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Introduction to Hash Tables



What is a Hash Table?

Definition: A data structure that maps keys to values using a hash function.

Key Components:
® Hash function: Converts keys to array indices
® Array (table): Stores key-value pairs
e Collision handling: Manages keys that hash to same index

Basic ldea:

Key: "Alice" H hash("Alice") = 3]—)

("Alice"

, "555-1234")
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Why Use Hash Tables?

Advantages:

Fast lookups: Average O(1) vs O(log n) for trees

Simple interface: Natural key-value mapping

Flexible keys: Strings, numbers, tuples, etc.

Widely used: Python dicts, Java HashMap, C++ unordered map

Common Applications:

® Dictionaries/maps (phone book, student records)

Caching (LRU cache, memoization)

Sets (unique element tracking)
® Frequency counting (word count)

Database indexing
® Deduplication



Hash Functions



What Makes a Good Hash Function?

Essential Properties:

1.

ov s

Deterministic: Same key always produces same hash
Uniform distribution: Keys spread evenly across table

Fast to compute: O(1) or O(k) where k = key length
Minimize collisions: Different keys rarely map to same index

Avalanche effect: Small key change — large hash change

Hash Function Signature:

hash(key) — integer in range [0, table size - 1]

Goal: Distribute keys uniformly to minimize collisions



Common Hash Functions: Division Method

Simplest approach: Use modulo operator

1 def hash_division(key, table_size):
2 return key % table_size

Example:
o Key = 42, Table size = 13
® hash(42) =42 % 13 =3

Best Practice: Use prime table sizes
® Prime numbers: 53, 97, 193, 389, 769, 1543, ...
® Better distribution
® Fewer collisions

Trade-off: Powers of 2 are faster (bitwise AND) but worse distribution



Common Hash Functions: Multiplication Method

Idea: Multiply by constant, extract fractional part

1 def hash_multiplication(key, table_size):

2 A = 0.6180339887 # (sqrt(5) - 1) / 2, golden ratio
3 return int(table_size * ((key * A) % 1))
Advantages:

® \Works well with any table size
® Good distribution with golden ratio constant
® |ndependent of table size choice

Example:
o Key =123, A = 0.618, Table size = 100
123 x 0.618 = 76.014
Fractional part: 0.014
Index: [100 x 0.014] =1



String Hashing: Polynomial Rolling Hash

Challenge: Hash strings efficiently
1 def hash_string(s, table_size):

2 hash_val = 0

3 p = 31 # Prime base

4 p_pow = 1

5

6 for char in s:

7 hash_val = (hash_val + ord(char) * p_pow) % table_size
8 p_pow = (p_pow * p) % table_size

9

10 return hash_val

Example: "hello"
® h: 104 x 310
® e 101 x 31!
e | 108 x 312



Bad Hash Function Example

What NOT to do:

1/# BAD: Only uses first character
2 def bad_hash(s, table_size):

3 return ord(s[0]) % table_size

Problem: Many collisions!
® "apple" — ord('a") = 97
e "ant" — ord('a’) = 97
® "arrow" — ord('a’) = 97
® All hash to same index!

Another bad example:

1/# BAD: All 5-letter words collide
> def bad_hash2(s, table_size):

3 return len(s) % table_size



Load Factor and Resizing



Load Factor (o)

Definition: o = - where
® n = number of elements
® m = table size

Meaning: Average number of elements per slot

Impact on Performance:

Search Time

ypical resize threshold

Load Factor ()
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Resizing Strategy

class HashTable:
__init__(self, initial_size=16):

def

def

def

self .size =

self.count
self.table

I

load_factor (
return self.

resize (self)
# Double the
old_table =
self .size x*=
self.table
self.count

I

# Rehash all

initial_size
0
[[] for _ in range(self

self):
count / self.size

size
self.table

2

[[] for _ in range(self
0

elements

for bucket in old_table:

for key,

value in bucket:

.size)]

.size)]



Amortized Analysis of Resizing

Question: |s resizing expensive?

Analysis:

Insert n elements

Resizes occur at: 1, 2, 4, 8, 16, ..., n

Total rehashing cost: 1 +2+4+ ... +n=2n-1=0(n)
Amortized cost per insertion: O(n) / n = O(1)

Visualization:

Resize Resize Resize Resize

[r ] 2] [a] [8] [16] [32]

> Insertions

Key insight: Expensive resizes are rare, so average cost is O(1)



Collision Handling



Collision: When Two Keys Hash to Same Index

Problem: Different keys can hash to the same index

Key: "Alice"

Two Main Solutions:

COLLISION!

BRIV

1. Separate Chaining: Store multiple elements at each index (linked list)

2. Open Addressing: Find another empty slot in the table




Separate Chaining

Idea: Each table slot stores a list of colliding elements

Hash Table

)
Linked Lists

]
(k3. v3] | Jkr,v7[ | Jki1,vi1]o]

Advantages:
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Separate Chaining Implementation

1 class HashTableChaining:

2 def __init__(self, size=10):

3 self .size = size

4 self.table = [[] for _ in range(size)]
5

6 def insert(self, key, value):

7 index = hash(key) % self.size

8 bucket = self.table[index]

9

10 # Update if key exists

11 for i, (k, v) in enumerate (bucket):
12 if k == key:

13 bucket [i] = (key, value)

14 return

15

16 # Add new key-value pair

17 bucket .append ((key, value))

18
19 def search(self, key):



Open Addressing

Idea: All elements stored in table, probe for empty slots

New key hashes
to index 1
(occupied)

Probe sequence:

1—-2—-3—-4

Advantages:
® Better cache locality

- NI - . Ly

(k0, vO)

OCCUPIED

(k2, v2)

Try next —

Empty

(k5, v5)

Empty
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Comparison: Chaining vs Open Addressing

Feature Chaining Open Addressing
Memory More (pointers) Less (no pointers)
Cache locality Poor Good

Load factor Can exceed 1.0 Must stay < 0.7
Deletion Simple Complex (tombstones)
Clustering No Yes
Implementation Easier Harder

Best for General use Cache-friendly, known size

Recommendation:
® Use chaining for most applications (simpler, more flexible)

® Use open addressing for performance-critical, cache-sensitive code



Open Addressing Strategies



Linear Probing

Formula: h(k, i) = (h(k) + i) % m
Probe sequence: h(k), h(k)+1, h(k)+2, h(k)+3, ...

Example: Key hashes to index 3, table size = 10

Probe: 344 —+5—-6—-7—-8—-9—-0—1—2

Advantages:

® Simple to implement

® Good cache locality (sequential access)
Disadvantages:

® Primary clustering: Long runs of occupied slots form

Clustering Example:

Cluster grows!



Quadratic Probing

Formula: h(k, i) = (h(k) +i%) % m
Probe sequence: h(k), h(k)+1, h(k)+4, h(k)+9, h(k)+16, ...

Example: Key hashes to index 3, table size = 10

i | Offset | Index
0 0 3
1 1 4
2 4 7
3 9 2
4 16 9

Advantages:
® Reduces primary clustering
® Better distribution than linear
Disadvantages:
® Secondary clustering: Keys with same_hash. follow same probe sequence



Double Hashing

Formula: h(k, i) = (hy(k) +i x ha(k)) % m
Two hash functions:
® hi(k): Initial position

® hy(k): Step size (must be coprime with m)

Example: h;(k) = 3, ha(k) = 7, table size = 10

Advantages:

i | Offset | Index
0 0 3
1 7 0
2 14 7
3 21 4
4 28 1

® Eliminates both primary and secondary clustering
® Best distribution among open addressing, methods



Comparison of Probing Methods

Method Clustering | Complexity | Distribution
Linear Primary Simple Poor
Quadratic Secondary Moderate Good
Double Hashing None Complex Excellent

Clustering Visualization:




Deletion in Open Addressing



The Deletion Problem

Challenge: Cannot simply set slot to None

Example Problem:
1. Insert k1 at index 1, k2 at index 2 (k2 collided, probed to 2)
2. Delete k1 (set index 1 to None)
3. Search for k2:
® Start at index 1
® Find None — stop searching
® k2 is "lost" even though it's at index 2!

0 [1: k]2: k2 3 4

Before delete

0 1: Nof2: k2 3 4

After delete - k2 Uunreachablel



Solution: Tombstones (Lazy Deletion)

Idea: Mark deleted slots with special DELETED marker

Rules:
® Insert: Can place at None or DELETED slots
® Search: Skip over DELETED, continue probing
¢ Delete: Mark slot as DELETED (not None)

0/1: DE2: kZ 3 4

With tombstone - k2 still reachable

Tombstone Issues:
® DELETED markers accumulate over time
® Degrade search performance
® \Waste space



Deletion Implementation

1 class HashTableWithDeletion:
DELETED = object() # Sentinel value

2
3
4 def delete(self, key):

5 for i in range(self.size):

6 index = (hash(key) + i) 7% self.size
7
8
9

if self.table[index] is None:
return False # Not found
10

11 if self.table[index] is not self.DELETED:
12 if self.table[index][0] == key:

13 self.table[index] = self.DELETED
14 return True

15

16 return False

17

18 def search(self, key):

19 for i in range(self.size):



Applications
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Application: Dictionaries / Maps

Most common use case: Key-value storage

# Python dict (hash table implementation)

phonebook = {

"Alice": "b555-1234",
"Bob": "555-5678",
"Charlie": "555-9012"

# 0(1) average case operations

phone = phonebook["Alice"] # Lookup

phonebook ["David"] = "555-3456"
del phonebook["Bob"] # Delete
exists = "Charlie" in phonebook

Real-world examples:
® Student records (ID — student info)

= e o o

# Insert

# Membership test



Application: Caching (LRU Cache)

1 from collections import OrderedDict

class LRUCache:
def __init__(self, capacity):
self.cache = OrderedDict ()
self . capacity = capacity

def get(self, key):
if key not in self.cache:
return -1
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=
= o

# Move to end (most recently used)
self .cache.move_to_end (key)
return self.cache [key]

T S
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def put(self, key, value):
if key in self.cache:
self.cache.move_to_end (key)

=R e
®w ~N O

self.cache[key] = value
if len(self.cache) > self.capacity:

=
©



Application: Frequency Counting

from collections import Counter

# Count word frequencies

text = "the quick brown fox jumps over the lazy dog"
word_count = Counter (text.split())

print (word_count)

# Counter ({’the’: 2, ’>quick’: 1, ’brown’: 1, ’fox’: 1, ...})

# Most common words
print (word_count.most_common (3))
# [(’the’, 2), (’quick’, 1), (’brown’, 1)]

# Manual implementation
def count_frequencies(items):
freq = {}
for item in items:
freqlitem] = freq.get(item; . 0) + 1



Application: Two Sum Problem

Problem: Find two numbers that sum to target

1 def

2

10
11
12
13
14

15

two_sum (nums, target):

nmmnn

Given array and target, return indices of two numbers

that add up to target.

Time: 0(n), Space: 0(n)

nmnn

seen = {}
for i, num in enumerate (nums) :
complement = target - num

if complement in seen:
return [seen[complement],
seen[num] = i
return None

16:# JExample

i]



Application: Deduplication

1 def remove_duplicates (arr):

2 """Remove duplicates while preserving order"""
3 seen = set ()

4 result = []

5 for item in arr:

6 if item not in seen:

7 seen.add (item)

8 result.append (item)

9 return result

10
11 # Example

warr = [1, 2, 3, 2, 4, 1, 5]

13 print (remove_duplicates (arr))
w# [1, 2, 3, 4, 5]

15

16 # Using set (loses order)
i7.unique = list(set(arr))



Complexity and Pitfalls



Time Complexity

Operation | Average | Worst Notes

Insert O(1) O(n) Worst: all keys collide
Search 0(1) O(n) Worst: all keys collide
Delete O(1) O(n) Worst: all keys collide
Resize O(n) O(n) | Amortized O(1) per insert

Space Complexity:
¢ Chaining: O(n + m) where n = elements, m = table size
® Open addressing: O(m), must keep load factor low

Key Point: Expected O(1) depends on:
® Good hash function (uniform distribution)
® Reasonable load factor (< 0.75)
® Proper collision handling
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Common Pitfall 1: Mutable Keys

Problem: Using mutable objects as keys

# BAD: Lists are mutable, can’t be
d = {[1, 2]: "value"} # TypeError:

# BAD: Dictionaries are mutable

d = {{1: 2}: "value"} # TypeError:
# GOOD: Use immutable types

d = {(1, 2): "value"}

d = {frozenset ([1, 2]): "value"}

d = {"key": "value"}

d = {42: "value"}

Rule: Keys must be immutable and hashable
® Hashable: int, float, str, tuple, frozenset
® Not hashable: list, dict, set

hashed

H H H #®

unhashable type:

unhashable type:

Tuples work
Frozen sets work
Strings work
Integers work
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Common Pitfall 2: Poor Hash Function

# BAD:

A1l strings of same length collide
def bad_hash(s):
return len(s) % 10

# All 5-letter words map to index 5!
# "hello",

# BAD:

# "ant" ,

world", "apple

" -> all collide

Only uses first character
def bad_hash2(s):
return ord(sl[0]) % 10

Consequences:
® Many collisions

® Performanc

n applell s n arrow”

e degrades to O(n)

-> all collide



1

Common Pitfall 3: Ignoring Load Factor

# BAD:

Never resize

2 class BadHashTable:

def

def

__init__(self):
self.table = [[] for
# Fixed size!

in range (10)]

insert (self, key, value):

index = hash(key) % 10

self .table[index] . append ((key, value))
# Just keep inserting...

# Performance degrades to 0(n)!

Problem: With 1000 elements in size-10 table:
® | oad factor = 100
® Average chain length = 100
® Search time = O(100) = O(n)



When NOT to Use Hash Tables

Hash tables are NOT suitable when you need:

¢ Ordered iteration: Use BST or sorted array
® Hash tables don't maintain order

® Range queries: Use BST or B-tree
® "Find all keys between 10 and 20"

Minimum/maximum: Use heap
® Hash tables need O(n) to find min/max

® \Worst-case guarantees: Use balanced trees
® Hash tables can degrade to O(n)

® Memory constrained: Consider alternatives
® Hash tables waste space (load factor < 1)



Summary



Key Concepts Recap

Hash Table Fundamentals:
® Hash function maps keys to array indices
® Expected O(1) insert, search, delete
® Trade space for time

Good Hash Function:
® Deterministic, uniform, fast
® Minimize collisions
o Common methods: division, multiplication, polynomial

Load Factor Management:
® a =n/m (elements / table size)
® Resize when oo > 0.75 (chaining) or o > 0.5 (open addressing)
e Amortized O(1) resizing cost



Collision Handling Recap

Separate Chaining:
® Store lists at each index
® Simple, never fills up

® Extra memory, poor cache locality

Open Addressing:
® Probe for next empty slot

® Better cache locality, no pointers

Complex deletion (tombstones)

Three methods:
® Linear probing (simple, primary clustering)
® Quadratic probing (better, secondary clustering)
® Double hashing (best, no clustering)



Applications Recap

Common Uses:

Dictionaries/maps (key-value storage)
Caching (LRU cache)

Sets (unique elements)

Frequency counting

Database indexing

Deduplication

Two sum and related problems

Best Practices:

Use immutable keys only

Choose good hash function
Monitor and maintain load factor
Resize when needed

Use chaining for most cases



Practice Problems

Basic:
® |mplement hash table with chaining
® |mplement hash table with linear probing
® Design hash function for strings

Intermediate:
e | RU Cache (LeetCode 146)
Two Sum (LeetCode 1)
Group Anagrams (LeetCode 49)
First Unique Character (LeetCode 387)
Implement resizing with load factor

Advanced:
® Design hashmap with all operations (LeetCode 706)
® |LFU Cache (LeetCode 460)
® |mplement quadratic probing
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Further Learning

Advanced Topics:

Universal hashing families

Perfect hashing

Cuckoo hashing

Robin Hood hashing

Bloom filters (probabilistic hash structures)

Resources:

CLRS: Chapter 11 (Hash Tables)

® Practice on LeetCode hash table tag

e Study Python dict implementation (CPython source)
® Analyze hash functions with test data

Projects:
® Build your own hash table library
® |mplement LRU cache from scratch
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Thank Youl

Questions?

Hash Tables: Fast Average-Case Performance
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