
Graph Algorithms
Compute Connectivity, Paths, and Structures Over Graphs

Minseok Jeon
DGIST

November 2, 2025

Minseok Jeon Graph Algorithms November 2, 2025 1/45

Table of Contents

1. Introduction

2. BFS/DFS Applications

3. Shortest Paths: Dijkstra/Bellman-Ford

4. Minimum Spanning Trees: Kruskal/Prim

5. Topological Sort and DAG DP

6. Strongly Connected Components

7. Flow Algorithms Overview

8. Summary

Minseok Jeon Graph Algorithms November 2, 2025 2/45

Introduction

What are Graph Algorithms?
Graph Algorithms: Methods to solve problems on graph structures

Key Problems:
• Traversal: Visit all vertices/edges
• Connectivity: Determine if vertices are connected
• Shortest Paths: Find minimum cost paths
• Spanning Trees: Connect all vertices with minimum cost
• Flow: Maximize throughput in networks

Real-World Applications:
• Social networks (connections, recommendations)
• Navigation systems (GPS, routing)
• Computer networks (packet routing, topology)
• Task scheduling (dependencies, ordering)
• Bioinformatics (protein interactions, gene networks)

Minseok Jeon Graph Algorithms November 2, 2025 4/45

Graph Basics Recap

Graph: G = (V, E) where V = vertices, E = edges

Types:
• Directed vs Undirected: Edges have direction or not
• Weighted vs Unweighted: Edges have costs or not
• Cyclic vs Acyclic: Contains cycles or not (DAG)
• Connected vs Disconnected: All vertices reachable or not

Complexity Notation:
• V = number of vertices
• E = number of edges
• Dense graph: E ≈ V 2

• Sparse graph: E ≈ V

Minseok Jeon Graph Algorithms November 2, 2025 5/45

BFS/DFS Applications

Breadth-First Search (BFS)
Level-by-Level Exploration Using Queue

Algorithm:
1. Start from source vertex
2. Add to queue and mark visited
3. Dequeue, process, enqueue unvisited neighbors
4. Repeat until queue empty

Characteristics:
• Time: O(V + E)
• Space: O(V) for queue and visited set
• Data Structure: Queue (FIFO)

Key Property:
• Finds shortest path in unweighted graphs
• Visits vertices in order of distance from source

Minseok Jeon Graph Algorithms November 2, 2025 7/45

BFS Implementation
1 from collections import deque
2
3 def bfs(graph , start):
4 """BFS traversal from start node """
5 visited = set([start])
6 queue = deque ([start])
7 result = []
8
9 while queue:

10 node = queue.popleft ()
11 result.append(node)
12
13 for neighbor in graph[node]:
14 if neighbor not in visited:
15 visited.add(neighbor)
16 queue.append(neighbor)
17
18 return result
19
20 # Example
21 graph = {
22 0: [1, 2],
23 1: [0, 3, 4],
24 2: [0, 4],
25 3: [1],
26 4: [1, 2]
27 }
28 print(bfs(graph , 0)) # [0, 1, 2, 3, 4]

Minseok Jeon Graph Algorithms November 2, 2025 8/45

BFS Applications
1. Shortest Path in Unweighted Graph:
• Find minimum number of edges from source to target
• Track parent pointers to reconstruct path

2. Level-Order Traversal:
• Process nodes by distance from source
• Used in tree level-order traversal

3. Connected Components:
• Find all disconnected subgraphs
• Run BFS from each unvisited vertex

4. Bipartite Check:
• Determine if graph is 2-colorable
• Alternate colors during BFS

5. Web Crawling:
• Explore web pages level by level
• Limit crawl depth

Minseok Jeon Graph Algorithms November 2, 2025 9/45

Depth-First Search (DFS)
Explore as Deep as Possible Using Stack/Recursion

Algorithm:
1. Start from source vertex
2. Mark visited, explore first unvisited neighbor
3. Recursively DFS on neighbor
4. Backtrack when no unvisited neighbors

Characteristics:
• Time: O(V + E)
• Space: O(V) for recursion stack (or explicit stack)
• Data Structure: Stack (LIFO) or recursion

Key Property:
• Explores entire branch before backtracking
• Can detect cycles (back edges)

Minseok Jeon Graph Algorithms November 2, 2025 10/45

DFS Implementation
1 def dfs_recursive(graph , node , visited=None):
2 """DFS traversal (recursive)"""
3 if visited is None:
4 visited = set()
5
6 visited.add(node)
7 result = [node]
8
9 for neighbor in graph[node]:

10 if neighbor not in visited:
11 result.extend(dfs_recursive(graph , neighbor , visited))
12
13 return result
14
15 def dfs_iterative(graph , start):
16 """DFS traversal (iterative)"""
17 visited = set()
18 stack = [start]
19 result = []
20
21 while stack:
22 node = stack.pop()
23 if node not in visited:
24 visited.add(node)
25 result.append(node)
26 stack.extend(reversed(graph[node])) # Maintain order
27
28 return result

Minseok Jeon Graph Algorithms November 2, 2025 11/45

DFS Applications
1. Cycle Detection:
• Find back edges (edge to ancestor)
• Detect if graph contains cycles

2. Path Finding:
• Find any path between two nodes
• Find all paths (with backtracking)

3. Topological Sorting:
• Order vertices in DAG
• Process finish times in reverse

4. Maze Solving:
• Find path through grid
• Backtrack on dead ends

5. Strongly Connected Components:
• Kosaraju’s and Tarjan’s algorithms
• Two-pass DFS

Minseok Jeon Graph Algorithms November 2, 2025 12/45

BFS vs DFS Comparison
Feature BFS DFS
Data Structure Queue Stack/Recursion
Path Found Shortest Any path
Memory (worst) O(V) (wide) O(h) (height)
Best For Shortest path Cycle detection
Tree Traversal Level-order Pre/In/Post-order
Completeness Yes Yes

When to Use BFS:
• Find shortest path in unweighted graph
• Process nodes by distance
• Graph is very deep (avoid stack overflow)

When to Use DFS:
• Detect cycles, find topological order
• Explore all paths, backtracking problems
• Graph is very wide (save memory)

Minseok Jeon Graph Algorithms November 2, 2025 13/45

Shortest Paths: Dijkstra/Bellman-Ford

Dijkstra’s Algorithm
Single-Source Shortest Path (Non-Negative Weights)

Algorithm:
1. Initialize distances: source = 0, others = ∞
2. Use min-heap to get vertex with minimum distance
3. For each neighbor, relax edge if shorter path found
4. Mark vertex as visited
5. Repeat until all vertices processed

Characteristics:
• Time: O((V + E) log V) with min-heap
• Space: O(V)
• Requirement: Non-negative edge weights

Key Idea:
• Greedy approach: always pick closest unvisited vertex
• Correctness requires non-negative weightsMinseok Jeon Graph Algorithms November 2, 2025 15/45

Dijkstra Implementation
1 import heapq
2
3 def dijkstra(graph , start):
4 """ Find shortest paths from start to all vertices """
5 dist = {node: float(’inf’) for node in graph}
6 dist[start] = 0
7 pq = [(0, start)] # (distance , node)
8 visited = set()
9

10 while pq:
11 d, node = heapq.heappop(pq)
12 if node in visited:
13 continue
14 visited.add(node)
15
16 for neighbor , weight in graph[node]:
17 new_dist = d + weight
18 if new_dist < dist[neighbor]:
19 dist[neighbor] = new_dist
20 heapq.heappush(pq , (new_dist , neighbor))
21
22 return dist
23
24 # Example: graph[node] = [(neighbor , weight), ...]
25 graph = {
26 ’A’: [(’B’, 4), (’C’, 2)],
27 ’B’: [(’C’, 1), (’D’, 5)],
28 ’C’: [(’D’, 8), (’E’, 10)],
29 ’D’: [(’E’, 2)],
30 ’E’: []
31 }
32 print(dijkstra(graph , ’A’)) # {’A’: 0, ’B’: 4, ’C’: 2, ’D’: 9, ’E’: 11}

Minseok Jeon Graph Algorithms November 2, 2025 16/45

Bellman-Ford Algorithm
Single-Source Shortest Path (Handles Negative Weights)

Algorithm:
1. Initialize distances: source = 0, others = ∞
2. Relax all edges V − 1 times
3. Check for negative cycles (one more iteration)

Characteristics:
• Time: O(V × E)
• Space: O(V)
• Advantage: Handles negative weights, detects negative cycles

Why V − 1 Iterations?
• Longest simple path has V − 1 edges
• Each iteration extends shortest path by one edge
• After V − 1 iterations, all shortest paths found

Minseok Jeon Graph Algorithms November 2, 2025 17/45

Bellman-Ford Implementation

1 def bellman_ford(edges , n, start):
2 """
3 Find shortest paths , detect negative cycles
4 edges: list of (u, v, weight)
5 """
6 dist = [float(’inf’)] * n
7 dist[start] = 0
8
9 # Relax edges V-1 times

10 for _ in range(n - 1):
11 for u, v, weight in edges:
12 if dist[u] != float(’inf’) and dist[u] + weight < dist[v]:
13 dist[v] = dist[u] + weight
14
15 # Check for negative cycles
16 for u, v, weight in edges:
17 if dist[u] != float(’inf’) and dist[u] + weight < dist[v]:
18 return None # Negative cycle detected
19
20 return dist
21
22 # Example
23 edges = [(0, 1, 4), (0, 2, 2), (1, 2, -3), (2, 3, 2), (3, 1, 1)]
24 n = 4
25 print(bellman_ford(edges , n, 0))

Minseok Jeon Graph Algorithms November 2, 2025 18/45

Dijkstra vs Bellman-Ford
Feature Dijkstra Bellman-Ford
Time Complexity O(E log V) O(V × E)
Negative Weights No Yes
Negative Cycles Cannot detect Detects
Implementation Min-heap Nested loops
Best For Fast, non-negative Negative weights

Floyd-Warshall (All-Pairs Shortest Paths):
• Time: O(V 3)
• Finds shortest paths between all pairs
• Handles negative weights
• Uses dynamic programming

Choosing Algorithm:
• Non-negative weights → Dijkstra (faster)
• Negative weights → Bellman-Ford
• All pairs → Floyd-Warshall or run Dijkstra V times

Minseok Jeon Graph Algorithms November 2, 2025 19/45

Minimum Spanning Trees: Kruskal/Prim

Minimum Spanning Tree (MST)
Tree Connecting All Vertices with Minimum Total Weight

Properties:
• Connects all V vertices
• Has exactly V − 1 edges
• No cycles (it’s a tree)
• Minimum total edge weight

Applications:
• Network design (minimize cable length)
• Approximation algorithms (TSP)
• Clustering algorithms
• Image segmentation

Two Main Algorithms:
• Kruskal’s: Sort edges, add if no cycle (edge-based)
• Prim’s: Grow tree from vertex (vertex-based)Minseok Jeon Graph Algorithms November 2, 2025 21/45

Kruskal’s Algorithm
Sort Edges, Add If Doesn’t Create Cycle

Algorithm:
1. Sort all edges by weight (ascending)
2. Initialize Union-Find structure
3. For each edge (u, v):

• If u and v in different components, add edge
• Union the components

4. Stop when V − 1 edges added

Characteristics:
• Time: O(E logE) (dominated by sorting)
• Space: O(V) for Union-Find
• Best for: Sparse graphs

Key Data Structure:
• Union-Find (Disjoint Set Union) for cycle detectionMinseok Jeon Graph Algorithms November 2, 2025 22/45

Kruskal Implementation
1 class UnionFind:
2 def __init__(self , n):
3 self.parent = list(range(n))
4 self.rank = [0] * n
5
6 def find(self , x):
7 if self.parent[x] != x:
8 self.parent[x] = self.find(self.parent[x]) # Path compression
9 return self.parent[x]

10
11 def union(self , x, y):
12 px , py = self.find(x), self.find(y)
13 if px == py:
14 return False # Already in same set
15 if self.rank[px] < self.rank[py]:
16 self.parent[px] = py
17 elif self.rank[px] > self.rank[py]:
18 self.parent[py] = px
19 else:
20 self.parent[py] = px
21 self.rank[px] += 1
22 return True
23
24 def kruskal(n, edges):
25 """ edges: list of (weight , u, v)"""
26 edges.sort() # Sort by weight
27 uf = UnionFind(n)
28 mst , total = [], 0
29
30 for weight , u, v in edges:
31 if uf.union(u, v):
32 mst.append ((u, v, weight))
33 total += weight
34
35 return total , mst

Minseok Jeon Graph Algorithms November 2, 2025 23/45

Prim’s Algorithm
Grow Tree from Starting Vertex

Algorithm:
1. Start with any vertex
2. Add to MST
3. Repeat until all vertices added:

• Find minimum weight edge from MST to non-MST vertex
• Add that edge and vertex to MST

Characteristics:
• Time: O(E log V) with min-heap
• Space: O(V)
• Best for: Dense graphs

Key Data Structure:
• Min-heap to efficiently find minimum edge

Similarity to Dijkstra:
• Both use greedy approach with min-heap
• Prim: minimize edge weight, Dijkstra: minimize path distance

Minseok Jeon Graph Algorithms November 2, 2025 24/45

Prim Implementation
1 import heapq
2
3 def prim(graph , start):
4 """
5 graph: {node: [(neighbor , weight), ...]}
6 """
7 mst , total = [], 0
8 visited = {start}
9 edges = [(weight , start , neighbor)

10 for neighbor , weight in graph[start]]
11 heapq.heapify(edges)
12
13 while edges:
14 weight , u, v = heapq.heappop(edges)
15 if v in visited:
16 continue
17
18 visited.add(v)
19 mst.append ((u, v, weight))
20 total += weight
21
22 for neighbor , w in graph[v]:
23 if neighbor not in visited:
24 heapq.heappush(edges , (w, v, neighbor))
25
26 return total , mst
27
28 # Example
29 graph = {
30 ’A’: [(’B’, 4), (’C’, 2)],
31 ’B’: [(’A’, 4), (’C’, 1), (’D’, 5)],
32 ’C’: [(’A’, 2), (’B’, 1), (’D’, 8)],
33 ’D’: [(’B’, 5), (’C’, 8)]
34 }
35 print(prim(graph , ’A’)) # (7, [(’A’, ’C’, 2), (’C’, ’B’, 1), (’B’, ’D’, 5)])

Minseok Jeon Graph Algorithms November 2, 2025 25/45

Kruskal vs Prim
Feature Kruskal Prim
Time Complexity O(E logE) O(E log V)

Approach Edge-based Vertex-based
Data Structure Union-Find Min-heap
Best For Sparse graphs Dense graphs
Starting Point N/A (all edges) Any vertex
Works on Disconnected Partial MST No

Time Complexity Notes:
• Kruskal: O(E logE) = O(E log V) since E ≤ V 2
• Prim with Fibonacci heap: O(E + V log V) (theoretical)

Practical Choice:
• Sparse graph (E ≈ V): Kruskal slightly better
• Dense graph (E ≈ V 2): Prim slightly better
• Both give same MST weight (may differ in edges)Minseok Jeon Graph Algorithms November 2, 2025 26/45

Topological Sort and DAG DP

Topological Sort
Linear Ordering of Vertices in DAG

Definition:
• For every directed edge (u, v), u comes before v in ordering
• Only exists for Directed Acyclic Graphs (DAGs)
• Can be multiple valid orderings

Applications:
• Course scheduling: Prerequisite dependencies
• Build systems: Compile dependencies (Makefile)
• Task scheduling: Task dependencies
• Formula evaluation: Dependency graphs

Two Main Algorithms:
• Kahn’s Algorithm: BFS-based, uses in-degrees
• DFS-based: Process vertices by finish time

Minseok Jeon Graph Algorithms November 2, 2025 28/45

Topological Sort: Kahn’s Algorithm
1 from collections import deque
2
3 def topological_sort(graph , n):
4 """
5 Kahn’s algorithm (BFS -based)
6 graph: adjacency list
7 Returns: topological order or None if cycle exists
8 """
9 # Calculate in-degrees

10 in_degree = [0] * n
11 for node in range(n):
12 for neighbor in graph[node]:
13 in_degree[neighbor] += 1
14
15 # Start with vertices having in-degree 0
16 queue = deque ([i for i in range(n) if in_degree[i] == 0])
17 result = []
18
19 while queue:
20 node = queue.popleft ()
21 result.append(node)
22
23 for neighbor in graph[node]:
24 in_degree[neighbor] -= 1
25 if in_degree[neighbor] == 0:
26 queue.append(neighbor)
27
28 # If not all vertices processed , graph has cycle
29 return result if len(result) == n else None

Minseok Jeon Graph Algorithms November 2, 2025 29/45

DAG Dynamic Programming
DP on Directed Acyclic Graphs

Key Idea:
• Process vertices in topological order
• Each vertex computed after all dependencies
• No cycles → no circular dependencies

Common Problems:
• Longest/Shortest Path in DAG: O(V + E)
• Count paths: Number of paths from source to sink
• Critical Path Method: Project scheduling

Template:
1. Compute topological order
2. Initialize DP array
3. Process vertices in topological order
4. Update DP based on edgesMinseok Jeon Graph Algorithms November 2, 2025 30/45

DAG DP: Longest Path

1 def longest_path_dag(graph , n):
2 """ Find longest path in DAG"""
3 topo_order = topological_sort(graph , n)
4 if topo_order is None:
5 return None # Cycle exists
6

7 dp = [0] * n
8

9 for node in topo_order:
10 for neighbor in graph[node]:
11 dp[neighbor] = max(dp[neighbor], dp[node] + 1)
12

13 return max(dp)
14

15 # Example: Course scheduling with prerequisites
16 # Find longest chain of courses
17 graph = {
18 0: [1, 2],
19 1: [3],
20 2: [3],
21 3: []
22 }
23 print(longest_path_dag(graph , 4)) # Output: 2

Minseok Jeon Graph Algorithms November 2, 2025 31/45

Strongly Connected Components

Strongly Connected Components (SCC)
Maximal Subgraphs Where Every Vertex Reaches Every Other

Definition:
• In directed graph, SCC is maximal set of vertices
• For any u, v in SCC, there exists path u → v and v → u
• Condensation graph (SCC graph) is always a DAG

Applications:
• 2-SAT: Satisfiability of Boolean formulas
• Reachability queries: Which vertices can reach which
• Deadlock detection: Circular dependencies
• Web page ranking: Identify tightly connected clusters

Algorithms:
• Kosaraju’s: Two-pass DFS (simpler)
• Tarjan’s: Single-pass DFS (more efficient)

Minseok Jeon Graph Algorithms November 2, 2025 33/45

Kosaraju’s Algorithm
Two-Pass DFS Approach

1 def kosaraju_scc(graph , n):
2 """ Find strongly connected components """
3 # Step 1: DFS to get finish order
4 visited = [False] * n
5 finish_order = []
6
7 def dfs1(node):
8 visited[node] = True
9 for neighbor in graph[node]:

10 if not visited[neighbor]:
11 dfs1(neighbor)
12 finish_order.append(node)
13
14 for i in range(n):
15 if not visited[i]:
16 dfs1(i)
17
18 # Step 2: Transpose graph
19 transpose = [[] for _ in range(n)]
20 for u in range(n):
21 for v in graph[u]:
22 transpose[v]. append(u)
23
24 # Step 3: DFS on transpose in reverse finish order
25 visited = [False] * n
26 components = []
27
28 def dfs2(node , component):
29 visited[node] = True
30 component.append(node)
31 for neighbor in transpose[node]:
32 if not visited[neighbor]:
33 dfs2(neighbor , component)
34
35 for node in reversed(finish_order):
36 if not visited[node]:
37 component = []
38 dfs2(node , component)
39 components.append(component)
40
41 return components

Minseok Jeon Graph Algorithms November 2, 2025 34/45

Kosaraju’s Algorithm: How It Works
Three Steps:

Step 1: First DFS
• Run DFS on original graph
• Record finish times (when vertex fully explored)
• Vertices in same SCC finish close together

Step 2: Transpose Graph
• Reverse all edge directions
• If u → v in G, then v → u in GT

• SCCs remain the same

Step 3: Second DFS
• Process vertices in reverse finish order
• Each DFS tree in GT is one SCC

Complexity:
• Time: O(V + E) (two DFS passes)
• Space: O(V) for transpose graph

Minseok Jeon Graph Algorithms November 2, 2025 35/45

Flow Algorithms Overview

Maximum Flow Problem
Find Maximum Flow from Source to Sink

Definition:
• Given: Directed graph with edge capacities
• Find: Maximum amount of flow from source s to sink t
• Constraints: Flow ≤ capacity, flow conservation

Key Concepts:
• Capacity: Maximum flow on edge
• Residual graph: Remaining capacity after flow
• Augmenting path: Path with available capacity
• Cut: Partition of vertices into two sets

Max-Flow Min-Cut Theorem:
• Maximum flow value = Minimum cut capacity
• Fundamental result in network flow theory

Minseok Jeon Graph Algorithms November 2, 2025 37/45

Ford-Fulkerson Method
Find Augmenting Paths Until No More Exist

Algorithm:
1. Initialize flow to 0
2. While augmenting path exists:

• Find augmenting path (any path with capacity)
• Compute bottleneck capacity
• Add flow along path
• Update residual graph

Edmonds-Karp Algorithm:
• Ford-Fulkerson with BFS for finding paths
• Time: O(V × E2) (guaranteed polynomial)
• Always finds shortest augmenting path

Characteristics:
• Time: O(V × E2) for Edmonds-Karp
• Space: O(V 2) for flow/capacity matrices

Minseok Jeon Graph Algorithms November 2, 2025 38/45

Edmonds-Karp Implementation
1 from collections import deque
2
3 def max_flow(capacity , source , sink):
4 """ Edmonds -Karp algorithm for maximum flow """
5 n = len(capacity)
6 flow = [[0] * n for _ in range(n)]
7
8 def bfs():
9 """ Find augmenting path using BFS """

10 parent = [-1] * n
11 visited = [False] * n
12 visited[source] = True
13 queue = deque ([(source , float(’inf’))])
14
15 while queue:
16 u, min_cap = queue.popleft ()
17
18 for v in range(n):
19 if not visited[v] and capacity[u][v] - flow[u][v] > 0:
20 visited[v] = True
21 parent[v] = u
22 new_cap = min(min_cap , capacity[u][v] - flow[u][v])
23
24 if v == sink:
25 return parent , new_cap
26 queue.append ((v, new_cap))
27
28 return None , 0
29
30 total_flow = 0
31 while True:
32 parent , path_flow = bfs()
33 if path_flow == 0:
34 break
35
36 total_flow += path_flow
37 v = sink
38 while v != source:
39 u = parent[v]
40 flow[u][v] += path_flow
41 flow[v][u] -= path_flow # Reverse flow
42 v = u
43
44 return total_flow

Minseok Jeon Graph Algorithms November 2, 2025 39/45

Flow Applications
1. Maximum Bipartite Matching:
• Model as flow problem
• Add source to left vertices, sink from right vertices
• Maximum flow = maximum matching

2. Minimum Cut:
• Find minimum capacity cut separating s and t
• Max flow = min cut (by theorem)
• Applications: Network reliability, image segmentation

3. Network Routing:
• Optimize data flow through network
• Consider bandwidth constraints

4. Assignment Problems:
• Match workers to tasks optimally
• Constraint satisfaction

5. Circulation with Demands:
• Flow with lower and upper bounds
• Supply and demand at vertices

Minseok Jeon Graph Algorithms November 2, 2025 40/45

Summary

Key Takeaways
Traversal Algorithms:
• BFS: Shortest path, level-order, O(V + E)
• DFS: Cycle detection, topological sort, O(V + E)

Shortest Path Algorithms:
• Dijkstra: Non-negative weights, O(E log V)
• Bellman-Ford: Negative weights, detects cycles, O(V E)

Minimum Spanning Tree:
• Kruskal: Sort edges, Union-Find, O(E logE)
• Prim: Grow tree, min-heap, O(E log V)

Advanced Topics:
• Topological Sort: Order DAG vertices, O(V + E)
• SCC: Kosaraju’s/Tarjan’s, O(V + E)
• Max Flow: Edmonds-Karp, O(V E2)

Minseok Jeon Graph Algorithms November 2, 2025 42/45

Complexity Summary

Algorithm Time Space
BFS O(V + E) O(V)

DFS O(V + E) O(V)

Dijkstra O((V + E) log V) O(V)

Bellman-Ford O(V E) O(V)

Kruskal O(E logE) O(V)

Prim O(E log V) O(V)

Topological Sort O(V + E) O(V)

Kosaraju SCC O(V + E) O(V)

Edmonds-Karp O(V E2) O(V 2)

Minseok Jeon Graph Algorithms November 2, 2025 43/45

Practice Problems
BFS/DFS:
• Number of islands (LeetCode 200)
• Word ladder (LeetCode 127)
• Course schedule (LeetCode 207, 210)

Shortest Paths:
• Network delay time (LeetCode 743)
• Cheapest flights (LeetCode 787)

MST:
• Min cost to connect all points (LeetCode 1584)

Advanced:
• Critical connections (LeetCode 1192)
• Alien dictionary (LeetCode 269)

Minseok Jeon Graph Algorithms November 2, 2025 44/45

Resources
Books:
• "Introduction to Algorithms" (CLRS) - Chapters 22-26
• "Algorithm Design" (Kleinberg & Tardos)

Online:
• VisuAlgo - Graph algorithm visualizations
• LeetCode - Graph problems
• Codeforces - Graph theory tutorials

Advanced Topics:
• A* search algorithm
• Network simplex for min-cost flow
• Hopcroft-Karp for bipartite matching
• Tarjan’s algorithm for SCC

Minseok Jeon Graph Algorithms November 2, 2025 45/45

	Introduction
	BFS/DFS Applications
	Shortest Paths: Dijkstra/Bellman-Ford
	Minimum Spanning Trees: Kruskal/Prim
	Topological Sort and DAG DP
	Strongly Connected Components
	Flow Algorithms Overview
	Summary

