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Introduction to Graphs



What is a Graph?
Definition: A collection of nodes (vertices) connected by edges.

Formal notation: G = (V, E)
• V = Set of vertices
• E = Set of edges (pairs of vertices)

Example Graph:

0

1

2

3

4

Components:
• V = {0, 1, 2, 3, 4}
• E = {(0,1), (0,2), (1,3), (1,4), (2,4)}
• |V| = 5 vertices
• |E| = 5 edges
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Why Use Graphs?
Graphs model relationships between entities:

• Social networks: People connected by friendships
• Maps: Cities connected by roads
• Internet: Websites connected by hyperlinks
• Dependencies: Tasks connected by prerequisites
• Molecules: Atoms connected by bonds
• Recommendations: Users/items connected by preferences

Fundamental questions:
• Is there a path from A to B?
• What’s the shortest path?
• Are all nodes connected?
• Does the graph contain cycles?
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Graph Representations



Adjacency List Representation
Idea: Store a list of neighbors for each vertex.

0

1

2

3

4

Adjacency List:
• 0: [1, 2]
• 1: [0, 3, 4]
• 2: [0, 4]
• 3: [1]
• 4: [1, 2]

Properties:
• Space: O(V + E)
• Add edge: O(1)
• Check edge: O(degree)
• Best for: Sparse graphs (E ≪ V2)Minseok Jeon Graphs November 2, 2025 7/44



Adjacency List Implementation

1 # Using dictionary
2 graph = {
3 0: [1, 2],
4 1: [0, 3, 4],
5 2: [0, 4],
6 3: [1],
7 4: [1, 2]
8 }
9

10 # Using list of lists
11 graph = [
12 [1, 2], # neighbors of vertex 0
13 [0, 3, 4], # neighbors of vertex 1
14 [0, 4], # neighbors of vertex 2
15 [1], # neighbors of vertex 3
16 [1, 2] # neighbors of vertex 4
17 ]
18

19 # With weights (weighted graph)
20 graph = {
21 0: [(1, 5), (2, 3)], # (neighbor , weight)
22 1: [(0, 5), (3, 2), (4, 1)],
23 2: [(0, 3), (4, 4)],
24 3: [(1, 2)],
25 4: [(1, 1), (2, 4)]
26 }
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Adjacency Matrix Representation
Idea: 2D array where matrix[i][j] = 1 if edge (i,j) exists.

0

1

2

3

4

Adjacency Matrix:

0 1 2 3 4
0 0 1 1 0 0
1 1 0 0 1 1
2 1 0 0 0 1
3 0 1 0 0 0
4 0 1 1 0 0

Properties:
• Space: O(V2)
• Add/check edge: O(1)
• Get neighbors: O(V)
• Best for: Dense graphs (E ≈ V2)Minseok Jeon Graphs November 2, 2025 9/44



Adjacency Matrix Implementation

1 # Unweighted graph (0 = no edge , 1 = edge)
2 n = 5
3 matrix = [
4 [0, 1, 1, 0, 0],
5 [1, 0, 0, 1, 1],
6 [1, 0, 0, 0, 1],
7 [0, 1, 0, 0, 0],
8 [0, 1, 1, 0, 0]
9 ]

10

11 # Weighted graph (0 or inf = no edge , value = weight)
12 inf = float(’inf’)
13 matrix = [
14 [0, 5, 3, inf , inf],
15 [5, 0, inf , 2, 1],
16 [3, inf , 0, inf , 4],
17 [inf , 2, inf , 0, inf],
18 [inf , 1, 4, inf , 0]
19 ]
20

21 # Check if edge exists
22 def has_edge(matrix , u, v):
23 return matrix[u][v] != 0 # or != inf for weighted
24

25 # Get all neighbors
26 def get_neighbors(matrix , u):
27 return [v for v in range(len(matrix)) if matrix[u][v] != 0]
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Comparison: List vs Matrix

Operation Adjacency List Adjacency Matrix
Space O(V + E) O(V2)
Add edge O(1) O(1)
Remove edge O(degree) O(1)
Check edge O(degree) O(1)
Get neighbors O(degree) O(V)
Iterate all edges O(V + E) O(V2)
Best for Sparse graphs Dense graphs

When to use:
• Adjacency List: Most real-world graphs (social, web, roads)
• Adjacency Matrix: Dense graphs, need fast edge queries, matrix algorithms
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Types of Graphs



Directed vs Undirected Graphs

Undirected Graph:
Edges are bidirectional

A B

C D

Examples:
• Friendships
• Two-way roads
• Collaborations

Edge (A,B) means:
• A can reach B
• B can reach A

Directed Graph:
Edges have direction

A B

C D

Examples:
• Twitter follows
• Web links
• Dependencies

Edge A→B means:
• A can reach B
• B cannot reach A (unless B→A)
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Directed Graph Implementation

1 # Undirected: add edge in both directions
2 def add_undirected_edge(graph , u, v):
3 graph[u]. append(v)
4 graph[v]. append(u)
5

6 # Example: friendship network
7 friends = {
8 ’Alice’: [’Bob’, ’Charlie ’],
9 ’Bob’: [’Alice’, ’David’],

10 ’Charlie ’: [’Alice’, ’David’],
11 ’David’: [’Bob’, ’Charlie ’]
12 }
13

14 # Directed: add edge in one direction only
15 def add_directed_edge(graph , u, v):
16 graph[u]. append(v)
17

18 # Example: Twitter follows
19 follows = {
20 ’Alice’: [’Bob’, ’Charlie ’], # Alice follows Bob ,

Charlie
21 ’Bob’: [’David’], # Bob follows David
22 ’Charlie ’: [’Alice’, ’David’], # Charlie follows Alice ,

David
23 ’David’: [] # David follows no one
24 }
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Weighted vs Unweighted Graphs

Unweighted Graph:
All edges have equal cost

A B

C D

Use cases:
• Social networks
• Maze solving
• Connectivity

Shortest path:
• Use BFS
• Counts edges

Weighted Graph:
Edges have costs/weights

A B

C D

5

1

3

2

Use cases:
• Road networks
• Flight routes
• Cost optimization

Shortest path:
• Use Dijkstra’s
• Minimizes total weight

Minseok Jeon Graphs November 2, 2025 15/44



Graph Traversals



Breadth-First Search (BFS)
Strategy: Explore level by level (nearest neighbors first)

Data Structure: Queue (FIFO)

0

1 2

3 4

Level 0

Level 1

Level 2

BFS from 0: [0, 1, 2, 3, 4]

Algorithm:
1. Start at source

2. Add to queue
3. While queue not empty:

• Dequeue vertex
• Visit it
• Enqueue unvisited neighbors

Applications:
• Shortest path (unweighted)
• Level-order traversal
• Connected components
• Bipartite checking

Time: O(V + E) Space: O(V)
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BFS Implementation

1 from collections import deque
2

3 def bfs(graph , start):
4 visited = set([ start])
5 queue = deque ([start ])
6 result = []
7

8 while queue:
9 node = queue.popleft ()

10 result.append(node)
11

12 for neighbor in graph[node]:
13 if neighbor not in visited:
14 visited.add(neighbor)
15 queue.append(neighbor)
16

17 return result
18

19 # Example
20 graph = {
21 0: [1, 2],
22 1: [0, 3],
23 2: [0, 4],
24 3: [1],
25 4: [2]
26 }
27 bfs(graph , 0) # [0, 1, 2, 3, 4]
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Depth-First Search (DFS)
Strategy: Explore as deep as possible before backtracking

Data Structure: Stack (or recursion)

0

1 2

3 4

1st

2nd

3rd

DFS from 0: [0, 1, 3, 2, 4]

Algorithm:
1. Start at source

2. Mark as visited
3. For each unvisited neighbor:

• Recursively DFS from it

4. Backtrack

Applications:
• Cycle detection
• Topological sorting
• Strongly connected components
• Path finding
• Maze solving

Time: O(V + E) Space: O(V)
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DFS Implementation

1 # Recursive
2 def dfs_recursive(graph , node , visited=None):
3 if visited is None:
4 visited = set()
5

6 visited.add(node)
7 result = [node]
8

9 for neighbor in graph[node]:
10 if neighbor not in visited:
11 result.extend(dfs_recursive(graph , neighbor , visited))
12

13 return result
14

15 # Iterative
16 def dfs_iterative(graph , start):
17 visited = set()
18 stack = [start]
19 result = []
20

21 while stack:
22 node = stack.pop()
23 if node not in visited:
24 visited.add(node)
25 result.append(node)
26

27 for neighbor in reversed(graph[node]):
28 if neighbor not in visited:
29 stack.append(neighbor)
30

31 return result
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BFS vs DFS Comparison

Feature BFS DFS
Data structure Queue Stack/Recursion
Order Level by level Deep first
Shortest path Yes (unweighted) No
Memory More (stores level) Less (stores path)
Completeness Yes Yes (with visited)
Time O(V + E) O(V + E)
Space O(V) O(V)

When to use:
• BFS: Shortest path, level processing, closer nodes first
• DFS: Cycle detection, topological sort, exploring all paths

Minseok Jeon Graphs November 2, 2025 21/44



Connected Components and Cycles



Connected Components
Definition: Maximal subgraphs where every pair of vertices is connected.

0 1

2

3
4

5

Component 1

Component 2
Comp 3

Example: 3 connected components: {0,1,2}, {3,4}, {5}

Algorithm: Run BFS/DFS from each unvisited vertex
• Each DFS/BFS finds one component
• Count number of DFS/BFS calls needed

Minseok Jeon Graphs November 2, 2025 23/44



Finding Connected Components

1 def count_components(graph):
2 visited = set()
3 count = 0
4

5 def dfs(node):
6 visited.add(node)
7 for neighbor in graph[node]:
8 if neighbor not in visited:
9 dfs(neighbor)

10

11 for node in graph:
12 if node not in visited:
13 dfs(node)
14 count += 1
15

16 return count
17

18 def find_components(graph):
19 visited = set()
20 components = []
21

22 def dfs(node , component):
23 visited.add(node)
24 component.append(node)
25 for neighbor in graph[node]:
26 if neighbor not in visited:
27 dfs(neighbor , component)
28

29 for node in graph:
30 if node not in visited:
31 component = []
32 dfs(node , component)
33 components.append(component)
34

35 return components
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Cycle Detection

Cycle: A path that starts and ends at the same vertex.

Has Cycle:

A B

C

Cycle: A → B → C → A

No Cycle (Tree):

A

B C

D

Tree: No cycles

Detection Methods:
• Undirected: DFS with parent tracking
• Directed: DFS with color marking (White/Gray/Black)
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Cycle Detection - Undirected

1 def has_cycle_undirected(graph):
2 visited = set()
3

4 def dfs(node , parent):
5 visited.add(node)
6

7 for neighbor in graph[node]:
8 if neighbor not in visited:
9 if dfs(neighbor , node):

10 return True
11 elif neighbor != parent:
12 return True # Back edge found (cycle)
13

14 return False
15

16 for node in graph:
17 if node not in visited:
18 if dfs(node , -1):
19 return True
20

21 return False

Key idea: If we encounter a visited node that’s not our parent, we found a cycle.
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Cycle Detection - Directed

1 def has_cycle_directed(graph):
2 WHITE , GRAY , BLACK = 0, 1, 2
3 color = {node: WHITE for node in graph}
4

5 def dfs(node):
6 color[node] = GRAY # Currently exploring
7

8 for neighbor in graph[node]:
9 if color[neighbor] == GRAY:

10 return True # Back edge (cycle)
11 if color[neighbor] == WHITE and dfs(neighbor):
12 return True
13

14 color[node] = BLACK # Finished exploring
15 return False
16

17 for node in graph:
18 if color[node] == WHITE:
19 if dfs(node):
20 return True
21

22 return False

Colors:
• WHITE: Not visited
• GRAY: Currently in DFS stack (ancestor)
• BLACK: Fully explored
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Real-World Applications



Social Networks
Model: Users as vertices, relationships as edges

Alice

Bob

Charlie

David

Applications:
• Friend recommendations: Friends of friends (2-hop neighbors)
• Influence analysis: Find most connected users (degree centrality)
• Community detection: Find clusters/groups
• Six degrees of separation: Shortest path between users
• Viral spread: Model information propagation
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Friend Recommendations

1 def recommend_friends(graph , user):
2 """ Find friends of friends """
3 friends = set(graph[user])
4 recommendations = set()
5

6 for friend in friends:
7 for friend_of_friend in graph[friend ]:
8 if friend_of_friend != user and \
9 friend_of_friend not in friends:

10 recommendations.add(friend_of_friend)
11

12 return recommendations
13

14 def find_influencers(graph , top_k =10):
15 """ Find most connected users (degree centrality)"""
16 degrees = [(node , len(graph[node])) for node in graph]
17 degrees.sort(key=lambda x: x[1], reverse=True)
18 return degrees [: top_k]
19

20 # Example
21 friends = {
22 ’Alice’: [’Bob’, ’Charlie ’],
23 ’Bob’: [’Alice’, ’David’],
24 ’Charlie ’: [’Alice’, ’David’],
25 ’David’: [’Bob’, ’Charlie ’]
26 }
27 recommend_friends(friends , ’Alice ’) # {’David ’}
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Maps and Navigation
Model: Locations as vertices, roads as weighted edges

NYC

Boston

Philly DC

215

95

140

400

Applications:
• Route planning: Shortest path (Dijkstra’s, A*)
• Traffic optimization: Alternative routes, congestion avoidance
• Delivery routing: Traveling salesman problem (TSP)
• Public transit: Multi-modal routing (bus + train + walk)
• Ride sharing: Match drivers with passengers
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Web and Internet
Model: Pages/routers as vertices, links/connections as edges

Home
About

Blog
Contact

Applications:
• PageRank: Rank web pages by importance/authority
• Web crawling: BFS/DFS to discover new pages
• Network routing: Find optimal packet paths
• Load balancing: Distribute traffic across servers
• Link analysis: Detect spam, find related pages
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Other Applications
Dependency Graphs:
• Build systems: Compile order (topological sort)
• Package managers: Install dependencies
• Task scheduling: Prerequisite handling

Recommendation Systems:
• User-item bipartite graphs
• Collaborative filtering
• Content-based recommendations

Science and Research:
• Biology: Protein interaction networks, phylogenetic trees
• Chemistry: Molecular structures, reaction networks
• Physics: Particle interactions
• Social science: Citation networks, collaboration graphs

Games and AI:
• Pathfinding: A* algorithm in games
• State space search: Game trees, puzzle solving
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Complexity Analysis



Time Complexity Summary

Operation Adjacency List Adjacency Matrix
Add vertex O(1) O(V2) (resize)
Add edge O(1) O(1)
Remove vertex O(E) O(V2)
Remove edge O(E) O(1)
Check edge O(degree) O(1)
Get neighbors O(degree) O(V)
BFS/DFS O(V + E) O(V2)
Dijkstra O((V+E) log V) O(V2)

Key insight:
• Adjacency list better for sparse graphs (E ≪ V2)
• Adjacency matrix better for dense graphs (E ≈ V2)
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Space Complexity

Representation Space Best For
Adjacency List O(V + E) Sparse graphs
Adjacency Matrix O(V2) Dense graphs
Edge List O(E) Simple storage

Graph Density:
• Sparse: E = O(V), few edges

• Example: Social networks (avg degree ∼100)
• Use adjacency list

• Dense: E = O(V2), many edges
• Example: Complete graph (all pairs connected)
• Use adjacency matrix
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Memory Calculations
Example: 1 million vertices

Sparse graph (avg degree = 10):
• E ≈ 5 million edges
• Adjacency list: (V + E) × 8 bytes = 40 MB
• Adjacency matrix: V × V × 1 byte = 1 TB (impractical!)

Dense graph (E = V2/2):
• E ≈ 500 billion edges
• Adjacency list: (V + E) × 8 bytes = 4 TB
• Adjacency matrix: V × V × 1 byte = 1 TB (better!)

Practical considerations:
• Small graphs (V < 1000): Either works
• Medium graphs (V < 100K): Adjacency list usually better
• Large graphs (V > 1M): Must use adjacency list
• Very dense: Consider compressed formatsMinseok Jeon Graphs November 2, 2025 37/44



Summary



Key Concepts Recap
Graph Fundamentals:
• Graph G = (V, E): vertices and edges
• Models relationships between entities
• Directed vs undirected, weighted vs unweighted

Representations:
• Adjacency list: O(V + E) space, best for sparse
• Adjacency matrix: O(V2) space, best for dense

Traversals:
• BFS: Level by level, shortest path (unweighted)
• DFS: Deep first, cycle detection, topological sort

Analysis:
• Connected components: Find separate subgraphs
• Cycle detection: Identify circular dependencies
• Both use BFS/DFS: O(V + E)Minseok Jeon Graphs November 2, 2025 39/44



Applications Recap
Major Use Cases:
• Social networks: Friend recommendations, influence analysis
• Maps/navigation: Route planning, traffic optimization
• Web: PageRank, web crawling, network routing
• Dependencies: Build systems, package managers
• Science: Biology, chemistry, physics networks

Common Algorithms:
• BFS, DFS: O(V + E)
• Dijkstra’s shortest path: O((V+E) log V)
• Topological sort: O(V + E)
• Connected components: O(V + E)
• Cycle detection: O(V + E)
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Practice Problems
Basic:
• Implement adjacency list and matrix representations
• Implement BFS and DFS
• Count connected components
• Detect cycles in undirected graph

Intermediate:
• Find shortest path in unweighted graph (BFS)
• Check if graph is bipartite
• Find all paths from source to destination
• Detect cycles in directed graph
• Clone a graph

Advanced:
• Implement Dijkstra’s algorithm
• Topological sort (course schedule problems)
• Strongly connected components (Kosaraju’s/Tarjan’s)
• Minimum spanning tree (Prim’s/Kruskal’s)
• Network flow problems
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Implementation Tips
Best Practices:
• Use adjacency list for most problems
• Always track visited nodes in BFS/DFS
• Handle disconnected graphs (multiple components)
• Consider edge cases: empty graph, single vertex, cycles

Common Pitfalls:
• Forgetting to mark nodes as visited (infinite loops)
• Not handling directed vs undirected correctly
• Using wrong algorithm (BFS for shortest weighted path)
• Memory issues with large dense graphs

Optimization:
• Use sets for O(1) visited checks
• Use deque for BFS (efficient popleft)
• Consider Union-Find for connectivity problems
• Profile before optimizing representation
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Further Learning
Advanced Topics:
• Shortest paths: Dijkstra’s, Bellman-Ford, Floyd-Warshall, A*
• Minimum spanning trees: Prim’s, Kruskal’s
• Network flow: Ford-Fulkerson, max flow min cut
• Strongly connected components: Kosaraju’s, Tarjan’s
• Graph coloring: Chromatic number, map coloring

Resources:
• Practice on LeetCode graph problems
• Study graph algorithms in CLRS textbook
• Visualize with tools: Graphviz, NetworkX
• Build real projects: social network, route planner

Projects:
• Implement social network with friend recommendations
• Build shortest path finder for maps
• Create web crawler using BFS
• Design package dependency resolver
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Thank You!

Questions?

Graphs: Connecting the World Through Data
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