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Introduction to Hash Tables



What is a Hash Table?
Definition: A data structure that maps keys to values using a hash function.

Key Components:
• Hash function: Converts keys to array indices
• Array (table): Stores key-value pairs
• Collision handling: Manages keys that hash to same index

Basic Idea:

Key: "Alice" hash("Alice") = 3

0: ___

1: ___

2: ___

3: ("Alice", "555-1234")

4: ___
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Why Use Hash Tables?
Advantages:
• Fast lookups: Average O(1) vs O(log n) for trees
• Simple interface: Natural key-value mapping
• Flexible keys: Strings, numbers, tuples, etc.
• Widely used: Python dicts, Java HashMap, C++ unordered_map

Common Applications:
• Dictionaries/maps (phone book, student records)
• Caching (LRU cache, memoization)
• Sets (unique element tracking)
• Frequency counting (word count)
• Database indexing
• Deduplication
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Hash Functions



What Makes a Good Hash Function?

Essential Properties:
1. Deterministic: Same key always produces same hash

2. Uniform distribution: Keys spread evenly across table

3. Fast to compute: O(1) or O(k) where k = key length

4. Minimize collisions: Different keys rarely map to same index

5. Avalanche effect: Small key change → large hash change

Hash Function Signature:

hash(key) → integer in range [0, table_size - 1]

Goal: Distribute keys uniformly to minimize collisions
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Common Hash Functions: Division Method
Simplest approach: Use modulo operator

1 def hash_division(key , table_size):
2 return key % table_size

Example:
• Key = 42, Table size = 13
• hash(42) = 42 % 13 = 3

Best Practice: Use prime table sizes
• Prime numbers: 53, 97, 193, 389, 769, 1543, ...
• Better distribution
• Fewer collisions

Trade-off: Powers of 2 are faster (bitwise AND) but worse distribution
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Common Hash Functions: Multiplication Method
Idea: Multiply by constant, extract fractional part

1 def hash_multiplication(key , table_size):
2 A = 0.6180339887 # (sqrt (5) - 1) / 2, golden ratio
3 return int(table_size * ((key * A) % 1))

Advantages:
• Works well with any table size
• Good distribution with golden ratio constant
• Independent of table size choice

Example:
• Key = 123, A = 0.618, Table size = 100
• 123 × 0.618 = 76.014
• Fractional part: 0.014
• Index: ⌊100 × 0.014⌋ = 1
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String Hashing: Polynomial Rolling Hash
Challenge: Hash strings efficiently

1 def hash_string(s, table_size):
2 hash_val = 0
3 p = 31 # Prime base
4 p_pow = 1
5

6 for char in s:
7 hash_val = (hash_val + ord(char) * p_pow) % table_size
8 p_pow = (p_pow * p) % table_size
9

10 return hash_val

Example: "hello"
• h: 104 × 310

• e: 101 × 311

• l: 108 × 312

• l: 108 × 313

• o: 111 × 314

• Sum (mod table_size) = hash value

Why prime base? Better distribution, fewer collisions

Minseok Jeon Hash Tables November 2, 2025 10/49



Bad Hash Function Example
What NOT to do:

1 # BAD: Only uses first character
2 def bad_hash(s, table_size):
3 return ord(s[0]) % table_size

Problem: Many collisions!
• "apple" → ord(’a’) = 97
• "ant" → ord(’a’) = 97
• "arrow" → ord(’a’) = 97
• All hash to same index!

Another bad example:
1 # BAD: All 5-letter words collide
2 def bad_hash2(s, table_size):
3 return len(s) % table_size

Lesson: Use all parts of the key for better distribution
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Load Factor and Resizing



Load Factor (α)
Definition: α = n

m where
• n = number of elements
• m = table size

Meaning: Average number of elements per slot

Impact on Performance:

Load Factor (α)

Search Time

0.75

Typical resize threshold

Typical Thresholds:
• Chaining: Resize when α > 0.75 (Python uses 0.67)
• Open addressing: Resize when α > 0.5
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Resizing Strategy

1 class HashTable:
2 def __init__(self , initial_size =16):
3 self.size = initial_size
4 self.count = 0
5 self.table = [[] for _ in range(self.size)]
6

7 def load_factor(self):
8 return self.count / self.size
9

10 def resize(self):
11 # Double the size
12 old_table = self.table
13 self.size *= 2
14 self.table = [[] for _ in range(self.size)]
15 self.count = 0
16

17 # Rehash all elements
18 for bucket in old_table:
19 for key , value in bucket:
20 self.insert(key , value)
21

22 def insert(self , key , value):
23 if self.load_factor () > 0.75:
24 self.resize ()
25

26 index = hash(key) % self.size
27 # Insert logic here
28 self.count += 1
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Amortized Analysis of Resizing
Question: Is resizing expensive?

Analysis:
• Insert n elements
• Resizes occur at: 1, 2, 4, 8, 16, ..., n
• Total rehashing cost: 1 + 2 + 4 + ... + n = 2n - 1 = O(n)
• Amortized cost per insertion: O(n) / n = O(1)

Visualization:

1 2 4 8 16 32

Insertions

Resize Resize Resize Resize

Key insight: Expensive resizes are rare, so average cost is O(1)
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Collision Handling



Collision: When Two Keys Hash to Same Index

Problem: Different keys can hash to the same index

Key: "Alice"

Key: "Bob"

hash = 3

hash = 3

0: ___

1: ___

2: ___

3: COLLISION!
4: ___

Two Main Solutions:
1. Separate Chaining: Store multiple elements at each index (linked list)

2. Open Addressing: Find another empty slot in the table
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Separate Chaining
Idea: Each table slot stores a list of colliding elements

0

1

2

3

4

∅

k2, v2 ∅

k3, v3 k7, v7 k11, v11 ∅

Hash Table

Linked Lists

Advantages:
• Simple to implement
• Never fills up (can exceed load factor 1.0)
• Easy deletion

Disadvantages:
• Extra memory for pointers
• Poor cache locality
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Separate Chaining Implementation

1 class HashTableChaining:
2 def __init__(self , size =10):
3 self.size = size
4 self.table = [[] for _ in range(size)]
5

6 def insert(self , key , value):
7 index = hash(key) % self.size
8 bucket = self.table[index]
9

10 # Update if key exists
11 for i, (k, v) in enumerate(bucket):
12 if k == key:
13 bucket[i] = (key , value)
14 return
15

16 # Add new key -value pair
17 bucket.append ((key , value))
18

19 def search(self , key):
20 index = hash(key) % self.size
21 bucket = self.table[index]
22

23 for k, v in bucket:
24 if k == key:
25 return v
26

27 return None # Not found
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Open Addressing
Idea: All elements stored in table, probe for empty slots

0: (k0, v0)

1: OCCUPIED

2: (k2, v2)

3: Try next →
4: Empty

5: (k5, v5)

6: Empty

7: Empty

New key hashes
to index 1
(occupied)

Probe sequence:
1 → 2 → 3 → 4

Advantages:
• Better cache locality
• No extra memory for pointers

Disadvantages:
• Must maintain low load factor (< 0.7)
• Complex deletion (need tombstones)
• Clustering issues
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Comparison: Chaining vs Open Addressing

Feature Chaining Open Addressing
Memory More (pointers) Less (no pointers)
Cache locality Poor Good
Load factor Can exceed 1.0 Must stay < 0.7
Deletion Simple Complex (tombstones)
Clustering No Yes
Implementation Easier Harder
Best for General use Cache-friendly, known size

Recommendation:
• Use chaining for most applications (simpler, more flexible)
• Use open addressing for performance-critical, cache-sensitive code
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Open Addressing Strategies



Linear Probing
Formula: h(k, i) = (h(k) + i) % m
Probe sequence: h(k), h(k)+1, h(k)+2, h(k)+3, ...

Example: Key hashes to index 3, table size = 10

Probe: 3 → 4 → 5 → 6 → 7 → 8 → 9 → 0 → 1 → 2

Advantages:
• Simple to implement
• Good cache locality (sequential access)

Disadvantages:
• Primary clustering: Long runs of occupied slots form

Clustering Example:

Cluster grows!
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Quadratic Probing
Formula: h(k, i) = (h(k) + i²) % m
Probe sequence: h(k), h(k)+1, h(k)+4, h(k)+9, h(k)+16, ...

Example: Key hashes to index 3, table size = 10

i Offset Index
0 0 3
1 1 4
2 4 7
3 9 2
4 16 9

Advantages:
• Reduces primary clustering
• Better distribution than linear

Disadvantages:
• Secondary clustering: Keys with same hash follow same probe sequence
• May not probe all slots (need prime table size)
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Double Hashing
Formula: h(k, i) = (h1(k) + i × h2(k)) % m
Two hash functions:
• h1(k): Initial position
• h2(k): Step size (must be coprime with m)

Example: h1(k) = 3, h2(k) = 7, table size = 10

i Offset Index
0 0 3
1 7 0
2 14 7
3 21 4
4 28 1

Advantages:
• Eliminates both primary and secondary clustering
• Best distribution among open addressing methods

Disadvantages:
• More complex to implement
• Two hash function computations
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Comparison of Probing Methods

Method Clustering Complexity Distribution
Linear Primary Simple Poor
Quadratic Secondary Moderate Good
Double Hashing None Complex Excellent

Clustering Visualization:

Linear:

Quadratic:

Double Hash:
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Deletion in Open Addressing



The Deletion Problem
Challenge: Cannot simply set slot to None

Example Problem:
1. Insert k1 at index 1, k2 at index 2 (k2 collided, probed to 2)
2. Delete k1 (set index 1 to None)
3. Search for k2:

• Start at index 1
• Find None → stop searching
• k2 is "lost" even though it’s at index 2!

0 1: k12: k2 3 4

Before delete

0 1: None2: k2 3 4

After delete - k2 unreachable!Minseok Jeon Hash Tables November 2, 2025 28/49



Solution: Tombstones (Lazy Deletion)
Idea: Mark deleted slots with special DELETED marker

Rules:
• Insert: Can place at None or DELETED slots
• Search: Skip over DELETED, continue probing
• Delete: Mark slot as DELETED (not None)

0 1: DEL2: k2 3 4

With tombstone - k2 still reachable

Tombstone Issues:
• DELETED markers accumulate over time
• Degrade search performance
• Waste space

Solution: Rehash when too many tombstones (e.g., > 25% of table)
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Deletion Implementation

1 class HashTableWithDeletion:
2 DELETED = object () # Sentinel value
3

4 def delete(self , key):
5 for i in range(self.size):
6 index = (hash(key) + i) % self.size
7

8 if self.table[index] is None:
9 return False # Not found

10

11 if self.table[index] is not self.DELETED:
12 if self.table[index ][0] == key:
13 self.table[index] = self.DELETED
14 return True
15

16 return False
17

18 def search(self , key):
19 for i in range(self.size):
20 index = (hash(key) + i) % self.size
21

22 if self.table[index] is None:
23 return None # Not found
24

25 # Skip DELETED , continue probing
26 if self.table[index] is not self.DELETED:
27 if self.table[index ][0] == key:
28 return self.table[index ][1]
29

30 return None
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Applications



Application: Dictionaries / Maps
Most common use case: Key-value storage

1 # Python dict (hash table implementation)
2 phonebook = {
3 "Alice": "555 -1234",
4 "Bob": "555 -5678",
5 "Charlie": "555 -9012"
6 }
7

8 # O(1) average case operations
9 phone = phonebook["Alice"] # Lookup

10 phonebook["David"] = "555 -3456" # Insert
11 del phonebook["Bob"] # Delete
12 exists = "Charlie" in phonebook # Membership test

Real-world examples:
• Student records (ID → student info)
• Configuration files (setting name → value)
• Symbol tables (variable name → value)
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Application: Caching (LRU Cache)

1 from collections import OrderedDict
2

3 class LRUCache:
4 def __init__(self , capacity):
5 self.cache = OrderedDict ()
6 self.capacity = capacity
7

8 def get(self , key):
9 if key not in self.cache:

10 return -1
11 # Move to end (most recently used)
12 self.cache.move_to_end(key)
13 return self.cache[key]
14

15 def put(self , key , value):
16 if key in self.cache:
17 self.cache.move_to_end(key)
18 self.cache[key] = value
19 if len(self.cache) > self.capacity:
20 # Remove least recently used (first item)
21 self.cache.popitem(last=False)
22

23 # Example usage
24 cache = LRUCache (2)
25 cache.put(1, "A")
26 cache.put(2, "B")
27 cache.get(1) # Returns "A", moves 1 to end
28 cache.put(3, "C") # Evicts key 2 (least recently used)
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Application: Frequency Counting

1 from collections import Counter
2

3 # Count word frequencies
4 text = "the quick brown fox jumps over the lazy dog"
5 word_count = Counter(text.split ())
6 print(word_count)
7 # Counter({’the ’: 2, ’quick ’: 1, ’brown ’: 1, ’fox ’: 1, ...})
8

9 # Most common words
10 print(word_count.most_common (3))
11 # [(’the ’, 2), (’quick ’, 1), (’brown ’, 1)]
12

13 # Manual implementation
14 def count_frequencies(items):
15 freq = {}
16 for item in items:
17 freq[item] = freq.get(item , 0) + 1
18 return freq

Applications:
• Text analysis (word frequency)
• Log analysis (error frequency)
• User behavior (page visit counts)
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Application: Two Sum Problem
Problem: Find two numbers that sum to target

1 def two_sum(nums , target):
2 """
3 Given array and target , return indices of two numbers
4 that add up to target.
5

6 Time: O(n), Space: O(n)
7 """
8 seen = {}
9 for i, num in enumerate(nums):

10 complement = target - num
11 if complement in seen:
12 return [seen[complement], i]
13 seen[num] = i
14 return None
15

16 # Example
17 nums = [2, 7, 11, 15]
18 target = 9
19 print(two_sum(nums , target)) # [0, 1] (2 + 7 = 9)

Key insight: Hash table enables O(1) lookup of complement
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Application: Deduplication

1 def remove_duplicates(arr):
2 """ Remove duplicates while preserving order """
3 seen = set()
4 result = []
5 for item in arr:
6 if item not in seen:
7 seen.add(item)
8 result.append(item)
9 return result

10

11 # Example
12 arr = [1, 2, 3, 2, 4, 1, 5]
13 print(remove_duplicates(arr))
14 # [1, 2, 3, 4, 5]
15

16 # Using set (loses order)
17 unique = list(set(arr))
18 # [1, 2, 3, 4, 5] (order not guaranteed)

Applications:
• Remove duplicate emails from mailing list
• Find unique visitors to website
• Detect duplicate transactions
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Complexity and Pitfalls



Time Complexity

Operation Average Worst Notes
Insert O(1) O(n) Worst: all keys collide
Search O(1) O(n) Worst: all keys collide
Delete O(1) O(n) Worst: all keys collide
Resize O(n) O(n) Amortized O(1) per insert

Space Complexity:
• Chaining: O(n + m) where n = elements, m = table size
• Open addressing: O(m), must keep load factor low

Key Point: Expected O(1) depends on:
• Good hash function (uniform distribution)
• Reasonable load factor (< 0.75)
• Proper collision handling
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Common Pitfall 1: Mutable Keys
Problem: Using mutable objects as keys

1 # BAD: Lists are mutable , can’t be hashed
2 d = {[1, 2]: "value"} # TypeError: unhashable type: ’list’
3

4 # BAD: Dictionaries are mutable
5 d = {{1: 2}: "value"} # TypeError: unhashable type: ’dict’
6

7 # GOOD: Use immutable types
8 d = {(1, 2): "value"} # Tuples work
9 d = {frozenset ([1, 2]): "value"} # Frozen sets work

10 d = {"key": "value"} # Strings work
11 d = {42: "value"} # Integers work

Rule: Keys must be immutable and hashable
• Hashable: int, float, str, tuple, frozenset
• Not hashable: list, dict, set
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Common Pitfall 2: Poor Hash Function

1 # BAD: All strings of same length collide
2 def bad_hash(s):
3 return len(s) % 10
4

5 # All 5-letter words map to index 5!
6 # "hello", "world", "apple" -> all collide
7

8 # BAD: Only uses first character
9 def bad_hash2(s):

10 return ord(s[0]) % 10
11

12 # "ant", "apple", "arrow" -> all collide

Consequences:
• Many collisions
• Performance degrades to O(n)
• Long collision chains

Solution: Use all parts of key, use proven hash functions
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Common Pitfall 3: Ignoring Load Factor

1 # BAD: Never resize
2 class BadHashTable:
3 def __init__(self):
4 self.table = [[] for _ in range (10)]
5 # Fixed size!
6

7 def insert(self , key , value):
8 index = hash(key) % 10
9 self.table[index]. append ((key , value))

10 # Just keep inserting ...
11 # Performance degrades to O(n)!

Problem: With 1000 elements in size-10 table:
• Load factor = 100
• Average chain length = 100
• Search time = O(100) = O(n)

Solution: Monitor load factor, resize when needed
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When NOT to Use Hash Tables
Hash tables are NOT suitable when you need:

• Ordered iteration: Use BST or sorted array
• Hash tables don’t maintain order

• Range queries: Use BST or B-tree
• "Find all keys between 10 and 20"

• Minimum/maximum: Use heap
• Hash tables need O(n) to find min/max

• Worst-case guarantees: Use balanced trees
• Hash tables can degrade to O(n)

• Memory constrained: Consider alternatives
• Hash tables waste space (load factor < 1)
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Summary



Key Concepts Recap
Hash Table Fundamentals:
• Hash function maps keys to array indices
• Expected O(1) insert, search, delete
• Trade space for time

Good Hash Function:
• Deterministic, uniform, fast
• Minimize collisions
• Common methods: division, multiplication, polynomial

Load Factor Management:
• α = n/m (elements / table size)
• Resize when α > 0.75 (chaining) or α > 0.5 (open addressing)
• Amortized O(1) resizing cost
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Collision Handling Recap

Separate Chaining:
• Store lists at each index
• Simple, never fills up
• Extra memory, poor cache locality

Open Addressing:
• Probe for next empty slot
• Better cache locality, no pointers
• Complex deletion (tombstones)
• Three methods:

• Linear probing (simple, primary clustering)
• Quadratic probing (better, secondary clustering)
• Double hashing (best, no clustering)
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Applications Recap
Common Uses:
• Dictionaries/maps (key-value storage)
• Caching (LRU cache)
• Sets (unique elements)
• Frequency counting
• Database indexing
• Deduplication
• Two sum and related problems

Best Practices:
• Use immutable keys only
• Choose good hash function
• Monitor and maintain load factor
• Resize when needed
• Use chaining for most cases
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Practice Problems
Basic:
• Implement hash table with chaining
• Implement hash table with linear probing
• Design hash function for strings

Intermediate:
• LRU Cache (LeetCode 146)
• Two Sum (LeetCode 1)
• Group Anagrams (LeetCode 49)
• First Unique Character (LeetCode 387)
• Implement resizing with load factor

Advanced:
• Design hashmap with all operations (LeetCode 706)
• LFU Cache (LeetCode 460)
• Implement quadratic probing
• Implement double hashing
• Analyze hash function quality
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Further Learning
Advanced Topics:
• Universal hashing families
• Perfect hashing
• Cuckoo hashing
• Robin Hood hashing
• Bloom filters (probabilistic hash structures)

Resources:
• CLRS: Chapter 11 (Hash Tables)
• Practice on LeetCode hash table tag
• Study Python dict implementation (CPython source)
• Analyze hash functions with test data

Projects:
• Build your own hash table library
• Implement LRU cache from scratch
• Create spell checker with hash table
• Design in-memory database with hash indexing
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Thank You!

Questions?

Hash Tables: Fast Average-Case Performance
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