

Graphs

Modeling Relationships and Connectivity

Minseok Jeon
DGIST

November 2, 2025

Outline

1. Introduction to Graphs
2. Graph Representations
3. Types of Graphs
4. Graph Traversals
5. Connected Components and Cycles
6. Real-World Applications
7. Complexity Analysis
8. Summary

Introduction to Graphs

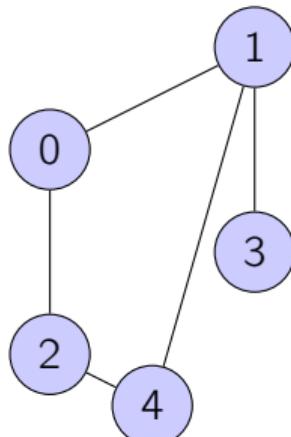
What is a Graph?

Definition: A collection of **nodes (vertices)** connected by **edges**.

Formal notation: $G = (V, E)$

- V = Set of vertices
- E = Set of edges (pairs of vertices)

Example Graph:



Components:

- $V = \{0, 1, 2, 3, 4\}$
- $E = \{(0,1), (0,2), (1,3), (1,4), (2,4)\}$
- $|V| = 5$ vertices
- $|E| = 5$ edges

Why Use Graphs?

Graphs model relationships between entities:

- **Social networks:** People connected by friendships
- **Maps:** Cities connected by roads
- **Internet:** Websites connected by hyperlinks
- **Dependencies:** Tasks connected by prerequisites
- **Molecules:** Atoms connected by bonds
- **Recommendations:** Users/items connected by preferences

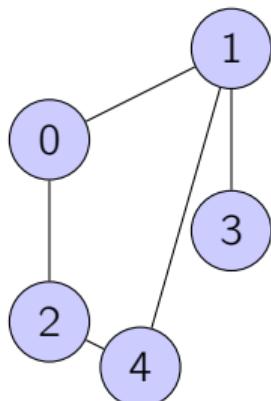
Fundamental questions:

- Is there a path from A to B?
- What's the shortest path?
- Are all nodes connected?
- Does the graph contain cycles?

Graph Representations

Adjacency List Representation

Idea: Store a list of neighbors for each vertex.



Adjacency List:

- 0: [1, 2]
- 1: [0, 3, 4]
- 2: [0, 4]
- 3: [1]
- 4: [1, 2]

Properties:

- **Space:** $O(V + E)$
- **Add edge:** $O(1)$
- **Check edge:** $O(\text{degree})$
- **Best for:** Sparse graphs ($E \ll V^2$)

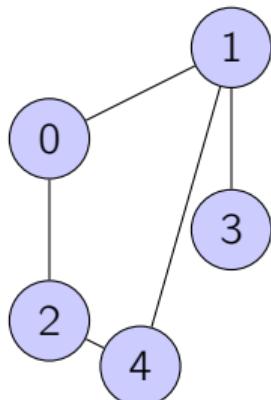
Adjacency List Implementation

```
1 # Using dictionary
2 graph = {
3     0: [1, 2],
4     1: [0, 3, 4],
5     2: [0, 4],
6     3: [1],
7     4: [1, 2]
8 }
9
10 # Using list of lists
11 graph = [
12     [1, 2],      # neighbors of vertex 0
13     [0, 3, 4],  # neighbors of vertex 1
14     [0, 4],      # neighbors of vertex 2
15     [1],         # neighbors of vertex 3
16     [1, 2]       # neighbors of vertex 4
17 ]
```

Adjacency Matrix Representation

Idea: 2D array where $\text{matrix}[i][j] = 1$ if edge (i,j) exists.

Adjacency Matrix:



	0	1	2	3	4
0	0	1	1	0	0
1	1	0	0	1	1
2	1	0	0	0	1
3	0	1	0	0	0
4	0	1	1	0	0

Properties:

- **Space:** $O(V^2)$
- **Add/check edge:** $O(1)$
- **Get neighbors:** $O(V)$
- **Best for:** Dense graphs ($E \approx V^2$)

Adjacency Matrix Implementation

```
1 # Unweighted graph (0 = no edge, 1 = edge)
2 n = 5
3 matrix = [
4     [0, 1, 1, 0, 0],
5     [1, 0, 0, 1, 1],
6     [1, 0, 0, 0, 1],
7     [0, 1, 0, 0, 0],
8     [0, 1, 1, 0, 0]
9 ]
10
11 # Weighted graph (0 or inf = no edge, value = weight)
12 inf = float('inf')
13 matrix = [
14     [0, 5, 3, inf, inf],
15     [5, 0, inf, 2, 1],
16     [3, inf, 0, inf, 4],
17     [inf, 2, inf, 0, inf],
```

Comparison: List vs Matrix

Operation	Adjacency List	Adjacency Matrix
Space	$O(V + E)$	$O(V^2)$
Add edge	$O(1)$	$O(1)$
Remove edge	$O(\text{degree})$	$O(1)$
Check edge	$O(\text{degree})$	$O(1)$
Get neighbors	$O(\text{degree})$	$O(V)$
Iterate all edges	$O(V + E)$	$O(V^2)$
Best for	Sparse graphs	Dense graphs

When to use:

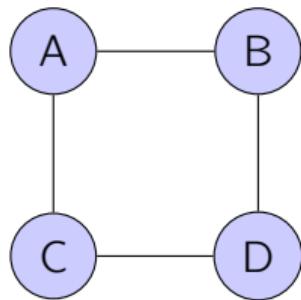
- **Adjacency List:** Most real-world graphs (social, web, roads)
- **Adjacency Matrix:** Dense graphs, need fast edge queries, matrix algorithms

Types of Graphs

Directed vs Undirected Graphs

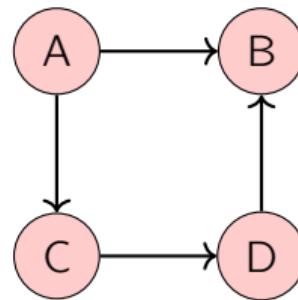
Undirected Graph:

Edges are bidirectional



Directed Graph:

Edges have direction



Examples:

- Friendships
- Two-way roads
- Collaborations

Edge (A,B) means:

Examples:

- Twitter follows
- Web links
- Dependencies

Edge A→B means:

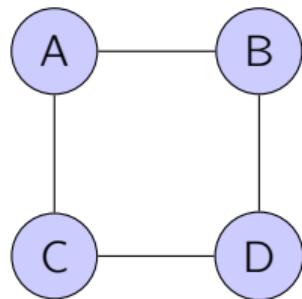
Directed Graph Implementation

```
1 # Undirected: add edge in both directions
2 def add_undirected_edge(graph, u, v):
3     graph[u].append(v)
4     graph[v].append(u)
5
6 # Example: friendship network
7 friends = {
8     'Alice': ['Bob', 'Charlie'],
9     'Bob': ['Alice', 'David'],
10    'Charlie': ['Alice', 'David'],
11    'David': ['Bob', 'Charlie']
12 }
13
14 # Directed: add edge in one direction only
15 def add_directed_edge(graph, u, v):
16     graph[u].append(v)
```

Weighted vs Unweighted Graphs

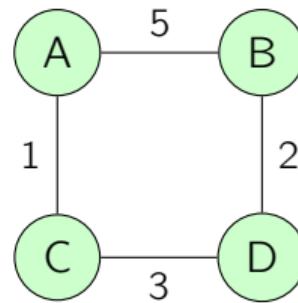
Unweighted Graph:

All edges have equal cost



Weighted Graph:

Edges have costs/weights



Use cases:

- Social networks
- Maze solving
- Connectivity

Shortest path:

Use cases:

- Road networks
- Flight routes
- Cost optimization

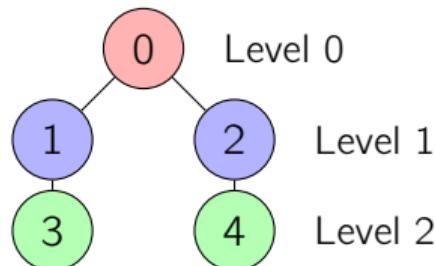
Shortest path:

Graph Traversals

Breadth-First Search (BFS)

Strategy: Explore level by level (nearest neighbors first)

Data Structure: Queue (FIFO)



BFS from 0: [0, 1, 2, 3, 4]

Algorithm:

1. Start at source
2. Add to queue
3. While queue not empty:
 - Dequeue vertex
 - Visit it
 - Enqueue unvisited neighbors

Applications:

- Shortest path (unweighted)
- Level-order traversal
- Connected components

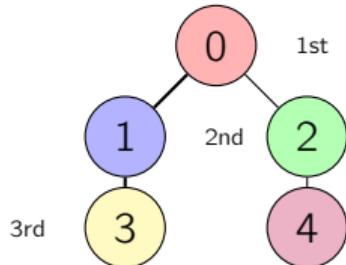
BFS Implementation

```
1  from collections import deque
2
3  def bfs(graph, start):
4      visited = set([start])
5      queue = deque([start])
6      result = []
7
8      while queue:
9          node = queue.popleft()
10         result.append(node)
11
12         for neighbor in graph[node]:
13             if neighbor not in visited:
14                 visited.add(neighbor)
15                 queue.append(neighbor)
16
17     return result
```

Depth-First Search (DFS)

Strategy: Explore as deep as possible before backtracking

Data Structure: Stack (or recursion)



DFS from 0: [0, 1, 3, 2, 4]

Algorithm:

1. Start at source
2. Mark as visited
3. For each unvisited neighbor:
 - Recursively DFS from it
4. Backtrack

Applications:

- Cycle detection
- Topological sorting
- Strongly connected components

DFS Implementation

```
1 # Recursive
2 def dfs_recursive(graph, node, visited=None):
3     if visited is None:
4         visited = set()
5
6     visited.add(node)
7     result = [node]
8
9     for neighbor in graph[node]:
10        if neighbor not in visited:
11            result.extend(dfs_recursive(graph, neighbor, visited))
12
13    return result
14
15 # Iterative
16 def dfs_iterative(graph, start):
17     visited = set()
18     stack = [start]
19     result = []
```

BFS vs DFS Comparison

Feature	BFS	DFS
Data structure	Queue	Stack/Recursion
Order	Level by level	Deep first
Shortest path	Yes (unweighted)	No
Memory	More (stores level)	Less (stores path)
Completeness	Yes	Yes (with visited)
Time	$O(V + E)$	$O(V + E)$
Space	$O(V)$	$O(V)$

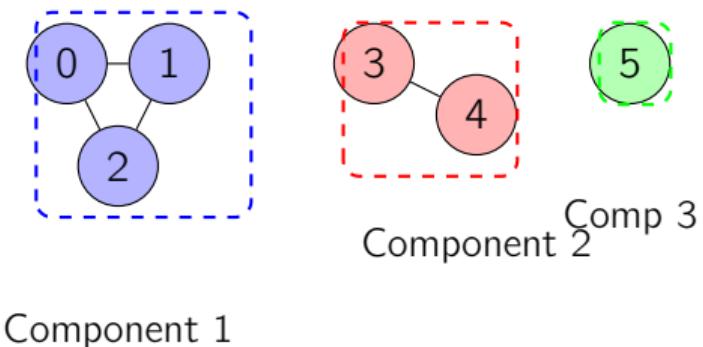
When to use:

- **BFS:** Shortest path, level processing, closer nodes first
- **DFS:** Cycle detection, topological sort, exploring all paths

Connected Components and Cycles

Connected Components

Definition: Maximal subgraphs where every pair of vertices is connected.



Example: 3 connected components: $\{0,1,2\}$, $\{3,4\}$, $\{5\}$

Algorithm: Run BFS/DFS from each unvisited vertex

- Each DFS/BFS finds one component
- Count number of DFS/BFS calls needed

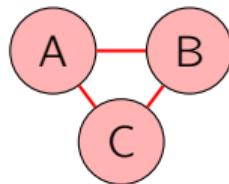
Finding Connected Components

```
1 def count_components(graph):
2     visited = set()
3     count = 0
4
5     def dfs(node):
6         visited.add(node)
7         for neighbor in graph[node]:
8             if neighbor not in visited:
9                 dfs(neighbor)
10
11    for node in graph:
12        if node not in visited:
13            dfs(node)
14            count += 1
15
16    return count
17
18 def find_components(graph):
19     visited = set()
```

Cycle Detection

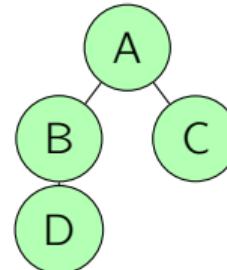
Cycle: A path that starts and ends at the same vertex.

Has Cycle:



Cycle: $A \rightarrow B \rightarrow C \rightarrow A$

No Cycle (Tree):



Tree: No cycles

Detection Methods:

- **Undirected:** DFS with parent tracking
- **Directed:** DFS with color marking (White/Gray/Black)

Cycle Detection - Undirected

```
1 def has_cycle_undirected(graph):
2     visited = set()
3
4     def dfs(node, parent):
5         visited.add(node)
6
7         for neighbor in graph[node]:
8             if neighbor not in visited:
9                 if dfs(neighbor, node):
10                     return True
11             elif neighbor != parent:
12                 return True # Back edge found (cycle)
13
14     return False
15
16     for node in graph:
17         if node not in visited:
```

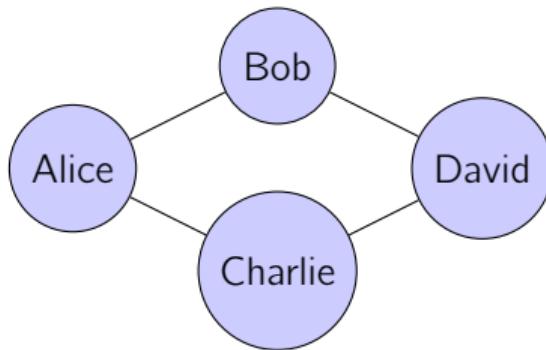
Cycle Detection - Directed

```
1 def has_cycle_directed(graph):
2     WHITE, GRAY, BLACK = 0, 1, 2
3     color = {node: WHITE for node in graph}
4
5     def dfs(node):
6         color[node] = GRAY # Currently exploring
7
8         for neighbor in graph[node]:
9             if color[neighbor] == GRAY:
10                 return True # Back edge (cycle)
11             if color[neighbor] == WHITE and dfs(neighbor):
12                 return True
13
14         color[node] = BLACK # Finished exploring
15         return False
16
17     for node in graph:
18         if color[node] == WHITE:
19             if dfs(node):
```

Real-World Applications

Social Networks

Model: Users as vertices, relationships as edges



Applications:

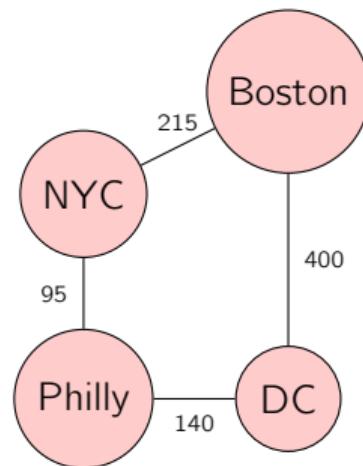
- **Friend recommendations:** Friends of friends (2-hop neighbors)
- **Influence analysis:** Find most connected users (degree centrality)
- **Community detection:** Find clusters/groups
- **Six degrees of separation:** Shortest path between users
- **Viral spread:** Model information propagation

Friend Recommendations

```
1 def recommend_friends(graph, user):
2     """Find friends of friends"""
3     friends = set(graph[user])
4     recommendations = set()
5
6     for friend in friends:
7         for friend_of_friend in graph[friend]:
8             if friend_of_friend != user and \
9                 friend_of_friend not in friends:
10                 recommendations.add(friend_of_friend)
11
12     return recommendations
13
14 def find_influencers(graph, top_k=10):
15     """Find most connected users (degree centrality)"""
16     degrees = [(node, len(graph[node])) for node in graph]
17     degrees.sort(key=lambda x: x[1], reverse=True)
```

Maps and Navigation

Model: Locations as vertices, roads as weighted edges

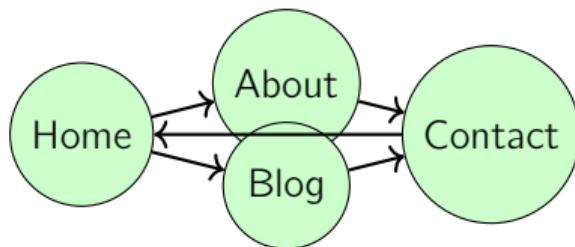


Applications:

- **Route planning:** Shortest path (Dijkstra's, A*)
- **Traffic optimization:** Alternative routes, congestion avoidance
- **Delivery routing:** Traveling salesman problem (TSP)
- **Public transit:** Multi-modal routing (bus + train + walk)

Web and Internet

Model: Pages/routers as vertices, links/connections as edges



Applications:

- **PageRank:** Rank web pages by importance/authority
- **Web crawling:** BFS/DFS to discover new pages
- **Network routing:** Find optimal packet paths
- **Load balancing:** Distribute traffic across servers
- **Link analysis:** Detect spam, find related pages

Other Applications

Dependency Graphs:

- Build systems: Compile order (topological sort)
- Package managers: Install dependencies
- Task scheduling: Prerequisite handling

Recommendation Systems:

- User-item bipartite graphs
- Collaborative filtering
- Content-based recommendations

Science and Research:

- Biology: Protein interaction networks, phylogenetic trees
- Chemistry: Molecular structures, reaction networks
- Physics: Particle interactions
- Social science: Citation networks, collaboration graphs

Games and AI:

Complexity Analysis

Time Complexity Summary

Operation	Adjacency List	Adjacency Matrix
Add vertex	$O(1)$	$O(V^2)$ (resize)
Add edge	$O(1)$	$O(1)$
Remove vertex	$O(E)$	$O(V^2)$
Remove edge	$O(E)$	$O(1)$
Check edge	$O(\text{degree})$	$O(1)$
Get neighbors	$O(\text{degree})$	$O(V)$
BFS/DFS	$O(V + E)$	$O(V^2)$
Dijkstra	$O((V+E) \log V)$	$O(V^2)$

Key insight:

- Adjacency list better for sparse graphs ($E \ll V^2$)
- Adjacency matrix better for dense graphs ($E \approx V^2$)

Space Complexity

Representation	Space	Best For
Adjacency List	$O(V + E)$	Sparse graphs
Adjacency Matrix	$O(V^2)$	Dense graphs
Edge List	$O(E)$	Simple storage

Graph Density:

- **Sparse:** $E = O(V)$, few edges
 - Example: Social networks (avg degree ~ 100)
 - Use adjacency list
- **Dense:** $E = O(V^2)$, many edges
 - Example: Complete graph (all pairs connected)
 - Use adjacency matrix

Memory Calculations

Example: 1 million vertices

Sparse graph (avg degree = 10):

- $E \approx 5$ million edges
- Adjacency list: $(V + E) \times 8$ bytes = 40 MB
- Adjacency matrix: $V \times V \times 1$ byte = 1 TB (impractical!)

Dense graph ($E = V^2/2$):

- $E \approx 500$ billion edges
- Adjacency list: $(V + E) \times 8$ bytes = 4 TB
- Adjacency matrix: $V \times V \times 1$ byte = 1 TB (better!)

Practical considerations:

- Small graphs ($V < 1000$): Either works
- Medium graphs ($V < 100K$): Adjacency list usually better
- Large graphs ($V > 1M$): Must use adjacency list

Summary

Key Concepts Recap

Graph Fundamentals:

- Graph $G = (V, E)$: vertices and edges
- Models relationships between entities
- Directed vs undirected, weighted vs unweighted

Representations:

- **Adjacency list:** $O(V + E)$ space, best for sparse
- **Adjacency matrix:** $O(V^2)$ space, best for dense

Traversals:

- **BFS:** Level by level, shortest path (unweighted)
- **DFS:** Deep first, cycle detection, topological sort

Analysis:

- Connected components: Find separate subgraphs
- Cycle detection: Identify circular dependencies
- Both use BFS/DFS: $O(V + E)$

Applications Recap

Major Use Cases:

- **Social networks:** Friend recommendations, influence analysis
- **Maps/navigation:** Route planning, traffic optimization
- **Web:** PageRank, web crawling, network routing
- **Dependencies:** Build systems, package managers
- **Science:** Biology, chemistry, physics networks

Common Algorithms:

- BFS, DFS: $O(V + E)$
- Dijkstra's shortest path: $O((V+E) \log V)$
- Topological sort: $O(V + E)$
- Connected components: $O(V + E)$
- Cycle detection: $O(V + E)$

Practice Problems

Basic:

- Implement adjacency list and matrix representations
- Implement BFS and DFS
- Count connected components
- Detect cycles in undirected graph

Intermediate:

- Find shortest path in unweighted graph (BFS)
- Check if graph is bipartite
- Find all paths from source to destination
- Detect cycles in directed graph
- Clone a graph

Advanced:

- Implement Dijkstra's algorithm
- Topological sort (course schedule problems)
- Strongly connected components (Kosaraju's/Tarjan's)

Implementation Tips

Best Practices:

- Use adjacency list for most problems
- Always track visited nodes in BFS/DFS
- Handle disconnected graphs (multiple components)
- Consider edge cases: empty graph, single vertex, cycles

Common Pitfalls:

- Forgetting to mark nodes as visited (infinite loops)
- Not handling directed vs undirected correctly
- Using wrong algorithm (BFS for shortest weighted path)
- Memory issues with large dense graphs

Optimization:

- Use sets for $O(1)$ visited checks
- Use deque for BFS (efficient popleft)
- Consider Union-Find for connectivity problems
- Profile before optimizing representation

Further Learning

Advanced Topics:

- **Shortest paths:** Dijkstra's, Bellman-Ford, Floyd-Warshall, A*
- **Minimum spanning trees:** Prim's, Kruskal's
- **Network flow:** Ford-Fulkerson, max flow min cut
- **Strongly connected components:** Kosaraju's, Tarjan's
- **Graph coloring:** Chromatic number, map coloring

Resources:

- Practice on LeetCode graph problems
- Study graph algorithms in CLRS textbook
- Visualize with tools: Graphviz, NetworkX
- Build real projects: social network, route planner

Projects:

- Implement social network with friend recommendations
- Build shortest path finder for maps
- Create web crawler using BFS

Thank You!

Questions?

Graphs: Connecting the World Through Data