Hash Tables

Expected O(1) Key-Value Operations

Minseok Jeon
DGIST

November 2, 2025

Outline

Introduction to Hash Tables
Hash Functions

Load Factor and Resizing
Collision Handling

Open Addressing Strategies
Deletion in Open Addressing
Applications

Complexity and Pitfalls

© ©® N o gk W N

Summary

Introduction to Hash Tables

What is a Hash Table?

Definition: A data structure that maps keys to values using a hash function.

Key Components:
® Hash function: Converts keys to array indices
® Array (table): Stores key-value pairs
e Collision handling: Manages keys that hash to same index

Basic ldea:

Key: "Alice" H hash("Alice") = 3]—)

("Alice"

, "555-1234")

el B I Rl I

Davfnrmancoa: Evinarctad O0C1) fAr incart caar~R A AlatrA

Why Use Hash Tables?

Advantages:

Fast lookups: Average O(1) vs O(log n) for trees

Simple interface: Natural key-value mapping

Flexible keys: Strings, numbers, tuples, etc.

Widely used: Python dicts, Java HashMap, C++ unordered map

Common Applications:

® Dictionaries/maps (phone book, student records)

Caching (LRU cache, memoization)

Sets (unique element tracking)
® Frequency counting (word count)

Database indexing
® Deduplication

Hash Functions

What Makes a Good Hash Function?

Essential Properties:

1.

ov s

Deterministic: Same key always produces same hash
Uniform distribution: Keys spread evenly across table

Fast to compute: O(1) or O(k) where k = key length
Minimize collisions: Different keys rarely map to same index

Avalanche effect: Small key change — large hash change

Hash Function Signature:

hash(key) — integer in range [0, table size - 1]

Goal: Distribute keys uniformly to minimize collisions

Common Hash Functions: Division Method

Simplest approach: Use modulo operator

1 def hash_division(key, table_size):
2 return key % table_size

Example:
o Key = 42, Table size = 13
® hash(42) =42 % 13 =3

Best Practice: Use prime table sizes
® Prime numbers: 53, 97, 193, 389, 769, 1543, ...
® Better distribution
® Fewer collisions

Trade-off: Powers of 2 are faster (bitwise AND) but worse distribution

Common Hash Functions: Multiplication Method

Idea: Multiply by constant, extract fractional part

1 def hash_multiplication(key, table_size):

2 A = 0.6180339887 # (sqrt(5) - 1) / 2, golden ratio
3 return int(table_size * ((key * A) % 1))
Advantages:

® \Works well with any table size
® Good distribution with golden ratio constant
® |ndependent of table size choice

Example:
o Key =123, A = 0.618, Table size = 100
123 x 0.618 = 76.014
Fractional part: 0.014
Index: [100 x 0.014] =1

String Hashing: Polynomial Rolling Hash

Challenge: Hash strings efficiently
1 def hash_string(s, table_size):

2 hash_val = 0

3 p = 31 # Prime base

4 p_pow = 1

5

6 for char in s:

7 hash_val = (hash_val + ord(char) * p_pow) % table_size
8 p_pow = (p_pow * p) % table_size

9

10 return hash_val

Example: "hello"
® h: 104 x 310
® e 101 x 31!
e | 108 x 312

Bad Hash Function Example

What NOT to do:

1/# BAD: Only uses first character
2 def bad_hash(s, table_size):

3 return ord(s[0]) % table_size

Problem: Many collisions!
® "apple" — ord('a") = 97
e "ant" — ord('a’) = 97
® "arrow" — ord('a’) = 97
® All hash to same index!

Another bad example:

1/# BAD: All 5-letter words collide
> def bad_hash2(s, table_size):

3 return len(s) % table_size

Load Factor and Resizing

Load Factor (o)

Definition: o = - where
® n = number of elements
® m = table size

Meaning: Average number of elements per slot

Impact on Performance:

Search Time

ypical resize threshold

Load Factor ()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

19

Resizing Strategy

class HashTable:
__init__(self, initial_size=16):

def

def

def

self .size =

self.count
self.table

I

load_factor (
return self.

resize (self)
Double the
old_table =
self .size x*=
self.table
self.count

I

Rehash all

initial_size
0
[[] for _ in range(self

self):
count / self.size

size
self.table

2

[[] for _ in range(self
0

elements

for bucket in old_table:

for key,

value in bucket:

.size)]

.size)]

Amortized Analysis of Resizing

Question: |s resizing expensive?

Analysis:

Insert n elements

Resizes occur at: 1, 2, 4, 8, 16, ..., n

Total rehashing cost: 1 +2+4+ ... +n=2n-1=0(n)
Amortized cost per insertion: O(n) / n = O(1)

Visualization:

Resize Resize Resize Resize

[r] 2] [a] [8] [16] [32]

> Insertions

Key insight: Expensive resizes are rare, so average cost is O(1)

Collision Handling

Collision: When Two Keys Hash to Same Index

Problem: Different keys can hash to the same index

Key: "Alice"

Two Main Solutions:

COLLISION!

BRIV

1. Separate Chaining: Store multiple elements at each index (linked list)

2. Open Addressing: Find another empty slot in the table

Separate Chaining

Idea: Each table slot stores a list of colliding elements

Hash Table

)
Linked Lists

]
(k3. v3] | Jkr,v7[| Jki1,vi1]o]

Advantages:

B CiimanrdlAa +~ tirnam A A+

Separate Chaining Implementation

1 class HashTableChaining:

2 def __init__(self, size=10):

3 self .size = size

4 self.table = [[] for _ in range(size)]
5

6 def insert(self, key, value):

7 index = hash(key) % self.size

8 bucket = self.table[index]

9

10 # Update if key exists

11 for i, (k, v) in enumerate (bucket):
12 if k == key:

13 bucket [i] = (key, value)

14 return

15

16 # Add new key-value pair

17 bucket .append ((key, value))

18
19 def search(self, key):

Open Addressing

Idea: All elements stored in table, probe for empty slots

New key hashes
to index 1
(occupied)

Probe sequence:

1—-2—-3—-4

Advantages:
® Better cache locality

- NI - . Ly

(k0, vO)

OCCUPIED

(k2, v2)

Try next —

Empty

(k5, v5)

Empty

N @ 2| LRI

Empty

Comparison: Chaining vs Open Addressing

Feature Chaining Open Addressing
Memory More (pointers) Less (no pointers)
Cache locality Poor Good

Load factor Can exceed 1.0 Must stay < 0.7
Deletion Simple Complex (tombstones)
Clustering No Yes
Implementation Easier Harder

Best for General use Cache-friendly, known size

Recommendation:
® Use chaining for most applications (simpler, more flexible)

® Use open addressing for performance-critical, cache-sensitive code

Open Addressing Strategies

Linear Probing

Formula: h(k, i) = (h(k) + i) % m
Probe sequence: h(k), h(k)+1, h(k)+2, h(k)+3, ...

Example: Key hashes to index 3, table size = 10

Probe: 344 —+5—-6—-7—-8—-9—-0—1—2

Advantages:

® Simple to implement

® Good cache locality (sequential access)
Disadvantages:

® Primary clustering: Long runs of occupied slots form

Clustering Example:

Cluster grows!

Quadratic Probing

Formula: h(k, i) = (h(k) +i%) % m
Probe sequence: h(k), h(k)+1, h(k)+4, h(k)+9, h(k)+16, ...

Example: Key hashes to index 3, table size = 10

i | Offset | Index
0 0 3
1 1 4
2 4 7
3 9 2
4 16 9

Advantages:
® Reduces primary clustering
® Better distribution than linear
Disadvantages:
® Secondary clustering: Keys with same_hash. follow same probe sequence

Double Hashing

Formula: h(k, i) = (hy(k) +i x ha(k)) % m
Two hash functions:
® hi(k): Initial position

® hy(k): Step size (must be coprime with m)

Example: h;(k) = 3, ha(k) = 7, table size = 10

Advantages:

i | Offset | Index
0 0 3
1 7 0
2 14 7
3 21 4
4 28 1

® Eliminates both primary and secondary clustering
® Best distribution among open addressing, methods

Comparison of Probing Methods

Method Clustering | Complexity | Distribution
Linear Primary Simple Poor
Quadratic Secondary Moderate Good
Double Hashing None Complex Excellent

Clustering Visualization:

Deletion in Open Addressing

The Deletion Problem

Challenge: Cannot simply set slot to None

Example Problem:
1. Insert k1 at index 1, k2 at index 2 (k2 collided, probed to 2)
2. Delete k1 (set index 1 to None)
3. Search for k2:
® Start at index 1
® Find None — stop searching
® k2 is "lost" even though it's at index 2!

0 [1: k]2: k2 3 4

Before delete

0 1: Nof2: k2 3 4

After delete - k2 Uunreachablel

Solution: Tombstones (Lazy Deletion)

Idea: Mark deleted slots with special DELETED marker

Rules:
® Insert: Can place at None or DELETED slots
® Search: Skip over DELETED, continue probing
¢ Delete: Mark slot as DELETED (not None)

0/1: DE2: kZ 3 4

With tombstone - k2 still reachable

Tombstone Issues:
® DELETED markers accumulate over time
® Degrade search performance
® \Waste space

Deletion Implementation

1 class HashTableWithDeletion:
DELETED = object() # Sentinel value

2
3
4 def delete(self, key):

5 for i in range(self.size):

6 index = (hash(key) + i) 7% self.size
7
8
9

if self.table[index] is None:
return False # Not found
10

11 if self.table[index] is not self.DELETED:
12 if self.table[index][0] == key:

13 self.table[index] = self.DELETED
14 return True

15

16 return False

17

18 def search(self, key):

19 for i in range(self.size):

Applications

10
11

12

Application: Dictionaries / Maps

Most common use case: Key-value storage

Python dict (hash table implementation)

phonebook = {

"Alice": "b555-1234",
"Bob": "555-5678",
"Charlie": "555-9012"

0(1) average case operations

phone = phonebook["Alice"] # Lookup

phonebook ["David"] = "555-3456"
del phonebook["Bob"] # Delete
exists = "Charlie" in phonebook

Real-world examples:
® Student records (ID — student info)

= e o o

Insert

Membership test

Application: Caching (LRU Cache)

1 from collections import OrderedDict

class LRUCache:
def __init__(self, capacity):
self.cache = OrderedDict ()
self . capacity = capacity

def get(self, key):
if key not in self.cache:
return -1

© W N o U A~ W N

=
= o

Move to end (most recently used)
self .cache.move_to_end (key)
return self.cache [key]

T S
g r W N

def put(self, key, value):
if key in self.cache:
self.cache.move_to_end (key)

=R e
®w ~N O

self.cache[key] = value
if len(self.cache) > self.capacity:

=
©

Application: Frequency Counting

from collections import Counter

Count word frequencies

text = "the quick brown fox jumps over the lazy dog"
word_count = Counter (text.split())

print (word_count)

Counter ({’the’: 2, ’>quick’: 1, ’brown’: 1, ’fox’: 1, ...})

Most common words
print (word_count.most_common (3))
[(’the’, 2), (’quick’, 1), (’brown’, 1)]

Manual implementation
def count_frequencies(items):
freq = {}
for item in items:
freqlitem] = freq.get(item; . 0) + 1

Application: Two Sum Problem

Problem: Find two numbers that sum to target

1 def

2

10
11
12
13
14

15

two_sum (nums, target):

nmmnn

Given array and target, return indices of two numbers

that add up to target.

Time: 0(n), Space: 0(n)

nmnn

seen = {}
for i, num in enumerate (nums) :
complement = target - num

if complement in seen:
return [seen[complement],
seen[num] = i
return None

16:# JExample

i]

Application: Deduplication

1 def remove_duplicates (arr):

2 """Remove duplicates while preserving order"""
3 seen = set ()

4 result = []

5 for item in arr:

6 if item not in seen:

7 seen.add (item)

8 result.append (item)

9 return result

10
11 # Example

warr = [1, 2, 3, 2, 4, 1, 5]

13 print (remove_duplicates (arr))
w# [1, 2, 3, 4, 5]

15

16 # Using set (loses order)
i7.unique = list(set(arr))

Complexity and Pitfalls

Time Complexity

Operation | Average | Worst Notes

Insert O(1) O(n) Worst: all keys collide
Search 0(1) O(n) Worst: all keys collide
Delete O(1) O(n) Worst: all keys collide
Resize O(n) O(n) | Amortized O(1) per insert

Space Complexity:
¢ Chaining: O(n + m) where n = elements, m = table size
® Open addressing: O(m), must keep load factor low

Key Point: Expected O(1) depends on:
® Good hash function (uniform distribution)
® Reasonable load factor (< 0.75)
® Proper collision handling

10

11

Common Pitfall 1: Mutable Keys

Problem: Using mutable objects as keys

BAD: Lists are mutable, can’t be
d = {[1, 2]: "value"} # TypeError:

BAD: Dictionaries are mutable

d = {{1: 2}: "value"} # TypeError:
GOOD: Use immutable types

d = {(1, 2): "value"}

d = {frozenset ([1, 2]): "value"}

d = {"key": "value"}

d = {42: "value"}

Rule: Keys must be immutable and hashable
® Hashable: int, float, str, tuple, frozenset
® Not hashable: list, dict, set

hashed

H H H #®

unhashable type:

unhashable type:

Tuples work
Frozen sets work
Strings work
Integers work

1

2

9

10

11

Common Pitfall 2: Poor Hash Function

BAD:

A1l strings of same length collide
def bad_hash(s):
return len(s) % 10

All 5-letter words map to index 5!
"hello",

BAD:

"ant" ,

world", "apple

" -> all collide

Only uses first character
def bad_hash2(s):
return ord(sl[0]) % 10

Consequences:
® Many collisions

® Performanc

n applell s n arrow”

e degrades to O(n)

-> all collide

1

Common Pitfall 3: Ignoring Load Factor

BAD:

Never resize

2 class BadHashTable:

def

def

__init__(self):
self.table = [[] for
Fixed size!

in range (10)]

insert (self, key, value):

index = hash(key) % 10

self .table[index] . append ((key, value))
Just keep inserting...

Performance degrades to 0(n)!

Problem: With 1000 elements in size-10 table:
® | oad factor = 100
® Average chain length = 100
® Search time = O(100) = O(n)

When NOT to Use Hash Tables

Hash tables are NOT suitable when you need:

¢ Ordered iteration: Use BST or sorted array
® Hash tables don't maintain order

® Range queries: Use BST or B-tree
® "Find all keys between 10 and 20"

Minimum/maximum: Use heap
® Hash tables need O(n) to find min/max

® \Worst-case guarantees: Use balanced trees
® Hash tables can degrade to O(n)

® Memory constrained: Consider alternatives
® Hash tables waste space (load factor < 1)

Summary

Key Concepts Recap

Hash Table Fundamentals:
® Hash function maps keys to array indices
® Expected O(1) insert, search, delete
® Trade space for time

Good Hash Function:
® Deterministic, uniform, fast
® Minimize collisions
o Common methods: division, multiplication, polynomial

Load Factor Management:
® a =n/m (elements / table size)
® Resize when oo > 0.75 (chaining) or o > 0.5 (open addressing)
e Amortized O(1) resizing cost

Collision Handling Recap

Separate Chaining:
® Store lists at each index
® Simple, never fills up

® Extra memory, poor cache locality

Open Addressing:
® Probe for next empty slot

® Better cache locality, no pointers

Complex deletion (tombstones)

Three methods:
® Linear probing (simple, primary clustering)
® Quadratic probing (better, secondary clustering)
® Double hashing (best, no clustering)

Applications Recap

Common Uses:

Dictionaries/maps (key-value storage)
Caching (LRU cache)

Sets (unique elements)

Frequency counting

Database indexing

Deduplication

Two sum and related problems

Best Practices:

Use immutable keys only

Choose good hash function
Monitor and maintain load factor
Resize when needed

Use chaining for most cases

Practice Problems

Basic:
® |mplement hash table with chaining
® |mplement hash table with linear probing
® Design hash function for strings

Intermediate:
e | RU Cache (LeetCode 146)
Two Sum (LeetCode 1)
Group Anagrams (LeetCode 49)
First Unique Character (LeetCode 387)
Implement resizing with load factor

Advanced:
® Design hashmap with all operations (LeetCode 706)
® |LFU Cache (LeetCode 460)
® |mplement quadratic probing

[R T IR T I R P

Further Learning

Advanced Topics:

Universal hashing families

Perfect hashing

Cuckoo hashing

Robin Hood hashing

Bloom filters (probabilistic hash structures)

Resources:

CLRS: Chapter 11 (Hash Tables)

® Practice on LeetCode hash table tag

e Study Python dict implementation (CPython source)
® Analyze hash functions with test data

Projects:
® Build your own hash table library
® |mplement LRU cache from scratch

Py o N T | B PR [T PR JRES PR T P I

Thank Youl

Questions?

Hash Tables: Fast Average-Case Performance

	Introduction to Hash Tables
	Hash Functions
	Load Factor and Resizing
	Collision Handling
	Open Addressing Strategies
	Deletion in Open Addressing
	Applications
	Complexity and Pitfalls
	Summary

