
Data Structures: Foundations

Data Structure Course
DGIST

November 1, 2025

Contents

1. Introduction

2. Choosing a Programming Language

3. Variables, Control Flow, and Loops

4. Functions and Recursion

5. Arrays and Strings Fundamentals

6. Memory Model: Stack vs Heap

7. Debugging and Testing

8. Using Online Judges

9. Summary

Introduction

Why Foundations Matter

Course Philosophy
Build a strong programming foundation before diving into complex data structures

What You’ll Master:
• Programming language fundamentals
• Control flow and recursion
• Memory models (stack vs heap)
• Debugging and testing skills
• Problem-solving patterns

Why This Matters:
• Data structures require solid coding

skills
• Understanding memory is crucial
• Testing prevents subtle bugs
• Good habits accelerate learning

Key Principle
Implement every structure from scratch at least once to truly understand it

Data Structure Course Foundations November 1, 2025 4/31

Choosing a Programming Language

Language Comparison

Language Strengths Best For Learning Curve

C/C++ Maximum control,
performance, STL

Competitive program-
ming, systems

Steep (pointers,
memory)

Java Strong libraries,
OOP, widely used

Interviews, enterprise Moderate

Python Readable, fast to
write

Learning, prototyping Easy

For Beginners
Python or Java

• Focus on concepts, not syntax
• Less memory management
• Faster iteration

For Performance/CP
C++

• Learn STL containers
• Manual memory control
• Optimal execution speed

Data Structure Course Foundations November 1, 2025 6/31

Language-Specific Considerations

C++ Example
1 # include <vector >
2 # include <iostream >
3
4 int main () {
5 std :: vector <int > arr = {1, 2, 3};
6 arr. push_back (4); // Dynamic resize
7
8 // Manual memory for complex types
9 int* ptr = new int [100];

10 delete [] ptr; // Must free!
11
12 return 0;
13 }

Manual memory, explicit types

Python Example
1 # Dynamic typing , GC
2 arr = [1, 2, 3]
3 arr. append (4) # Auto - resize
4
5 # No manual memory management
6 # Objects cleaned up automatically
7
8 # But watch mutability !
9 list1 = [1, 2, 3]

10 list2 = list1 # Same reference
11 list2 . append (4)
12 print (list1) # [1, 2, 3, 4]

Automatic memory, dynamic types

Important
Data structures behave differently: manual memory in C/C++ vs garbage collection in
Java/Python

Data Structure Course Foundations November 1, 2025 7/31

Variables, Control Flow, and Loops

Core Concepts

Data Types & Scope
• Basic types: int, float, bool
• Type conversion and casting
• Variable scope and lifetime

Control Flow
1 # If/else with early returns
2 def process (x):
3 if x < 0:
4 return " negative "
5 elif x == 0:
6 return "zero"
7 else:
8 return " positive "

Loop Patterns
• Index-based vs iterator-based
• Nested loops: O(n2), O(n3)
• Break/continue usage
• Loop invariants

Common Pitfall
1 # Off -by -one error !
2 for i in range (len(arr) - 1): # Missing last!
3 print (arr[i])
4
5 # Correct :
6 for i in range (len(arr)):
7 print (arr[i])

Practice Problems
Sum array, find min/max, frequency count, reverse array, rotate array

Data Structure Course Foundations November 1, 2025 9/31

Nested Loops and Complexity

Time Complexity Examples
1 # O(n) - Single loop
2 for i in range(n):
3 print(i)
4

5 # O(n^2) - Nested loop
6 for i in range(n):
7 for j in range(n):
8 print (i, j)
9

10 # O(n^3) - Triple nested
11 for i in range(n):
12 for j in range(n):
13 for k in range(n):
14 print(i, j, k)

Key Insight
Nested loops multiply complexity. Be aware of your algorithm’s growth rate!

Data Structure Course Foundations November 1, 2025 10/31

Functions and Recursion

Function Fundamentals

Key Concepts
• Pass by value vs reference
• Return values and side effects
• Function purity
• Single responsibility principle

Pure Function
1 # Pure: no side effects
2 def add(a, b):
3 return a + b
4
5 # Impure : modifies state
6 def append_item (lst , item):
7 lst. append (item) # Side effect !

Best Practices
• Small, focused functions
• Clear, descriptive names
• Document preconditions
• Handle edge cases

C++ Reference
1 // Pass by value (copy)
2 void func1 (vector <int > v) {
3 v. push_back (1); // Original unchanged
4 }
5
6 // Pass by reference (no copy)
7 void func2 (vector <int >& v) {
8 v. push_back (1); // Original modified
9 }

Data Structure Course Foundations November 1, 2025 12/31

Recursion Basics

Essential Components
• Base case: Stopping condition (prevents infinite recursion)
• Recursive case: Progress toward base case
• Stack frames: Each call adds to call stack

Factorial
1 def factorial (n):
2 # Base case
3 if n <= 1:
4 return 1
5 # Recursive case
6 return n * factorial (n - 1)
7
8 # Call stack for factorial (3):
9 # factorial (3) -> 3 * factorial (2)

10 # factorial (2) -> 2 * factorial (1)
11 # factorial (1) -> 1 (base case)
12 # Unwind : 2 * 1 = 2, then 3 * 2 = 6

Binary Search
1 def binary_search (arr , target , left , right):
2 # Base case: not found
3 if left > right :
4 return -1
5
6 mid = left + (right - left) // 2
7
8 # Base case: found
9 if arr[mid] == target :

10 return mid
11
12 # Recursive cases
13 if arr[mid] > target :
14 return binary_search (arr , target ,
15 left , mid - 1)
16 else:
17 return binary_search (arr , target ,
18 mid + 1, right)

Data Structure Course Foundations November 1, 2025 13/31

Recursion Patterns and Pitfalls

Common Patterns
• Divide and Conquer:

Merge sort, quick sort
• Tree Traversals:

In-order, pre-order, post-order
• Backtracking:

Permutations, N-Queens
• Dynamic Programming:

Fibonacci with memoization

Common Pitfalls
• Missing base case

→ Infinite recursion
• Incorrect base case

→ Wrong results
• Deep recursion

→ Stack overflow
• No progress to base

→ Infinite loop

Solution for Deep Recursion
Convert to iterative with explicit stack

Practice
Implement: factorial, Fibonacci (memoized), binary search (recursive/iterative), tree
traversals

Data Structure Course Foundations November 1, 2025 14/31

Arrays and Strings Fundamentals

Arrays: Core Properties

Key Characteristics
• Contiguous memory
• O(1) indexing
• Fixed size vs resizable
• Cache-friendly

Common Operations
Operation Time
Access O(1)
Search O(n)
Insert (end) O(1) amortized
Insert (middle) O(n)
Delete (middle) O(n)

Array Structure

5
[0]

12
[1]

7
[2]

23
[3]

15
[4]

Indices 0-4

base

Memory Address
addr[i] = base + i × size

Data Structure Course Foundations November 1, 2025 16/31

Strings: Special Arrays

String Properties
• Arrays of characters
• Immutable (Java/Python) vs

Mutable (C char arrays)
• Concatenation costs
• Substring operations

Python (Immutable)

1 s = " hello "
2 # Can ’t modify : s[0] = ’H’ # Error !
3
4 # Concatenation creates new string
5 s = s + " world " # O(n)
6
7 # Better for multiple ops:
8 parts = []
9 parts . append (" hello ")

10 parts . append (" world ")
11 result = "".join(parts) # O(n)

C++ (Mutable)

1 char s[] = " hello ";
2 s[0] = ’H’; // OK: " Hello "
3
4 // C++ string class
5 string str = " hello ";
6 str += " world "; // Efficient
7 str [0] = ’H’; // OK

Common Tasks
• Substring search
• Pattern matching
• Palindrome checking
• Reversal
• Character frequency

Practice
Reverse string in place, check palindrome, rotate array, two-pointer patterns

Data Structure Course Foundations November 1, 2025 17/31

Memory Model: Stack vs Heap

Stack Memory

Characteristics
• Stores function call frames
• Parameters and local variables
• Fast allocation/deallocation
• Limited size (typically 1-8 MB)
• Automatic cleanup
• LIFO (Last In, First Out)

Stack Overflow
Deep recursion can exhaust stack space
→ Convert to iteration or increase stack size

Call Stack

main()

func1(x=5)

func2(y=10)

func3(z=3) Current

Stack grows

Data Structure Course Foundations November 1, 2025 19/31

Heap Memory

Characteristics
• Dynamic memory allocation
• Objects with longer lifetimes
• Larger capacity (GBs)
• Slower than stack
• Manual (C/C++) or GC (Java/Python)

Memory Management
C/C++: Manual
malloc/free, new/delete

Java/Python: Automatic
Garbage collection

Memory Layout
Stack (small, fast)

Heap (large, slower)
Object 1

Object 2

Obj 3

Common Issues
C/C++: Memory leaks, dangling pointers
Java/Python: Shared references, unexpected mutations

Data Structure Course Foundations November 1, 2025 20/31

Pointers and References

C++ Pointers
1 int x = 10;
2 int* ptr = &x; // Pointer to x
3
4 *ptr = 20; // Modify via pointer
5 cout << x; // 20
6
7 // Heap allocation
8 int* arr = new int [100];
9 arr [0] = 5;

10 delete [] arr; // Must free!
11
12 // Dangling pointer (BAD !)
13 int* p = new int (42);
14 delete p;
15 cout << *p; // Undefined !

Python References
1 # Objects are references
2 list1 = [1, 2, 3]
3 list2 = list1 # Same reference !
4
5 list2 . append (4)
6 print (list1) # [1, 2, 3, 4]
7
8 # To copy:
9 list3 = list1 .copy () # Shallow copy

10 list3 . append (5)
11 print (list1) # [1, 2, 3, 4]
12
13 # Deep copy for nested structures
14 import copy
15 nested = [[1 , 2], [3, 4]]
16 deep = copy. deepcopy (nested)

Practice
C/C++: Allocate/free arrays, avoid leaks and dangling pointers
Java/Python: Understand when objects are shared and mutatedData Structure Course Foundations November 1, 2025 21/31

Debugging and Testing

Debugging Strategies

Essential Tools
• Debugger: Breakpoints, step

through, watch variables
• Assertions: Capture invariants early
• Logging: Strategic print statements
• Binary search: Isolate bug location

Don’t Just Print!
Use a proper debugger:

• Set breakpoints
• Inspect variable state
• Step line by line
• Understand execution flow

Debugging Process
1. Reproduce: Minimal test case
2. Isolate: Which function fails?
3. Inspect: Variable values at failure
4. Hypothesize: What could cause this?
5. Test: Verify hypothesis
6. Fix: Apply solution
7. Validate: Ensure fix works

Tools by Language
C/C++: gdb, lldb, valgrind
Java: JUnit, debugger
Python: pdb, unittest, pytest

Data Structure Course Foundations November 1, 2025 23/31

Testing Best Practices

Testing Principles
• Start with unit tests
• Test edge cases
• Small and large inputs
• Property-based thinking
• Measure performance

Edge Cases to Test
• Empty input
• Single element
• Duplicates
• Negative numbers
• Boundary values
• Maximum size

Python Unit Test
1 import unittest
2
3 class TestArrayOps (unittest . TestCase):
4 def test_reverse_normal (self):
5 arr = [1, 2, 3, 4]
6 reverse (arr)
7 self. assertEqual (arr , [4, 3, 2, 1])
8
9 def test_reverse_empty (self):

10 arr = []
11 reverse (arr)
12 self. assertEqual (arr , [])
13
14 def test_reverse_single (self):
15 arr = [1]
16 reverse (arr)
17 self. assertEqual (arr , [1])
18
19 def test_reverse_property (self):
20 arr = [1, 2, 3]
21 reverse (reverse (arr))
22 self. assertEqual (arr , [1, 2, 3])
23
24 if __name__ == ’__main__ ’:
25 unittest .main ()Data Structure Course Foundations November 1, 2025 24/31

Using Online Judges

Online Judge Platforms

Popular Platforms
• LeetCode: Interview prep
• HackerRank: Competitions, hiring
• Codeforces: Competitive

programming
• AtCoder: Japanese CP platform
• TopCoder: Algorithms, marathons

Benefits
• Immediate feedback
• Test against edge cases
• Compare solutions
• Track progress
• Build problem-solving patterns

Problem-Solving Approach
1. Read carefully, note constraints
2. Design algorithm with complexity
3. Implement cleanly
4. Test edge cases manually
5. Submit and iterate
6. Reflect on solution
7. Document patterns learned

Avoid Pitfalls
• Don’t just copy solutions
• Re-implement after understanding
• Pay attention to constraints
• Learn the pattern, not just the answer

Data Structure Course Foundations November 1, 2025 26/31

Common Problem Patterns

Pattern Description Example Problems

Two Pointers Use two indices moving
through data

Palindrome, pair sum

Sliding Window Fixed/variable size win-
dow

Max subarray sum

Fast & Slow Pointers Detect cycles, find mid-
dle

Linked list cycle

Stack LIFO for matching/pars-
ing

Valid parentheses

BFS/DFS Graph/tree traversal Level-order, paths
Binary Search Divide search space Search sorted array

Measuring Progress
• Track time per problem
• Monitor success rate
• Count revisits until first-try success
• Categorize by topic and difficulty

Data Structure Course Foundations November 1, 2025 27/31

Summary

Key Takeaways

Language and Tools
• Choose one language and master it (Python/Java for learning, C++ for

performance)
• Understand memory management for your language
• Learn debugging tools and use them effectively

Core Programming Skills
• Master control flow, loops, and avoid off-by-one errors
• Understand recursion: base case, recursive case, stack frames
• Know array and string fundamentals, including complexity

Memory Model
• Stack: fast, limited, automatic (function frames)
• Heap: larger, slower, manual or GC (dynamic objects)
• Understand pointers/references and their implications

Practice and Testing
• Write tests for every function (edge cases!)
• Use online judges to build problem-solving patterns
• Implement data structures from scratch at least once

Data Structure Course Foundations November 1, 2025 29/31

Next Steps

Moving Forward
With these foundations in place, you’re ready to:

• Study linear data structures (arrays, linked lists, stacks, queues)
• Implement each structure from scratch
• Analyze time and space complexity
• Apply structures to real-world problems
• Build toward more complex structures (trees, graphs, hash tables)

Recommended Practice
1. Implement basic array operations (reverse, rotate, search)
2. Write recursive solutions for factorial, Fibonacci, binary search
3. Practice two-pointer and sliding window problems
4. Solve 10-20 easy problems on LeetCode/HackerRank
5. Build a simple stack/queue and test thoroughly

Data Structure Course Foundations November 1, 2025 30/31

Thank You!
Questions?

“The best way to learn data structures
is to implement them yourself.”

	Introduction
	Choosing a Programming Language
	Variables, Control Flow, and Loops
	Functions and Recursion
	Arrays and Strings Fundamentals
	Memory Model: Stack vs Heap
	Debugging and Testing
	Using Online Judges
	Summary

