Graph Algorithms

Compute Connectivity, Paths, and Structures Over Graphs

Minseok Jeon
DGIST

November 2, 2025

Table of Contents

Introduction

BFS/DFS Applications

Shortest Paths: Dijkstra/Bellman-Ford
Minimum Spanning Trees: Kruskal/Prim
Topological Sort and DAG DP

Strongly Connected Components

Flow Algorithms Overview

o S A o

Summary

Introduction

What are Graph Algorithms?

Graph Algorithms: Methods to solve problems on graph structures

Key Problems:
® Traversal: Visit all vertices/edges
e Connectivity: Determine if vertices are connected
® Shortest Paths: Find minimum cost paths
® Spanning Trees: Connect all vertices with minimum cost
® Flow: Maximize throughput in networks

Real-World Applications:

Social networks (connections, recommendations)
Navigation systems (GPS, routing)

Computer networks (packet routing, topology)
Task scheduling (dependencies, ordering)
Bioinformatics (protein interactions, gene networks)

Graph Basics Recap

Graph: G = (V, E) where V' = vertices, E = edges

Types:
® Directed vs Undirected: Edges have direction or not
® Weighted vs Unweighted: Edges have costs or not
¢ Cyclic vs Acyclic: Contains cycles or not (DAG)

e Connected vs Disconnected: All vertices reachable or not

Complexity Notation:
® V' = number of vertices
® £ = number of edges
e Dense graph: E ~ V?
® Sparse graph: E =~V

BFS/DFS Applications

Breadth-First Search (BFS)

Level-by-Level Exploration Using Queue

Algorithm:
1. Start from source vertex
2. Add to queue and mark visited
3. Dequeue, process, enqueue unvisited neighbors
4. Repeat until queue empty

Characteristics:
* Time: O(V + E)
® Space: O(V) for queue and visited set
¢ Data Structure: Queue (FIFO)

Key Property:
® Finds shortest path in unweighted graphs
® \/isits vertices in order of distance from source

1
2

NN NN
N oo

®

BFS Implementation

from collections import deque

def bfs(graph, start):
"""BFS traversal from start node
visited = set([startl)
queue = deque ([start])
result = []

while queue:

node = queue.popleft ()
result.append (node)
for neighbor in graphl[nodel:
if neighbor not in visited:
visited.add (neighbor)
queue . append (neighbor)
return result
Example
graph = {
0: [1, 21,
1: [0, 3, 41,
2: [0, 4],
3: [11,
4: [1, 2]

}
print (bfs(graph, 0)) # [0, 1, 2, 3, 4]

BFS Applications

1. Shortest Path in Unweighted Graph:
® Find minimum number of edges from source to target
® Track parent pointers to reconstruct path

2. Level-Order Traversal:
® Process nodes by distance from source
® Used in tree level-order traversal

3. Connected Components:
® Find all disconnected subgraphs
® Run BFS from each unvisited vertex

4. Bipartite Check:
® Determine if graph is 2-colorable
® Alternate colors during BFS

5. Web Crawling:
e Explore web pages level by level

Depth-First Search (DFS)

Explore as Deep as Possible Using Stack/Recursion

Algorithm:
1. Start from source vertex
2. Mark visited, explore first unvisited neighbor
3. Recursively DFS on neighbor
4. Backtrack when no unvisited neighbors

Characteristics:
e Time: O(V + E)
® Space: O(V) for recursion stack (or explicit stack)
e Data Structure: Stack (LIFO) or recursion

Key Property:
® Explores entire branch before backtracking
e Can detect cycles (back edges)

D

(RIS, BN NN

N =

B W

N oo

NN NNN NN

®

DFS Implementation

def dfs_recursive(graph, node, visited=None):
"""DFS traversal (recursive)"""
if visited is None:
visited = set ()

visited.add (node)
result = [nodel]

for neighbor in graphl[node]:
if neighbor not in visited:
result.extend(dfs_recursive (graph, neighbor, visited))

return result

def dfs_iterative(graph, start):
"""DFS traversal (iterative)"""

visited = set ()
stack = [start]
result = []

while stack:
node = stack.pop()
if node not in visited:
visited.add(node)
result.append (node)
stack.extend (reversed (graph[node])) # Maintain order

return result

DFS Applications

1. Cycle Detection:
® Find back edges (edge to ancestor)
® Detect if graph contains cycles

2. Path Finding:
® Find any path between two nodes
® Find all paths (with backtracking)

3. Topological Sorting:
® Order vertices in DAG
® Process finish times in reverse

4. Maze Solving:
® Find path through grid
® Backtrack on dead ends

5. Strongly Connected Components:
e Kosaraju's and Tarjan’'s algorithms

BFS vs DFS Comparison

Feature BFS DFS

Data Structure Queue Stack/Recursion
Path Found Shortest Any path
Memory (worst) | O(V) (wide) O(h) (height)
Best For Shortest path Cycle detection
Tree Traversal Level-order | Pre/In/Post-order
Completeness Yes Yes

When to Use BFS:
® Find shortest path in unweighted graph
® Process nodes by distance
® Graph is very deep (avoid stack overflow)

When to Use DFS:
® Detect cycles, find topological order
® Explore all paths, backtracking problems

Shortest Paths: Dijkstra/Bellman-Ford

Dijkstra’s Algorithm

Single-Source Shortest Path (Non-Negative Weights)

Algorithm:

1. Initialize distances: source = 0, others = oo
Use min-heap to get vertex with minimum distance
For each neighbor, relax edge if shorter path found
Mark vertex as visited
Repeat until all vertices processed

Ot L

Characteristics:
® Time: O((V + E)log V) with min-heap
e Space: O(V)
® Requirement: Non-negative edge weights

Key ldea:
® Greedy approach: always pick closest unvisited vertex
e Correctness requires non-negative weights

D

(RIS, BN NN

N

O O WNOo O WN

D NN NN N NN

Dijkstra Implementation

import heapq

def dijkstra(graph, start):
"""Find shortest paths from start to all vertices"""
dist = {node: float(’inf’) for node in graph}
dist[start]l = 0
pq = [(0, start)] # (distance, node)
visited = set ()

while pq:
d, node = heapq.heappop (pq)
if node in visited:
continue
visited.add(node)

for neighbor, weight in graphl[nodel:

new_dist = d + weight
if new_dist < dist[neighbor]:
dist [neighbor] = new_dist

heapq.heappush(pq, (new_dist, neighbor))
return dist

Example: graph[node] = [(neighbor, weight), ...]
graph = {

PAC: [CB2, 4), (’C’, DT,

’B’: [(’C’, 1), (’D’, 5)],

>c’: [(’D’, 8), (PE’, 10)],

oy [€9m2, 291,

2E’: [

Bellman-Ford Algorithm

Single-Source Shortest Path (Handles Negative Weights)

Algorithm:
1. Initialize distances: source = 0, others = oo
2. Relax all edges V' — 1 times
3. Check for negative cycles (one more iteration)

Characteristics:
e Time: O(V x E)
® Space: O(V)
® Advantage: Handles negative weights, detects negative cycles

Why V — 1 lterations?
® | ongest simple path has V — 1 edges
® Each iteration extends shortest path by one edge
e After V — 1 iterations, all shortest paths found

Bellman-Ford Implementation

def bellman_ford(edges, n, start):
Find shortest paths, detect negative cycles
edges: list of (u, v, weight)
dist = [float(’inf’)] * n
dist[start] = 0

Relax edges V-1 times

for _ in range(n - 1):
for u, v, weight in edges:
if dist[u] != float(’inf’) and dist[u] + weight < dist([v]:

dist[v] = dist[u] + weight
Check for negative cycles
for u, v, weight in edges:
if dist([u] != float(’inf’) and dist[u] + weight < dist([v]

return None # Negative cycle detected

return dist

print (bellman_ford(edges, n, 0))

Dijkstra vs Bellman-Ford

Feature Dijkstra Bellman-Ford
Time Complexity O(ElogV) O(V x E)
Negative Weights No Yes
Negative Cycles Cannot detect Detects
Implementation Min-heap Nested loops

Best For

Fast, non-negative

Negative weights

Floyd-Warshall (All-Pairs Shortest Paths):

Time: O(V?3)
Finds shortest paths between all pairs
Handles negative weights

Uses dynamic programming

Choosing Algorithm:
e Non-negative weights — Dijkstra (faster)
®_Negative weights — Bellman-Ford

Minimum Spanning Trees: Kruskal/Prim

Minimum Spanning Tree (MST)

Tree Connecting All Vertices with Minimum Total Weight

Properties:
® Connects all V vertices
® Has exactly V — 1 edges
® No cycles (it's a tree)
® Minimum total edge weight

Applications:

Network design (minimize cable length)
® Approximation algorithms (TSP)

® (Clustering algorithms

® |mage segmentation

Two Main Algorithms:
e Kruskal’s: Sort edges, add if no cycle (edge-based)
e Prim’s: Grow tree from vertex (vertex=based)

Kruskal’s Algorithm

Sort Edges, Add If Doesn’t Create Cycle

Algorithm:
1. Sort all edges by weight (ascending)
2. Initialize Union-Find structure
3. For each edge (u, v):
® |f y and v in different components, add edge
® Union the components
4. Stop when V — 1 edges added

Characteristics:
® Time: O(E log E) (dominated by sorting)
® Space: O(V) for Union-Find
e Best for: Sparse graphs

Key Data Structure:
¢ Union-Find (Disjoint Set Union) for cycle detection

D

(RIS, BN NN

DI NN NN N
N oo

O ©

Kruskal Implementation

class UnionFind:
def __init__(self, n):
self .parent = list(range(n))
self.rank = [0] * n

def find(self, x):
if self.parent[x] != x:
self .parent [x] = self.find(self.parent[x]) # Path compre
return self.parent [x]

def union(self, x, y):

px, py = self.find(x), self.find(y)

if px == py:
return False # Already in same set

if self.rank[px] < self.rank[pyl:
self .parent [px] = py

elif self.rank[px] > self.rank[py]
self .parent [py] = px

else:
self.parent [py]l = px
self.rank[px] += 1

return True

def kruskal(n, edges):

"""edges: list of (weight, u, v)"""
edges.sort() # Sort by weight

uf = UnionFind(n)

mst, total = [], O

for weight, u, v in edges:
R S N

Prim’s Algorithm

Grow Tree from Starting Vertex

Algorithm:
1. Start with any vertex
2. Add to MST
3. Repeat until all vertices added:
® Find minimum weight edge from MST to non-MST vertex
® Add that edge and vertex to MST

Characteristics:
® Time: O(ElogV) with min-heap
® Space: O(V)
® Best for: Dense graphs

Key Data Structure:
® Min-heap to efficiently find minimum edge

l al-T.] DALY T T o Y11 P

D

(RIS, BN NN

DI NN NN N
N oo

O ©

Prim Implementation

import heapq

def prim(graph, start):

graph: {node: [(neighbor, weight), ...]1}
mst, total = [], O
visited = {start}
edges = [(weight, start, neighbor)
for neighbor, weight in graphl[start]]
heapq.heapify (edges)

while edges:
weight, u, v = heapq.heappop (edges)
if v in visited:
continue

visited.add (v)
mst.append ((u, v, weight))
total += weight

for neighbor, w in graphl[v]:
if neighbor not in visited:
heapq.heappush(edges, (w, v, neighbor))

return total, mst

Example
graph = {
A0 [C°B?, 4), (°c’, 2)],

I P o DR i e N A

Kruskal vs Prim

Feature Kruskal Prim
Time Complexity O(ElogE) O(ElogV)
Approach Edge-based Vertex-based
Data Structure Union-Find Min-heap
Best For Sparse graphs | Dense graphs
Starting Point N/A (all edges) | Any vertex
Works on Disconnected Partial MST No

Time Complexity Notes:
e Kruskal: O(Elog E) = O(ElogV) since E < V2
® Prim with Fibonacci heap: O(E + V' log V') (theoretical)

Practical Choice:
® Sparse graph (E =~ V): Kruskal slightly better
® Dense graph (E ~ V?): Prim slightly better
® Both give same MST weight (may differ.in edges)

Topological Sort and DAG DP

Topological Sort

Linear Ordering of Vertices in DAG

Definition:
® For every directed edge (u, v), u comes before v in ordering
® Only exists for Directed Acyclic Graphs (DAGs)
® Can be multiple valid orderings

Applications:

Course scheduling: Prerequisite dependencies
Build systems: Compile dependencies (Makefile)
Task scheduling: Task dependencies

Formula evaluation: Dependency graphs

Two Main Algorithms:
e Kahn’'s Algorithm: BFS-based, uses in-degrees
e DFS-based: Process vertices by finish time

1
2

Topological Sort: Kahn’s Algorithm

from collections import deque

def topological_sort(graph, n):

Kahn’s algorithm (BFS-based)
graph: adjacency list
Returns: topological order or None
W
Calculate in-degrees
in_degree = [0] * n
for node in range(n):
for neighbor in graphl[nodel:
in_degree [neighbor] += 1

if

cycle exists

Start with vertices having in-degree 0

queue = deque ([i for i in range(n)
result = []

while queue:
node = queue.popleft ()
result.append (node)

for neighbor in graph[node]:
in_degree [neighbor] -= 1
if in_degree[neighbor] ==
queue . append (neighbor)

if

0:

in_degree[i]

If not all vertices processed, graph has cycle
return result if len(result) == n else None

DAG Dynamic Programming

DP on Directed Acyclic Graphs

Key ldea:
® Process vertices in topological order
® Fach vertex computed after all dependencies
® No cycles — no circular dependencies

Common Problems:
® Longest/Shortest Path in DAG: O(V + E)
® Count paths: Number of paths from source to sink
® Critical Path Method: Project scheduling

Template:

1. Compute topological order

2. Initialize DP array

3. Process vertices in topological order
---Update DP based on edges

o

1

N

16

17

DAG DP: Longest Path

def longest_path_dag(graph, n):
"""Find longest path in DAG"""

topo_order = topological_sort(graph, n)

if topo_order is None:
return None # Cycle exists

dp = [0] * n

for node in topo_order:
for neighbor in graph([node]:

dp[neighbor] = max(dpl[neighbor],

return max (dp)

dp [node] + 1)

Example: Course scheduling with prerequisites

Find longest chain of courses

graph = {

Strongly Connected Components

Strongly Connected Components (SCC)

Maximal Subgraphs Where Every Vertex Reaches Every Other

Definition:
® |n directed graph, SCC is maximal set of vertices
® For any u, v in SCC, there exists path v - v and v — u
e Condensation graph (SCC graph) is always a DAG

Applications:

2-SAT: Satisfiability of Boolean formulas
Reachability queries: \Which vertices can reach which
Deadlock detection: Circular dependencies

Web page ranking: Identify tightly connected clusters

Algorithms:
e Kosaraju's: Two-pass DFS (simpler)
® Tarjan’s: Single-pass DFS (more efficient)

[N

IN

w0~ o,

©

Kosaraju’s Algorithm

Two-Pass DFS Approach

def kosaraju_scc(graph, n):

"""Find strongly connected components"""
Step 1: DFS to get finish order
visited = [False] * n

finish_order = []

def dfsi(node):
visited [node] = True
for neighbor in graphl[node]:
if not visited[neighbor]:
dfsl(neighbor)
finish_order.append(node)

for i in range(n):
if not visited[il:
dfs1 (i)

Step 2: Transpose graph
transpose = [[] for _ in range(n)]
for u in range(n):
for v in graph[ul:
transpose [v].append (u)

Step 3: DFS on transpose in reverse finish
visited = [False] * n
components = []

def dfs2(node, component):

e ea a2 e

order

Kosaraju’s Algorithm: How It Works

Three Steps:

Step 1: First DFS
® Run DFS on original graph
® Record finish times (when vertex fully explored)
® Vertices in same SCC finish close together

Step 2: Transpose Graph
® Reverse all edge directions
e fu—vinG, thenv—uinG’
® SCCs remain the same

Step 3: Second DFS
® Process vertices in reverse finish order
® Each DFS tree in G' is one SCC

Complexity:

Flow Algorithms Overview

Maximum Flow Problem

Find Maximum Flow from Source to Sink

Definition:
® Given: Directed graph with edge capacities
® Find: Maximum amount of flow from source s to sink t
e (Constraints: Flow < capacity, flow conservation

Key Concepts:
e Capacity: Maximum flow on edge
® Residual graph: Remaining capacity after flow
® Augmenting path: Path with available capacity
e Cut: Partition of vertices into two sets

Max-Flow Min-Cut Theorem:
® Maximum flow value = Minimum cut capacity
® Fundamental result in network flow theory

Ford-Fulkerson Method

Find Augmenting Paths Until No More Exist

Algorithm:
1. Initialize flow to 0
2. While augmenting path exists:
® Find augmenting path (any path with capacity)
® Compute bottleneck capacity
® Add flow along path
® Update residual graph

Edmonds-Karp Algorithm:
® Ford-Fulkerson with BFS for finding paths
e Time: O(V x E?) (guaranteed polynomial)
® Always finds shortest augmenting path

Characteristics:
e Time: O(V x E?) for Edmonds-Karp

Edmonds-Karp Implementation

O

(RIS, BN NN

from collections import deque

def max_flow(capacity, source, sink):
"""Edmonds -Karp algorithm for maximum flow"""
n = len(capacity)
flow = [[0] * n for _ in range(mn)]

def bfs():
"""Find augmenting path using BFS"""
parent = [-1] * n
visited = [False] * n
visited[source] = True
queue = deque ([(source, float(’inf’))])

while queue:
u, min_cap = queue.popleft ()

for v in range(n):

if not visited[v] and capacityl[ul[v] - flow[u][v] > O:
visited[v] = True
parent[v] = u
new_cap = min(min_cap, capacity[ullv] - flowl[ullv]l)

if v == sink:
return parent, new_cap
queue . append ((v, new_cap))

return None, O

total_flow = 0

Flow Applications

1. Maximum Bipartite Matching:
® Model as flow problem
® Add source to left vertices, sink from right vertices
e Maximum flow = maximum matching

2. Minimum Cut:
® Find minimum capacity cut separating s and t
® Max flow = min cut (by theorem)
e Applications: Network reliability, image segmentation

3. Network Routing:
® Optimize data flow through network
® Consider bandwidth constraints

4. Assignment Problems:
® Match workers to tasks optimally
e (Constraint satisfaction

Summary

Key Takeaways

Traversal Algorithms:
® BFS: Shortest path, level-order, O(V + E)
® DFS: Cycle detection, topological sort, O(V + E)

Shortest Path Algorithms:
¢ Dijkstra: Non-negative weights, O(E log V)
¢ Bellman-Ford: Negative weights, detects cycles, O(VE)

Minimum Spanning Tree:
¢ Kruskal: Sort edges, Union-Find, O(E log E)
® Prim: Grow tree, min-heap, O(ElogV)

Advanced Topics:
® Topological Sort: Order DAG vertices, O(V + E)
® SCC: Kosaraju's/Tarjan’s, O(V + E)
® Max Flow: Edmonds-Karp, O(V E?)

Complexity Summary

Algorithm Time Space
BFS O(V+E) O(V)
DFS O(V+E) O(V)
Dijkstra O(V+E)logV) | O(V)
Bellman-Ford O(VE) o(V)
Kruskal O(ElogE) o(V)
Prim O(ElogV) o(V)
Topological Sort O(V+E) o(V)
Kosaraju SCC O(\V+E) O(V)
Edmonds-Karp O(VE?) o(V?)

Practice Problems

BFS/DFS:
® Number of islands (LeetCode 200)
® Word ladder (LeetCode 127)
® Course schedule (LeetCode 207, 210)

Shortest Paths:
® Network delay time (LeetCode 743)
® Cheapest flights (LeetCode 787)

MST:
® Min cost to connect all points (LeetCode 1584)

Advanced:
® Critical connections (LeetCode 1192)
e Alien dictionary (LeetCode 269)

Resources

Books:
® "Introduction to Algorithms" (CLRS) - Chapters 22-26
e "Algorithm Design" (Kleinberg & Tardos)

Online:
® VisuAlgo - Graph algorithm visualizations
® | eetCode - Graph problems
® Codeforces - Graph theory tutorials

Advanced Topics:
® A* search algorithm
® Network simplex for min-cost flow

Hopcroft-Karp for bipartite matching
Tarjan's algorithm for SCC

	Introduction
	BFS/DFS Applications
	Shortest Paths: Dijkstra/Bellman-Ford
	Minimum Spanning Trees: Kruskal/Prim
	Topological Sort and DAG DP
	Strongly Connected Components
	Flow Algorithms Overview
	Summary

