
Hash Tables
Expected O(1) Key-Value Operations

Minseok Jeon
DGIST

November 2, 2025

Minseok Jeon Hash Tables November 2, 2025 1/49



Outline

1. Introduction to Hash Tables

2. Hash Functions

3. Load Factor and Resizing

4. Collision Handling

5. Open Addressing Strategies

6. Deletion in Open Addressing

7. Applications

8. Complexity and Pitfalls

9. Summary

Minseok Jeon Hash Tables November 2, 2025 2/49



Introduction to Hash Tables



What is a Hash Table?
Definition: A data structure that maps keys to values using a hash function.

Key Components:
• Hash function: Converts keys to array indices
• Array (table): Stores key-value pairs
• Collision handling: Manages keys that hash to same index

Basic Idea:

Key: "Alice" hash("Alice") = 3

0: ___

1: ___

2: ___

3: ("Alice", "555-1234")

4: ___

Performance: Expected O(1) for insert, search, deleteMinseok Jeon Hash Tables November 2, 2025 4/49



Why Use Hash Tables?
Advantages:
• Fast lookups: Average O(1) vs O(log n) for trees
• Simple interface: Natural key-value mapping
• Flexible keys: Strings, numbers, tuples, etc.
• Widely used: Python dicts, Java HashMap, C++ unordered_map

Common Applications:
• Dictionaries/maps (phone book, student records)
• Caching (LRU cache, memoization)
• Sets (unique element tracking)
• Frequency counting (word count)
• Database indexing
• Deduplication

Minseok Jeon Hash Tables November 2, 2025 5/49



Hash Functions



What Makes a Good Hash Function?

Essential Properties:
1. Deterministic: Same key always produces same hash

2. Uniform distribution: Keys spread evenly across table

3. Fast to compute: O(1) or O(k) where k = key length

4. Minimize collisions: Different keys rarely map to same index

5. Avalanche effect: Small key change → large hash change

Hash Function Signature:

hash(key) → integer in range [0, table_size - 1]

Goal: Distribute keys uniformly to minimize collisions

Minseok Jeon Hash Tables November 2, 2025 7/49



Common Hash Functions: Division Method
Simplest approach: Use modulo operator

1 def hash_division(key , table_size):
2 return key % table_size

Example:
• Key = 42, Table size = 13
• hash(42) = 42 % 13 = 3

Best Practice: Use prime table sizes
• Prime numbers: 53, 97, 193, 389, 769, 1543, ...
• Better distribution
• Fewer collisions

Trade-off: Powers of 2 are faster (bitwise AND) but worse distribution
Minseok Jeon Hash Tables November 2, 2025 8/49



Common Hash Functions: Multiplication Method
Idea: Multiply by constant, extract fractional part

1 def hash_multiplication(key , table_size):
2 A = 0.6180339887 # (sqrt (5) - 1) / 2, golden ratio
3 return int(table_size * ((key * A) % 1))

Advantages:
• Works well with any table size
• Good distribution with golden ratio constant
• Independent of table size choice

Example:
• Key = 123, A = 0.618, Table size = 100
• 123 × 0.618 = 76.014
• Fractional part: 0.014
• Index: ⌊100 × 0.014⌋ = 1

Minseok Jeon Hash Tables November 2, 2025 9/49



String Hashing: Polynomial Rolling Hash
Challenge: Hash strings efficiently

1 def hash_string(s, table_size):
2 hash_val = 0
3 p = 31 # Prime base
4 p_pow = 1
5

6 for char in s:
7 hash_val = (hash_val + ord(char) * p_pow) % table_size
8 p_pow = (p_pow * p) % table_size
9

10 return hash_val

Example: "hello"
• h: 104 × 310

• e: 101 × 311

• l: 108 × 312

• l: 108 × 313

• o: 111 × 314

• Sum (mod table_size) = hash value

Why prime base? Better distribution, fewer collisions

Minseok Jeon Hash Tables November 2, 2025 10/49



Bad Hash Function Example
What NOT to do:

1 # BAD: Only uses first character
2 def bad_hash(s, table_size):
3 return ord(s[0]) % table_size

Problem: Many collisions!
• "apple" → ord(’a’) = 97
• "ant" → ord(’a’) = 97
• "arrow" → ord(’a’) = 97
• All hash to same index!

Another bad example:
1 # BAD: All 5-letter words collide
2 def bad_hash2(s, table_size):
3 return len(s) % table_size

Lesson: Use all parts of the key for better distribution
Minseok Jeon Hash Tables November 2, 2025 11/49



Load Factor and Resizing



Load Factor (α)
Definition: α = n

m where
• n = number of elements
• m = table size

Meaning: Average number of elements per slot

Impact on Performance:

Load Factor (α)

Search Time

0.75

Typical resize threshold

Typical Thresholds:
• Chaining: Resize when α > 0.75 (Python uses 0.67)
• Open addressing: Resize when α > 0.5

Minseok Jeon Hash Tables November 2, 2025 13/49



Resizing Strategy

1 class HashTable:
2 def __init__(self , initial_size =16):
3 self.size = initial_size
4 self.count = 0
5 self.table = [[] for _ in range(self.size)]
6

7 def load_factor(self):
8 return self.count / self.size
9

10 def resize(self):
11 # Double the size
12 old_table = self.table
13 self.size *= 2
14 self.table = [[] for _ in range(self.size)]
15 self.count = 0
16

17 # Rehash all elements
18 for bucket in old_table:
19 for key , value in bucket:
20 self.insert(key , value)
21

22 def insert(self , key , value):
23 if self.load_factor () > 0.75:
24 self.resize ()
25

26 index = hash(key) % self.size
27 # Insert logic here
28 self.count += 1

Minseok Jeon Hash Tables November 2, 2025 14/49



Amortized Analysis of Resizing
Question: Is resizing expensive?

Analysis:
• Insert n elements
• Resizes occur at: 1, 2, 4, 8, 16, ..., n
• Total rehashing cost: 1 + 2 + 4 + ... + n = 2n - 1 = O(n)
• Amortized cost per insertion: O(n) / n = O(1)

Visualization:

1 2 4 8 16 32

Insertions

Resize Resize Resize Resize

Key insight: Expensive resizes are rare, so average cost is O(1)
Minseok Jeon Hash Tables November 2, 2025 15/49



Collision Handling



Collision: When Two Keys Hash to Same Index

Problem: Different keys can hash to the same index

Key: "Alice"

Key: "Bob"

hash = 3

hash = 3

0: ___

1: ___

2: ___

3: COLLISION!
4: ___

Two Main Solutions:
1. Separate Chaining: Store multiple elements at each index (linked list)

2. Open Addressing: Find another empty slot in the table

Minseok Jeon Hash Tables November 2, 2025 17/49



Separate Chaining
Idea: Each table slot stores a list of colliding elements

0

1

2

3

4

∅

k2, v2 ∅

k3, v3 k7, v7 k11, v11 ∅

Hash Table

Linked Lists

Advantages:
• Simple to implement
• Never fills up (can exceed load factor 1.0)
• Easy deletion

Disadvantages:
• Extra memory for pointers
• Poor cache locality

Minseok Jeon Hash Tables November 2, 2025 18/49



Separate Chaining Implementation

1 class HashTableChaining:
2 def __init__(self , size =10):
3 self.size = size
4 self.table = [[] for _ in range(size)]
5

6 def insert(self , key , value):
7 index = hash(key) % self.size
8 bucket = self.table[index]
9

10 # Update if key exists
11 for i, (k, v) in enumerate(bucket):
12 if k == key:
13 bucket[i] = (key , value)
14 return
15

16 # Add new key -value pair
17 bucket.append ((key , value))
18

19 def search(self , key):
20 index = hash(key) % self.size
21 bucket = self.table[index]
22

23 for k, v in bucket:
24 if k == key:
25 return v
26

27 return None # Not found

Minseok Jeon Hash Tables November 2, 2025 19/49



Open Addressing
Idea: All elements stored in table, probe for empty slots

0: (k0, v0)

1: OCCUPIED

2: (k2, v2)

3: Try next →
4: Empty

5: (k5, v5)

6: Empty

7: Empty

New key hashes
to index 1
(occupied)

Probe sequence:
1 → 2 → 3 → 4

Advantages:
• Better cache locality
• No extra memory for pointers

Disadvantages:
• Must maintain low load factor (< 0.7)
• Complex deletion (need tombstones)
• Clustering issues

Minseok Jeon Hash Tables November 2, 2025 20/49



Comparison: Chaining vs Open Addressing

Feature Chaining Open Addressing
Memory More (pointers) Less (no pointers)
Cache locality Poor Good
Load factor Can exceed 1.0 Must stay < 0.7
Deletion Simple Complex (tombstones)
Clustering No Yes
Implementation Easier Harder
Best for General use Cache-friendly, known size

Recommendation:
• Use chaining for most applications (simpler, more flexible)
• Use open addressing for performance-critical, cache-sensitive code

Minseok Jeon Hash Tables November 2, 2025 21/49



Open Addressing Strategies



Linear Probing
Formula: h(k, i) = (h(k) + i) % m
Probe sequence: h(k), h(k)+1, h(k)+2, h(k)+3, ...

Example: Key hashes to index 3, table size = 10

Probe: 3 → 4 → 5 → 6 → 7 → 8 → 9 → 0 → 1 → 2

Advantages:
• Simple to implement
• Good cache locality (sequential access)

Disadvantages:
• Primary clustering: Long runs of occupied slots form

Clustering Example:

Cluster grows!
Minseok Jeon Hash Tables November 2, 2025 23/49



Quadratic Probing
Formula: h(k, i) = (h(k) + i²) % m
Probe sequence: h(k), h(k)+1, h(k)+4, h(k)+9, h(k)+16, ...

Example: Key hashes to index 3, table size = 10

i Offset Index
0 0 3
1 1 4
2 4 7
3 9 2
4 16 9

Advantages:
• Reduces primary clustering
• Better distribution than linear

Disadvantages:
• Secondary clustering: Keys with same hash follow same probe sequence
• May not probe all slots (need prime table size)

Minseok Jeon Hash Tables November 2, 2025 24/49



Double Hashing
Formula: h(k, i) = (h1(k) + i × h2(k)) % m
Two hash functions:
• h1(k): Initial position
• h2(k): Step size (must be coprime with m)

Example: h1(k) = 3, h2(k) = 7, table size = 10

i Offset Index
0 0 3
1 7 0
2 14 7
3 21 4
4 28 1

Advantages:
• Eliminates both primary and secondary clustering
• Best distribution among open addressing methods

Disadvantages:
• More complex to implement
• Two hash function computations

Minseok Jeon Hash Tables November 2, 2025 25/49



Comparison of Probing Methods

Method Clustering Complexity Distribution
Linear Primary Simple Poor
Quadratic Secondary Moderate Good
Double Hashing None Complex Excellent

Clustering Visualization:

Linear:

Quadratic:

Double Hash:

Minseok Jeon Hash Tables November 2, 2025 26/49



Deletion in Open Addressing



The Deletion Problem
Challenge: Cannot simply set slot to None

Example Problem:
1. Insert k1 at index 1, k2 at index 2 (k2 collided, probed to 2)
2. Delete k1 (set index 1 to None)
3. Search for k2:

• Start at index 1
• Find None → stop searching
• k2 is "lost" even though it’s at index 2!

0 1: k12: k2 3 4

Before delete

0 1: None2: k2 3 4

After delete - k2 unreachable!Minseok Jeon Hash Tables November 2, 2025 28/49



Solution: Tombstones (Lazy Deletion)
Idea: Mark deleted slots with special DELETED marker

Rules:
• Insert: Can place at None or DELETED slots
• Search: Skip over DELETED, continue probing
• Delete: Mark slot as DELETED (not None)

0 1: DEL2: k2 3 4

With tombstone - k2 still reachable

Tombstone Issues:
• DELETED markers accumulate over time
• Degrade search performance
• Waste space

Solution: Rehash when too many tombstones (e.g., > 25% of table)
Minseok Jeon Hash Tables November 2, 2025 29/49



Deletion Implementation

1 class HashTableWithDeletion:
2 DELETED = object () # Sentinel value
3

4 def delete(self , key):
5 for i in range(self.size):
6 index = (hash(key) + i) % self.size
7

8 if self.table[index] is None:
9 return False # Not found

10

11 if self.table[index] is not self.DELETED:
12 if self.table[index ][0] == key:
13 self.table[index] = self.DELETED
14 return True
15

16 return False
17

18 def search(self , key):
19 for i in range(self.size):
20 index = (hash(key) + i) % self.size
21

22 if self.table[index] is None:
23 return None # Not found
24

25 # Skip DELETED , continue probing
26 if self.table[index] is not self.DELETED:
27 if self.table[index ][0] == key:
28 return self.table[index ][1]
29

30 return None

Minseok Jeon Hash Tables November 2, 2025 30/49



Applications



Application: Dictionaries / Maps
Most common use case: Key-value storage

1 # Python dict (hash table implementation)
2 phonebook = {
3 "Alice": "555 -1234",
4 "Bob": "555 -5678",
5 "Charlie": "555 -9012"
6 }
7

8 # O(1) average case operations
9 phone = phonebook["Alice"] # Lookup

10 phonebook["David"] = "555 -3456" # Insert
11 del phonebook["Bob"] # Delete
12 exists = "Charlie" in phonebook # Membership test

Real-world examples:
• Student records (ID → student info)
• Configuration files (setting name → value)
• Symbol tables (variable name → value)

Minseok Jeon Hash Tables November 2, 2025 32/49



Application: Caching (LRU Cache)

1 from collections import OrderedDict
2

3 class LRUCache:
4 def __init__(self , capacity):
5 self.cache = OrderedDict ()
6 self.capacity = capacity
7

8 def get(self , key):
9 if key not in self.cache:

10 return -1
11 # Move to end (most recently used)
12 self.cache.move_to_end(key)
13 return self.cache[key]
14

15 def put(self , key , value):
16 if key in self.cache:
17 self.cache.move_to_end(key)
18 self.cache[key] = value
19 if len(self.cache) > self.capacity:
20 # Remove least recently used (first item)
21 self.cache.popitem(last=False)
22

23 # Example usage
24 cache = LRUCache (2)
25 cache.put(1, "A")
26 cache.put(2, "B")
27 cache.get(1) # Returns "A", moves 1 to end
28 cache.put(3, "C") # Evicts key 2 (least recently used)

Minseok Jeon Hash Tables November 2, 2025 33/49



Application: Frequency Counting

1 from collections import Counter
2

3 # Count word frequencies
4 text = "the quick brown fox jumps over the lazy dog"
5 word_count = Counter(text.split ())
6 print(word_count)
7 # Counter({’the ’: 2, ’quick ’: 1, ’brown ’: 1, ’fox ’: 1, ...})
8

9 # Most common words
10 print(word_count.most_common (3))
11 # [(’the ’, 2), (’quick ’, 1), (’brown ’, 1)]
12

13 # Manual implementation
14 def count_frequencies(items):
15 freq = {}
16 for item in items:
17 freq[item] = freq.get(item , 0) + 1
18 return freq

Applications:
• Text analysis (word frequency)
• Log analysis (error frequency)
• User behavior (page visit counts)

Minseok Jeon Hash Tables November 2, 2025 34/49



Application: Two Sum Problem
Problem: Find two numbers that sum to target

1 def two_sum(nums , target):
2 """
3 Given array and target , return indices of two numbers
4 that add up to target.
5

6 Time: O(n), Space: O(n)
7 """
8 seen = {}
9 for i, num in enumerate(nums):

10 complement = target - num
11 if complement in seen:
12 return [seen[complement], i]
13 seen[num] = i
14 return None
15

16 # Example
17 nums = [2, 7, 11, 15]
18 target = 9
19 print(two_sum(nums , target)) # [0, 1] (2 + 7 = 9)

Key insight: Hash table enables O(1) lookup of complement

Minseok Jeon Hash Tables November 2, 2025 35/49



Application: Deduplication

1 def remove_duplicates(arr):
2 """ Remove duplicates while preserving order """
3 seen = set()
4 result = []
5 for item in arr:
6 if item not in seen:
7 seen.add(item)
8 result.append(item)
9 return result

10

11 # Example
12 arr = [1, 2, 3, 2, 4, 1, 5]
13 print(remove_duplicates(arr))
14 # [1, 2, 3, 4, 5]
15

16 # Using set (loses order)
17 unique = list(set(arr))
18 # [1, 2, 3, 4, 5] (order not guaranteed)

Applications:
• Remove duplicate emails from mailing list
• Find unique visitors to website
• Detect duplicate transactions

Minseok Jeon Hash Tables November 2, 2025 36/49



Complexity and Pitfalls



Time Complexity

Operation Average Worst Notes
Insert O(1) O(n) Worst: all keys collide
Search O(1) O(n) Worst: all keys collide
Delete O(1) O(n) Worst: all keys collide
Resize O(n) O(n) Amortized O(1) per insert

Space Complexity:
• Chaining: O(n + m) where n = elements, m = table size
• Open addressing: O(m), must keep load factor low

Key Point: Expected O(1) depends on:
• Good hash function (uniform distribution)
• Reasonable load factor (< 0.75)
• Proper collision handling

Minseok Jeon Hash Tables November 2, 2025 38/49



Common Pitfall 1: Mutable Keys
Problem: Using mutable objects as keys

1 # BAD: Lists are mutable , can’t be hashed
2 d = {[1, 2]: "value"} # TypeError: unhashable type: ’list’
3

4 # BAD: Dictionaries are mutable
5 d = {{1: 2}: "value"} # TypeError: unhashable type: ’dict’
6

7 # GOOD: Use immutable types
8 d = {(1, 2): "value"} # Tuples work
9 d = {frozenset ([1, 2]): "value"} # Frozen sets work

10 d = {"key": "value"} # Strings work
11 d = {42: "value"} # Integers work

Rule: Keys must be immutable and hashable
• Hashable: int, float, str, tuple, frozenset
• Not hashable: list, dict, set

Minseok Jeon Hash Tables November 2, 2025 39/49



Common Pitfall 2: Poor Hash Function

1 # BAD: All strings of same length collide
2 def bad_hash(s):
3 return len(s) % 10
4

5 # All 5-letter words map to index 5!
6 # "hello", "world", "apple" -> all collide
7

8 # BAD: Only uses first character
9 def bad_hash2(s):

10 return ord(s[0]) % 10
11

12 # "ant", "apple", "arrow" -> all collide

Consequences:
• Many collisions
• Performance degrades to O(n)
• Long collision chains

Solution: Use all parts of key, use proven hash functions

Minseok Jeon Hash Tables November 2, 2025 40/49



Common Pitfall 3: Ignoring Load Factor

1 # BAD: Never resize
2 class BadHashTable:
3 def __init__(self):
4 self.table = [[] for _ in range (10)]
5 # Fixed size!
6

7 def insert(self , key , value):
8 index = hash(key) % 10
9 self.table[index]. append ((key , value))

10 # Just keep inserting ...
11 # Performance degrades to O(n)!

Problem: With 1000 elements in size-10 table:
• Load factor = 100
• Average chain length = 100
• Search time = O(100) = O(n)

Solution: Monitor load factor, resize when needed

Minseok Jeon Hash Tables November 2, 2025 41/49



When NOT to Use Hash Tables
Hash tables are NOT suitable when you need:

• Ordered iteration: Use BST or sorted array
• Hash tables don’t maintain order

• Range queries: Use BST or B-tree
• "Find all keys between 10 and 20"

• Minimum/maximum: Use heap
• Hash tables need O(n) to find min/max

• Worst-case guarantees: Use balanced trees
• Hash tables can degrade to O(n)

• Memory constrained: Consider alternatives
• Hash tables waste space (load factor < 1)

Minseok Jeon Hash Tables November 2, 2025 42/49



Summary



Key Concepts Recap
Hash Table Fundamentals:
• Hash function maps keys to array indices
• Expected O(1) insert, search, delete
• Trade space for time

Good Hash Function:
• Deterministic, uniform, fast
• Minimize collisions
• Common methods: division, multiplication, polynomial

Load Factor Management:
• α = n/m (elements / table size)
• Resize when α > 0.75 (chaining) or α > 0.5 (open addressing)
• Amortized O(1) resizing cost

Minseok Jeon Hash Tables November 2, 2025 44/49



Collision Handling Recap

Separate Chaining:
• Store lists at each index
• Simple, never fills up
• Extra memory, poor cache locality

Open Addressing:
• Probe for next empty slot
• Better cache locality, no pointers
• Complex deletion (tombstones)
• Three methods:

• Linear probing (simple, primary clustering)
• Quadratic probing (better, secondary clustering)
• Double hashing (best, no clustering)

Minseok Jeon Hash Tables November 2, 2025 45/49



Applications Recap
Common Uses:
• Dictionaries/maps (key-value storage)
• Caching (LRU cache)
• Sets (unique elements)
• Frequency counting
• Database indexing
• Deduplication
• Two sum and related problems

Best Practices:
• Use immutable keys only
• Choose good hash function
• Monitor and maintain load factor
• Resize when needed
• Use chaining for most cases

Minseok Jeon Hash Tables November 2, 2025 46/49



Practice Problems
Basic:
• Implement hash table with chaining
• Implement hash table with linear probing
• Design hash function for strings

Intermediate:
• LRU Cache (LeetCode 146)
• Two Sum (LeetCode 1)
• Group Anagrams (LeetCode 49)
• First Unique Character (LeetCode 387)
• Implement resizing with load factor

Advanced:
• Design hashmap with all operations (LeetCode 706)
• LFU Cache (LeetCode 460)
• Implement quadratic probing
• Implement double hashing
• Analyze hash function quality

Minseok Jeon Hash Tables November 2, 2025 47/49



Further Learning
Advanced Topics:
• Universal hashing families
• Perfect hashing
• Cuckoo hashing
• Robin Hood hashing
• Bloom filters (probabilistic hash structures)

Resources:
• CLRS: Chapter 11 (Hash Tables)
• Practice on LeetCode hash table tag
• Study Python dict implementation (CPython source)
• Analyze hash functions with test data

Projects:
• Build your own hash table library
• Implement LRU cache from scratch
• Create spell checker with hash table
• Design in-memory database with hash indexing

Minseok Jeon Hash Tables November 2, 2025 48/49



Thank You!

Questions?

Hash Tables: Fast Average-Case Performance

Minseok Jeon Hash Tables November 2, 2025 49/49


	Introduction to Hash Tables
	Hash Functions
	Load Factor and Resizing
	Collision Handling
	Open Addressing Strategies
	Deletion in Open Addressing
	Applications
	Complexity and Pitfalls
	Summary

