Graphs

Modeling Relationships and Connectivity

Minseok Jeon
DGIST

November 2, 2025

Outline

Introduction to Graphs

Graph Representations

Types of Graphs

Graph Traversals

Connected Components and Cycles
Real-World Applications

Complexity Analysis

o S A o

Summary

Introduction to Graphs

What is a Graph?

Definition: A collection of nodes (vertices) connected by edges.

Formal notation: G = (V, E)
® V = Set of vertices
® E = Set of edges (pairs of vertices)

Example Graph: Components:
° e vV={0,1,2, 3,4}
* E={(01) (0.2), (1.3), (1,4), (24)}
@ ® |V| = 5 vertices
® |[E| =5 edges

Why Use Graphs?

Graphs model relationships between entities:

® Social networks: People connected by friendships

e Maps: Cities connected by roads

¢ Internet: Websites connected by hyperlinks

e Dependencies: Tasks connected by prerequisites

® Molecules: Atoms connected by bonds

® Recommendations: Users/items connected by preferences

Fundamental questions:

® |s there a path from A to B?
What's the shortest path?
Are all nodes connected?

Does the graph contain cycles?

Graph Representations

Adjacency List Representation

Idea: Store a list of neighbors for each vertex.

Adjacency List:

* 0:[1, 2]
o e 1: [0, 3, 4]
©

2: [0, 4]
@@

3: [1]
4: (1, 2]
Properties:
Space: O(V + E)
Add edge: O(1)
Check edge: O(degree)
Best for: Sparse graphs (E < V?)

12

13

14

15

16

Adjacency List Implementation

Using

graph =
0:
1:
2:
3:
4:

}

Using

graph =
(1,
(o,
(o,
[1]
(1,

dictionary

{

(1, 21,

[0, 3, 41,

(o, 41,

(11,

(1, 2]

list of lists

L

21, # neighbors
3, 4], # neighbors
4], # neighbors
5 # neighbors
2] # neighbors

of
of
of
of
of

vertex
vertex
vertex
vertex
vertex

D W N e O

Adjacency Matrix Representation

Idea: 2D array where matrix|i][j] = 1 if edge (i,j) exists.

Adjacency Matrix:

Properties:

Space: O(V?)

® Add/check edge: O(1)

® Get neighbors: O(V)

® Best for: Dense graphs (E ~ V?)

O O == OO

A WNN = O

R P O ORI

= O O O —N

O OO O Ww

OO R ROl

Adjacency Matrix Implementation

Unweighted graph (0 = no edge, 1 = edge)
n =5

matrix = [
(o, 1, 1, o, ol,
[1, O, O, 1, 11,
[1, o, O, O, 117,
[0, 1, 0, O, O],
[0, 1, 1, 0, O]

Weighted graph (0 or inf = no edge, value = weight)
inf = float(’inf’)

matrix = [
[0, 5, 3, inf, inf],
[5, 0, inf, 2, 1],
[3, inf, O, inf, 4],

[inf, 2, inf, O, inf],

Comparison: List vs Matrix

Operation Adjacency List | Adjacency Matrix
Space O(V + E) o(V?)

Add edge 0(1) 0(1)
Remove edge O(degree) 0(1)

Check edge O(degree) O(1)

Get neighbors O(degree) o(Vv)
lterate all edges O(V + E) o(V?)

Best for Sparse graphs Dense graphs

When to use:
¢ Adjacency List: Most real-world graphs (social, web, roads)
e Adjacency Matrix: Dense graphs, need fast edge queries, matrix algorithms

Types of Graphs

Directed vs Undirected Graphs

Undirected Graph:
Edges are bidirectional

® Friendships

Examples:

® Two-way roads
e (Collaborations
Edge (A,B) means:

Directed Graph:
Edges have direction

e Twitter follows
® \Web links

® Dependencies

Examples:

Edge A—B means:

1

2

w

Directed Graph Implementation

Undirected: add edge in both directions
def add_undirected_edge (graph, u, v):
graph [u] . append (v)
graph [v] . append (u)

Example: friendship network

friends = {
>Alice’: [’Bob’, ’Charlie’],
’Bob’: [’Alice’, ’David’],
>Charlie’: [’Alice’, ’David’],
’David’: [’Bob’, ’Charlie’]

+

Directed: add edge in one direction only
def add_directed_edge(graph, u, v):
graph [u] . append (v)

Weighted vs Unweighted Graphs

Unweighted Graph:
All edges have equal cost

® Social networks

Use cases:

® Maze solving
e Connectivity
Shortest path:

e p— o~

Weighted Graph:
Edges have costs/weights

Use cases:

® Road networks

® Flight routes

® Cost optimization
Shortest path:

Graph Traversals

Breadth-First Search (BFS)

Strategy: Explore level by level (nearest neighbors first)

Data Structure: Queue (FIFO)

Algorithm:
0 Level 0 1. Start at source
2. Add to queue
° e Level 1 3. While queue not empty:

e ° Level 2 ® Dequeue vertex
® \/isit it

BFS from 0: [0, 1, 2, 3, 4] ® Enqueue unvisited neighbors

Applications:
® Shortest path (unweighted)

® | evel-order traversal

P = SR [S

BF'S Implementation

1 from collections import deque

3 def bfs(graph, start):

4 visited = set([start])

5 queue = deque ([start])

6 result = []

7

8 while queue:

9 node = queue.popleft ()

10 result.append(node)

11

12 for neighbor in graph([nodel]:

13 if neighbor not in visited:
14 visited.add(neighbor)
15 queue . append (neighbor)

16

i7 return result

Depth-First Search (DFS)

Strategy: Explore as deep as possible before backtracking

Data Structure: Stack (or recursion)

Algorithm:
0 1st 1. Start at source
2. Mark as visited
° . e 3. For each unvisited neighbor:

3rd e o ® Recursively DFS from it

4. Backtrack
DFS from 0: [0, 1, 3, 2, 4]
Applications:

® (Cycle detection
® Topological sorting

e Strongly connected components

DFS Implementation

1/ # Recursive
2 def dfs_recursive(graph, node, visited=None):

3 if visited is None:

4 visited = set ()

5

6 visited.add (node)

7 result = [node]

8

9 for neighbor in graph[node]:

10 if neighbor not in visited:
11 result.extend (dfs_recursive (graph, neighbor, visited))
12

13 return result

14
15| # Iterative

16 def dfs_iterative(graph, start):
17 visited = set ()

18 stack = [start]

19 result = []

BFS vs DFS Comparison

Feature BFS DFS

Data structure Queue Stack/Recursion
Order Level by level Deep first
Shortest path Yes (unweighted) No
Memory More (stores level) | Less (stores path)
Completeness Yes Yes (with visited)
Time O(V +E) O(V +E)
Space o(V) o(V)

When to use:
e BFS: Shortest path, level processing, closer nodes first
e DFS: Cycle detection, topological sort, exploring all paths

Connected Components and Cycles

Connected Components

Definition: Maximal subgraphs where every pair of vertices is connected.

—————————
e I
1
1
‘ !
! 1 1
! Lo '
! U
")

———————— Co
Component 2

mp 3

Component 1

Example: 3 connected components: {0,1,2}, {3,4}, {5}

Algorithm: Run BFS/DFS from each unvisited vertex
® Each DFS/BFS finds one component
e Count number of DFS/BFS calls needed

Finding Connected Components

1 def count_components (graph):

© W N o U A~ W N

e e T < O =
®w N o o hA W N R O

=
©

def

visited = set ()
count = 0

def dfs(node):
visited.add (node)
for neighbor in graph[nodel]:
if neighbor not in visited:
dfs (neighbor)

for node in graph:
if node not in visited:
dfs (node)
count += 1

return count

find_components (graph) :
visited = set ()

Cycle Detection

Cycle: A path that starts and ends at the same vertex.

Has Cycle: No Cycle (Tree):

O8O, (A)
© (&) (©

Cycle: A—-B—=C— A e

Tree: No cycles
Detection Methods:
e Undirected: DFS with parent tracking
¢ Directed: DFS with color marking (White/Gray/Black)

Cycle Detection - Undirected

1 def

10
11
12
13
14
15

16

has_cycle_undirected (graph) :
visited = set()

def

for

dfs (node, parent):
visited.add (node)

for neighbor in graph([node]:
if neighbor not in visited:
if dfs(neighbor, node):
return True
elif neighbor != parent:
return True # Back edge found (cycle)

return False

node in graph:
if node not in visited:

Cycle Detection - Directed

1 def has_cycle_directed(graph):

© W N o U A~ W N

e e T < O =
®w N o o hA W N R O

=
©

WHITE, GRAY, BLACK = 0, 1, 2
color = {node: WHITE for node in graph}

def dfs(node):
color [node] = GRAY # Currently exploring

for neighbor in graph[nodel]:

if color [neighbor] == GRAY:
return True # Back edge (cycle)
if color [neighbor] == WHITE and dfs(neighbor):

return True

color [node] = BLACK # Finished exploring
return False

for node in graph:
if color[node] == WHITE:
if dfs(node):

Real-World Applications

Social Networks

Model: Users as vertices, relationships as edges

Bob

@ &

Applications:
® Friend recommendations: Friends of friends (2-hop neighbors)
¢ Influence analysis: Find most connected users (degree centrality)
¢ Community detection: Find clusters/groups
¢ Six degrees of separation: Shortest path between users
¢ Viral spread: Model information propagation

1 def recommend_friends (graph,

10

11

12

13

14

15

16

Friend Recommendations

def

"""EFind friends of friends
friends = set(graph[user])
recommendations = set ()

for friend in friends:
for friend_of_friend in
if friend_of_friend
friend_of_friend
recommendations

return recommendations

user) :
mon

graph[friend]:
= user and \
not in friends:

.add(friend_of_friend)

find_influencers (graph, top_k=10):

"""Find most connected users (degree centrality)"""
degrees = [(node, len(graphl[nodel])) for node in graph]
x[1],, reverse=True)

degrees.sort (key=lambda x:

Maps and Navigation

Model: Locations as vertices, roads as weighted edges

Applications:
® Route planning: Shortest path (Dijkstra's, A*)
e Traffic optimization: Alternative routes, congestion avoidance
° Dellvery routing: Traveling salesman problem (TSP)

- T T L L O T P D T Y 2 T N 1N\

Web and Internet

Model: Pages/routers as vertices, links/connections as edges

Applications:

PageRank: Rank web pages by importance/authority

Web crawling: BFS/DFS to discover new pages

Network routing: Find optimal packet paths

Load balancing: Distribute traffic across servers

Link analysis: Detect spam, find related pages

Other Applications

Dependency Graphs:
e Build systems: Compile order (topological sort)
® Package managers: Install dependencies
® Task scheduling: Prerequisite handling

Recommendation Systems:
® User-item bipartite graphs
® (Collaborative filtering
® Content-based recommendations

Science and Research:
® Biology: Protein interaction networks, phylogenetic trees
® Chemistry: Molecular structures, reaction networks
® Physics: Particle interactions
® Social science: Citation networks, collaboration graphs

Gaimes and Al:

Complexity Analysis

Time Complexity Summary

Operation Adjacency List | Adjacency Matrix
Add vertex O(1) O(V?) (resize)
Add edge 0(1) 0(1)
Remove vertex O(E) O(V?)
Remove edge O(E) o(1)

Check edge O(degree) O(1)

Get neighbors O(degree) Oo(V)
BFS/DFS O(V + E) o(V?)
Dijkstra O((V+E) log V) O(V?)

Key insight:
e Adjacency list better for sparse graphs (E < V?)
e Adjacency matrix better for dense graphs (E ~ V?)

Space Complexity

Representation Space Best For

Adjacency List O(V + E) | Sparse graphs

Adjacency Matrix O(V?) Dense graphs

Edge List O(E) Simple storage

Graph Density:
® Sparse: E = O(V), few edges
® Example: Social networks (avg degree ~100)
® Use adjacency list
® Dense: E = O(V?), many edges
® Example: Complete graph (all pairs connected)
® Use adjacency matrix

Memory Calculations

Example: 1 million vertices

Sparse graph (avg degree = 10):
® E ~ 5 million edges
e Adjacency list: (V + E) x 8 bytes = 40 MB
e Adjacency matrix: V x V x 1 byte =1 TB (impractical!)

Dense graph (E = V?/2):
® E =~ 500 billion edges
e Adjacency list: (V + E) x 8 bytes =4 TB
® Adjacency matrix: V x V x 1 byte = 1 TB (better!)

Practical considerations:

Small graphs (V < 1000): Either works

® Medium graphs (V < 100K): Adjacency list usually better
Large graphs (V > 1M): Must use adjacency list

Verv dense: Consider compressed formats

Summary

Key Concepts Recap

Graph Fundamentals:
® Graph G = (V, E): vertices and edges
® Models relationships between entities
® Directed vs undirected, weighted vs unweighted

Representations:
e Adjacency list: O(V + E) space, best for sparse
¢ Adjacency matrix: O(V?) space, best for dense

Traversals:
® BFS: Level by level, shortest path (unweighted)
® DFS: Deep first, cycle detection, topological sort

Analysis:
e Connected components: Find separate subgraphs
® (Cycle detection: Identify circular dependencies
& 'Roth use BFS/DFS: O(V + F)

Applications Recap

Major Use Cases:
® Social networks: Friend recommendations, influence analysis
® Maps/navigation: Route planning, traffic optimization
® \Web: PageRank, web crawling, network routing
® Dependencies: Build systems, package managers
® Science: Biology, chemistry, physics networks

Common Algorithms:

BFS, DFS: O(V + E)

Dijkstra's shortest path: O((V+E) log V)
Topological sort: O(V + E)

Connected components: O(V + E)

Cycle detection: O(V + E)

Practice Problems

Basic:
® |mplement adjacency list and matrix representations
® |mplement BFS and DFS
e Count connected components
® Detect cycles in undirected graph

Intermediate:
® Find shortest path in unweighted graph (BFS)

Check if graph is bipartite

Find all paths from source to destination

Detect cycles in directed graph

Clone a graph

Advanced:
® |mplement Dijkstra’s algorithm
® Topological sort (course schedule problems)

- L el e e NS Y T L Y

Implementation Tips

Best Practices:
® Use adjacency list for most problems
e Always track visited nodes in BFS/DFS
e Handle disconnected graphs (multiple components)
e Consider edge cases: empty graph, single vertex, cycles

Common Pitfalls:
® Forgetting to mark nodes as visited (infinite loops)
® Not handling directed vs undirected correctly
® Using wrong algorithm (BFS for shortest weighted path)
® Memory issues with large dense graphs

Optimization:
e Use sets for O(1) visited checks
e Use deque for BFS (efficient popleft)
® Consider Union-Find for connectivity problems

P YR ol IR P o T T T

Further Learning

Advanced Topics:
® Shortest paths: Dijkstra's, Bellman-Ford, Floyd-Warshall, A*
® Minimum spanning trees: Prim’s, Kruskal's
e Network flow: Ford-Fulkerson, max flow min cut
® Strongly connected components: Kosaraju's, Tarjan's
® Graph coloring: Chromatic number, map coloring

Resources:
® Practice on LeetCode graph problems
® Study graph algorithms in CLRS textbook
® Visualize with tools: Graphviz, NetworkX
® Build real projects: social network, route planner

Projects:
® |mplement social network with friend recommendations
® Build shortest path finder for maps

- ke e Y O DI

Thank Youl

Questions?

Graphs: Connecting the World Through Data

	Introduction to Graphs
	Graph Representations
	Types of Graphs
	Graph Traversals
	Connected Components and Cycles
	Real-World Applications
	Complexity Analysis
	Summary

