (Merge Sort)

Example 3: Binary Search Tree

while node # null :

node = node.left or right
Analysis: O(logn) balanced, O(n) worst
Example 4: Sliding Window

for right in range(n) :
while invalid :
left+ =1

Analysis: O(n) (each element visited < 2
times)

Space-Time Tradeoffs

When to Use Extra Space: When to Save Space:

® Hash maps for O(1) lookup ® Memory-constrained systems

® Memoization in DP ® | arge datasets

e Caching intermediate results ® |n-place modifications allowed

® Preprocessing for multiple queries ® Space complexity matters
Example: Two Sum Example: Reverse Array

® Brute force: O(n?) time, O(1) space e Extra array: O(n) space

® Hash map: O(n) time, O(n) space e Two pointers in-place: O(1) space

Interview Tip

Always discuss both time and space complexity. Mention trade-offs explicitly.

Pattern Recognition

Common Problem Categories

Category

Signal Words

Approach

Sliding Window

Two Pointers
Backtracking

Dynamic Programming
Graph Traversal

Binary Search

Greedy

Divide & Conquer

Contiguous subarray, substring
Sorted array, pairs, palindrome
All combinations, permutations
Optimal, maximum/minimum
Connected components, paths
Sorted, find target/range
Locally optimal choices

Break into subproblems

Two pointers, hash map
Opposite or same direction
Recursive DFS with pruning
Memoization or tabulation

DFS for paths, BFS for shortest
Divide search space

Sort + greedy selection

Merge sort, quick sort pattern

Pattern Recognition Strategy:

1. Read problem, identify keywords

2. Check constraints (sorted? tree? graph?)

3. Recall similar problems solved before

4. Apply matching template

©0O~NOO A WN -

Template Library: Binary Search

def binary_search_exact (arr, target):
"""Find exact target."""
left, right = 0, len(arr) - 1
while left <= right:
mid = left + (right - left) // 2
if arr[mid] == target:
return mid
elif arr[mid] < target:
left = mid + 1
else:
right = mid - 1
return -1

def binary_search_left_bound(arr, target):
"""Find leftmost occurrence."""
left, right = 0, len(arr)
while left < right:
mid = left + (right - left) // 2
if arr[mid] < target:
left = mid + 1
else:
right = mid
return left

def binary_search_on_answer (check, low, high):
"""Binary search on answer space."""
while low < high:
mid = low + (high - low) // 2
if check(mid):
high = mid

Template Library: Backtracking

def backtrack_template (nums):
"""Generate all combinations/permutations."""
result = []

def backtrack(path, start):
Base case: path complete
if is_complete(path):
result.append(path[:]) # Copy current path
return

Recursive case: try all choices
for i in range(start, len(nums)):
Choose
path.append (nums [i])

Explore
backtrack(path, i + 1) # i+1 for combinations,

Unchoose (backtrack)
path.pop ()

backtrack ([], 0)
return result

Pruning optimization:
def backtrack_with_pruning(path, start):
if not is_valid(path): # Prune invalid paths early
return
... rest of backtracking logic

0 for permutations

Similar Problem Mapping

Recognizing Problem Variations:

New Problem Maps To

Coin Change Unbounded Knapsack DP

House Robber Linear DP with non-adjacent constraint
Longest Increasing Subsequence DP or Binary Search

Edit Distance 2D DP (Levenshtein distance)
Word Break DP with string matching
Maximum Subarray Kadane's algorithm

Trapping Rain Water Two pointers or monotonic stack
Merge Intervals Sorting + greedy

Number of Islands DFS/BFS on grid

Clone Graph DFS/BFS with hash map

Strategy: Maintain a mental library of classic problems. New problems are often
variations.

Mock Interviews

Mock Interview Structure

Simulating Real Interview Conditions (45-60 min):

1. Introduction (2-3 min)
® Brief self-introduction
® |nterviewer explains format

2. Problem Presentation (2-3 min)
® Read problem carefully
® Ask clarifying questions
® Confirm understanding

3. Discussion (5-10 min)
® Explain brute force approach
® Discuss optimizations
® Agree on approach with interviewer

4. Coding (20-25 min)
® \Write clean, commented code
® Think aloud while coding

Communication Best Practices

Do’s:
® Think aloud consistently
® Ask clarifying questions
® Explain your reasoning
® Discuss trade-offs
® Admit when stuck, ask for hints
® Be open to feedback

e Stay calm and positive

Don’ts:

Code in silence

Jump to coding without discussion
Ignore interviewer's hints

Get defensive about mistakes

Give up when stuck

Skip testing

Ignore edge cases

Example Phrases: Red Flags:

® “I'm thinking of using a hash map
because...”

® “The time complexity would be O(n)
since...”

Not asking questions
Poor variable naming
Skipping complexity analysis

N AR FAads na enliiFian

Mock Interview Platforms

Free Platforms:

® LeetCode Mock Interviews: Timed
problems with evaluation

® Pramp: Peer-to-peer mock interviews
e CodeSignal: Assessment practice

e HackerRank: Interview prep kits

Paid Platforms:
® interviewing.io: Anonymous interviews
with engineers

e Exponent: Mock interviews with
feedback

¢ Brilliant.org: Interactive problem
solving

Practice Partners:
e Study groups
® Friends preparing for interviews
¢ Online communities (Reddit, Discord)

® University career services

Recording & Review:
® Record your sessions (with permission)
® Review recordings later
® |dentify communication gaps

® Track improvement over time

Post-Mortem Analysis

After Each Mock Interview:

1. What Went Well:
® (Clear communication
® Correct solution found
® Good time management
® Handled edge cases

2. What to Improve:
® Missed initial edge case (empty array)
® Took too long to code (30 min instead of 20 min)
® Didn't discuss space complexity
® Nervous, spoke too fast

3. Alternative Approaches:
® Could have used DP instead of recursion
® Hash map would have been simpler
® Greedy approach also works here

Progress Tracking

Problem Log Template

Spreadsheet/Notion Tracking:

Date Problem Difficulty Time Status Notes

11/01 Two Sum Easy 15 min v Hash map approach

11/01 Valid Parentheses Easy 20 min ' Stack, clean solution

11/02 Longest Substring Medium 45 min v Struggled with sliding window
11/02 Merge Intervals Medium 35 min v Sorting + greedy

11/03 Binary Tree Level Order Medium 30 min v BFS with queue

11/03 Coin Change Medium 60 min X Need to review DP

Key Metrics to Track:
® Solve time per difficulty
® Success rate per topic
e Common mistakes

® Review schedule adherence

Topic Coverage Checklist

Data Structures:

<

x x DD s sSsS s

Arrays (85% proficiency)
Strings (80% proficiency)
Stacks (90% proficiency)
Queues (85% proficiency)
Hash Tables (80% proficiency)
Trees (65% proficiency)
Graphs (60% proficiency)
Heaps (45% proficiency)

Tries (40% proficiency)

Algorithms:

v

AN > NN

A

Two Pointers (85%)

Sliding Window (80%)

Binary Search (85%)
Backtracking (60%)

Dynamic Programming (55%)
Graph Algorithms (50%)
Sorting (90%)

Greedy (65%)

Legend:

v
A

X

> 80%: Strong
50-79%: Needs practice
<.50%:. Priority focus

Speed Metrics and Goals

Difficulty Target Time Current Avg Status

Easy 15-20 min 18 min v'On track
Medium 25-35 min 40 min A Need improvement
Hard 40-50 min 65 min X Priority

Speed Improvement Strategies:

Focus on pattern recognition (reduce planning time)
Master templates (reduce coding time)

Practice typing speed and shortcuts

Time-box practice sessions

Review fast solutions from top submissions

Reduce medium problem time to 30 min within 2 months through daily practice

Identifying Weak Areas

Analysis Methods:

1. Problem Log Analysis
® Filter by unsolved or struggled problems
® Group by topic/pattern
® |dentify recurring difficulties

2. Time Analysis
® Which topics take longest?
® Where do you get stuck? (planning, coding, debugging)
® Compare to target times

3. Success Rate by Topic
® % solved on first try
® % requiring hint/solution lookup
® % passing all test cases

4. Mock Interview Feedback
® |nterviewer notes

Contest Participation

Weekly Contests:

¢ LeetCode Weekly/Biweekly:
Saturday/Sunday

® Codeforces: Multiple times per week
e AtCoder Beginner Contest: Weekly
® CodeChef: Long/short contests

Benefits:

® Time pressure practice

Ranking/percentile tracking
® Exposure to new problems

e Community solutions

Contest Strategy:

Read all problems first (5 min)

Solve easiest problems first

Submit early and often

Don't get stuck on one problem

Review solutions after contest

Rating Goals:
e LeetCode: Target 1800+ (top 10%)
e Codeforces: Target Expert (1600+)
® Track rating trends monthly

Summary

Key Takeaways

1. Master Common Patterns
® Two pointers, sliding window, monotonic stack, BFS
® Templates save time and reduce errors
® Pattern recognition is the key to speed

2. Consistent Daily Practice
® 1-3 problems daily with topic rotation
® Spaced repetition for long-term retention
® Time-boxed sessions to build speed

3. Complexity Analysis
® Estimate before coding (saves time)
® Know input size — complexity mapping
® Discuss time/space trade-offs

4. Communication Matters
® Think aloud in interviews
® Ask clarifying questions
® Explain approach before coding

12-Week Study Plan

Structured Preparation Timeline:

® Weeks 1-2: Foundations
® Easy problems only (arrays, strings, stacks, queues)
® Build confidence and basic pattern recognition
® Target: 40-50 easy problems

® Weeks 3-4: Expand Patterns
® Mix 60% easy, 40% medium
® Trees, graphs, hash tables
® Target: 30 easy + 20 medium

® \Weeks 5-8: Core Medium Problems
® Mix 30% easy, 60% medium, 10% hard
® Focus on DP, backtracking, advanced patterns
® Weekly mock interviews
® Target: 15 easy + 40 medium + 5 hard

Resources and References

Problem Platforms:

LeetCode (most popular)
HackerRank

Codeforces

AtCoder

CodeChef

Books:

e "“Cracking the Coding Interview" (Gayle
Laakmann McDowell)

e “Elements of Programming Interviews"

e “Competitive Programming” (Halim &
Halim)

Online Resources:
® NeetCode (pattern roadmap)
e AlgoExpert (curated problems)
e Blind 75 (essential problems)
® Grind 75 (study plan)

Communities:
® r/leetcode
® | eetCode Discuss
e Codeforces Blogs

® Discord servers

Final Advice

Remember

Interview preparation is a marathon, not a sprint. Consistent practice beats cramming.

Mental Preparation:
® Don't compare yourself to others (focus on your growth)
® |t's okay to struggle with problems
® Learn from mistakes (they're valuable)
® Take breaks to avoid burnout
® Celebrate small wins (solved a hard problem!)

During the Interview:

Stay calm and think clearly
Communication is 50% of success
It's okay to ask for hints

Show your problem-solving process

Re anthiiciactic and nacitive

« © o o

Thank Youl

Questions?

“The only way to learn to program is by writing programs.” — Dennis Ritchie

Apply this wisdom to interview prep:
The only way to get better is by solving problems daily!

Good luck with your interviews!

	Introduction
	Common Patterns
	Two Pointers Pattern
	Sliding Window Pattern
	Stack Patterns
	Queue Patterns

	Daily Problem-Solving Routine
	Time Complexity Estimation
	Pattern Recognition
	Mock Interviews
	Progress Tracking
	Summary

