Data Structures: Foundations

Data Structure Course
DGIST

November 1, 2025

Contents

Introduction

Choosing a Programming Language
Variables, Control Flow, and Loops
Functions and Recursion

Arrays and Strings Fundamentals
Memory Model: Stack vs Heap
Debugging and Testing

Using Online Judges

© Lo N S s W=

Summary

Introduction

Why Foundations Matter

Course Philosophy
Build a strong programming foundation before diving into complex data structures

What You'll Master: Why This Matters:
® Programming language fundamentals ® Data structures require solid coding
e Control flow and recursion skills
® Memory models (stack vs heap) ® Understanding memory is crucial
® Debugging and testing skills ® Testing prevents subtle bugs
® Problem-solving patterns ® Good habits accelerate learning

Key Principle

Implement every structure from scratch at least once to truly understand it

Choosing a Programming Language

Language Comparison

Language ‘ Strengths ‘ Best For ‘ Learning Curve

C/C++ Maximum control, | Competitive program- | Steep (pointers,
performance, STL | ming, systems memory)

Java Strong libraries, | Interviews, enterprise | Moderate

OOP, widely used

Python Readable, fast to | Learning, prototyping | Easy
write

For Performance/CP

Python or Java C++
® Focus on concepts, not syntax ® Learn STL containers

® | ess memory management ® Manual memory control

Language-Specific Considerations

C++ Example Python Example

#include <vector>
#include <iostream>

int main() {
std::vector<int> arr = {1, 2, 3};
arr.push_back(4); // Dynamic resize

// Manual memory for complex types
int* ptr = new int[100];
delete[] ptr; // Must free!

return O;

Manual memory, explicit types

Important

Data structures behave differently: manual memory in C/C++ vs garbage collection in

Java/Python

1| # Dynamic typing, GC

2 arr = [1, 2, 3]

3| arr.append (4) # Auto-resize

4

5 # No manual memory management

6| # Objects cleaned up automatically
7

8| # But watch mutability!

9| list1 = [1, 2, 3]

10| 1ist2 = listl # Same reference
11 1ist2.append (4)

12| print (listl) # [1, 2, 3, 4]

Automatic memory, dynamic types

Foundations

Variables, Control Flow, and Loops

Core Concepts

Loop Patterns

Data Types & Scope

® |ndex-based vs iterator-based
¢ Nested loops: O(n?), O(n3)

® Break/continue usage

® Basic types: int, float, bool
® Type conversion and casting

® Variable scope and lifetime

Control Flow

1| # If/else with early returns
2| def process(x):

® | oop invariants

Common Pitfall

3 if x < 0: 1/ # 0ff-by-one error!
4 return "negative" 2| for i in range(len(arr) - 1): # Missing last!
5 elif x == 0: 3 print (arr[il)
6 return "zero" 4
7 else: 5/ # Correct:
8 return "positive" 6/ for i in range(len(arr)):
7 print (arr[il)

November 1

© O N o A W N

T < e =
> W N R O

Nested Loops and Complexity

Time Complexity Examples

0(n) - Single loop
for i in range(n):
print (i)

0(n~2) - Nested loop
for i in range(n):
for j in range(n):
print (i, j)

0(n~3) - Triple nested
for i in range(n):
for j in range(n):
for k in range(n):
print (i, j, k)

Foundations

November 1, 2025

10/3

Functions and Recursion

Function Fundamentals

Best Practices

Key Concepts

® Small, focused functions
® Pass by value vs reference

® (lear, descriptive names

Return values and side effects o
® Document preconditions

Function purity

® Handle ed
® Single responsibility principle andle edge cases

Pure Function

Pue Function [

// Pass by value (copy)
void funcl(vector<int> v) {
v.push_back(1); // Original unchanged

Pure: no side effects
def add(a, b):
return a + b }
// Pass by reference (no copy)
void func2(vector<int>& v) {
v.push_back(1); // Original modified

Impure: modifies state
def append_item(lst, item):
lst.append(item) # Side effect!

~NoO U A WN R
© O~ WN -

}

©O~NOU R WN

=
= o

i
%)

Recursion Basics

Essential Components

® Base case: Stopping condition (prevents infinite recursion)

® Recursive case: Progress toward base case

e Stack frames: Each call adds to call stack

def factorial(m):
Base case
if n <= 1:
return 1
Recursive case
return n * factorial(m - 1)

Call stack for factorial(3):

factorial(3) -> 3 % factorial (2)
factorial(2) -> 2 % factorial (1)
factorial (1) -> 1 (base case)

1 Unwimd:o2sex 1 = 2, then 3 * 2 =

6

Binary Search

1 def binary_search(arr, target, left, right):
2 # Base case: not found

3 if left > right:

4 return -1

5

6 mid = left + (right - left) // 2

7

8 # Base case: found

9 if arr[mid] == target:

10 return mid

11

12 # Recursive cases

13 if arr[mid] > target:

14 return binary_search(arr, target,
a5 left, mid - i)

Recursion Patterns and Pitfalls

Common Pitfalls

® Missing base case
Common Patterns — Infinite recursion

e Divide and Conquer:
Merge sort, quick sort

® |ncorrect base case

— Wrong results
® Tree Traversals:

® Deep recursion
In-order, pre-order, post-order

— Stack overflow
e Backtracking:

i ® No progress to base
Permutations, N-Queens

— Infinite loop
® Dynamic Programming:
Fibonacci with memoization

Solution for Deep Recursion

Convert to iterative with explicit stack

Foundations November 1, 2025

Arrays and Strings Fundamentals

Arrays: Core Properties

Key Characteristics

e Contiguous memory

* O(1) indexing Array Structure
® Fixed size vs resizable base

<
® Cache-friendly

o @ R B[

Common Operations Indices 0-4
Operation Time
- o
Search O(n) addr[i] = base + i x size
Insert (end) O(1) amortized
Insert (middle) O(n)
Delete (middle) O(n)

DO©W~NOUDWN

Strings: Special Arrays

String Properties
® Arrays of characters C++ (Mutable)
¢ Immutable (Java/Python) vs

1 char s[] = "hello";
2 0 = J; 0K : " "
Mutable (C char arrays) 2|slol = *H; // OK: "Hello
o 4| // C++ string class
L Concatenat|0n costs 5 string str = "hello";
6| str += " world"; // Efficient
7 strf[0] = °H’; // 0K

® Substring operations

Python (mmutable)

= "hello" ® Substring search
Can’t modify: s[0] = *H’ # Error!

[

® Pattern matching

Concatenation creates new string
=s + " 1d" # 0(n) 2 2

2T or " ® Palindrome checking

Better for multiple ops:

parts = [] L Reversal

parts.append("hello")

pantsuappend(" world") & Character freaiiencv

Memory Model: Stack vs Heap

Stack Memory

Characteristics

® Stores function call frames

Call Stack
® Parameters and local variables
® Fast allocation/deallocation | i) |
® Limited size (typically 1-8 MB) | funcl(x=5) |
e Automatic cleanup | func2(y=10) |
e LIFO (Last In, First Out) | e =s) | S Current
~

Stack Overflow Stack grows

Deep recursion can exhaust stack space
— Convert to iteration or increase stack size

Heap Memory

Characteristics

® Dynamic memory allocation

Objects with longer lifetimes

Larger capacity (GBs)

Slower than stack
Manual (C/C++) or GC (Java/Python)

Memory Management
C/C++: Manual

malloc/free, new/delete

Java/Python: Automatic
Garbage collection

Memory Layout

|Stack (small, fast)|

+

[

Heap (lar

c O

er

© O~ A WNR

Pointers and References

C++ Pointers Python References

int x = 10;

int* ptr = &x; // Pointer to
*ptr = 20; // Modify via
cout << x; // 20

// Heap allocation

int* arr = new int[100];
arr [0] = 5;
delete[] arr; // Must free!
// Dangling pointer (BAD!)
int* p = new int(42);

delete p;

cout << *p; // Undefined!

X

pointer

© O~ WN -

Objects are references
listl = [1, 2, 3]

list2 = listl # Same reference!
list2.append (4)

print (listl) # [1, 2, 3, 4]

To copy:

list3 = listl.copy()
list3.append (5)
print (listl) # [1, 2, 3, 4]

Shallow copy

Deep copy for nested structures
import copy

nested = [[1, 2], [3, 4]1]

deep = copy.deepcopy(nested)

C/C++: Allocate/free arrays, avoid leaks and dangling pointers
Java/Python: Understand when objects are shared and mutated

Debugging and Testing

Debugging Strategies

Essential Tools

Debugging Process

1.
2.
3.
4.
5.
6.
7.

® Debugger: Breakpoints, step
through, watch variables

Reproduce: Minimal test case
Isolate: Which function fails?

® Assertions: Capture invariants early eroaas Vailshls veluss o filus

- (bl SiEiesde ping sieiemenis Hypothesize: What could cause this?
® Binary search: Isolate bug location

Don’t Just Print!

Use a proper debugger:

® Set breakpoints Tools by Language

Test: Verify hypothesis
Fix: Apply solution
Validate: Ensure fix works

® |nspect variable state C/C++: gdb, lidb, valgrind
® Step line by line Java: JUnit, debugger
® lnderstand execution flow Python: pdb, unittest, pytest

Testing Best Practices

Testing Principles
esting Principles Python Unit Test

e Start with unit tests

import unittest

Test edge cases

class TestArrayOps(unittest.TestCase):
def test_reverse_normal (self):
arr = [1, 2, 3, 4]
reverse (arr)
self.assertEqual (arr, [4, 3, 2, 1])

Small and large inputs

Property-based thinking

® Measure performance

def test_reverse_empty(self):
arr = []
reverse (arr)
self.assertEqual (arr, [])

1
2
3
4
5
6
7
8
9
10
11
12
13
Edge Cases to TeSt 14 def test_reverse_single(self):
15
16
17
18
19
20

e Empty input e ol

reverse (arr)
self.assertEqual (arr, [1])

® Single element . .

ef test_reverse_property(self):

= arr = [1, 2, 3]
® Dupllcates 21 reverse (reverse (arr))
. 22 self.assertEqual (arr, [1, 2, 3])
® Negative numbers 23
24 if __name__ == ’__main__’:

[BO‘Undary Values 25 unittest.main ()

Using Online Judges

Online Judge Platforms

Popular Platforms Problem-Solving Approach

LeetCode: Interview prep 1. Read carefully, note constraints

HackerRank: Competitions, hiring Design algorithm with complexity

Codeforces: Competitive Implement cleanly

programming Test edge cases manually

AtCoder: Japanese CP platform Submit and iterate

TopCoder: Algorithms, marathons

® Immediate feedback Avoid Pitfalls

® Test against edge cases ® Don't just copy solutions

Reflect on solution

I

Document patterns learned

® Compare solutions ® Re-implement after understanding

Track progress e Pay attention to constraints

Common Problem Patterns

Pattern ‘ Description Example Problems

Two Pointers Use two indices moving | Palindrome, pair sum
through data

Sliding Window Fixed /variable size win- | Max subarray sum

dow

Fast & Slow Pointers | Detect cycles, find mid- | Linked list cycle

dle

Stack LIFO for matching/pars- | Valid parentheses
ing

BFS/DFS ‘ Graph/tree traversal ‘ Level-order, paths

Binary Search ‘ Divide search space ‘ Search sorted array

Summary

Key Takeaways

Language and Tools

® Choose one language and master it (Python/Java for learning, C++ for
performance)

® Understand memory management for your language

® | earn debugging tools and use them effectively

Core Programming Skills

® Master control flow, loops, and avoid off-by-one errors
® Understand recursion: base case, recursive case, stack frames

® Know array and string fundamentals, including complexity

Memory Model

® Stack: fast, limited, automatic (function frames)

® Heap: larger, slower, manual or GC (dynamic objects)

Next Steps

Moving Forward

With these foundations in place, you're ready to:

® Study linear data structures (arrays, linked lists, stacks, queues)

® |Implement each structure from scratch

® Analyze time and space complexity

® Apply structures to real-world problems

® Build toward more complex structures (trees, graphs, hash tables)

Recommended Practice

1.

Implement basic array operations (reverse, rotate, search)

2. Write recursive solutions for factorial, Fibonacci, binary search
8
e

Practice two-pointer and sliding window problems

CSliia 10-20 eacv nraobhleme an | eetCoadé&/MasirisarRank

Thank You!

Questions?

“The best way to learn data structures
is to implement them yourself.”

	Introduction
	Choosing a Programming Language
	Variables, Control Flow, and Loops
	Functions and Recursion
	Arrays and Strings Fundamentals
	Memory Model: Stack vs Heap
	Debugging and Testing
	Using Online Judges
	Summary

