Fenwick Trees
Binary Indexed Trees

Minseok Jeon
DGIST

November 2, 2025

Table of Contents

Introduction

Binary Representation & LSB
Core Operations

Building the Tree

Advanced Techniques
Comparison with Segment Trees
Common Patterns & Pitfalls
Applications

© ©® N o gk W N

Summary

Introduction

What is a Fenwick Tree?

Fenwick Tree (Binary Indexed Tree / BIT): Compact array-based structure for
efficient prefix sums and range queries

Key Features:
® Array-based: No pointers, cache-friendly
® Bit manipulation: Uses binary representation of indices
® Space-efficient: O(n) space
® Fast operations: O(log n) updates and queries
® Simple implementation: 20 lines of code

Core Operations:
® update(i, delta): Add delta to element at index i
® prefix_sum(i): Sum of elements from 1 to i
® range_sum(l, r): Sum from | tor

All.in O(log n) time!

Motivation

Problem: Given array, support:

1. Update: Change value at index i

2. Query: Find sum of elements from index | to r

Naive Solutions:

Approach Update Query
Simple Array O(1) O(n)
Prefix Sum Array O(n) 0(1)
Fenwick Tree O(log n) | O(log n)

Best of both worlds!

Applications

Fenwick Trees are widely used in:

Competitive Programming:
® Range sum queries with updates
e Counting inversions
® Order statistics (k-th smallest)

Database Systems:
o OLAP aggregate queries
® Time-series cumulative metrics
® Sliding window aggregations

Graphics & Games:
® 2D range sum queries (image processing)
® Particle system queries
® (Collision detection

Binary Representation & LSB

The Key Insight: Binary Representation

Each index is responsible for a range based on its binary representation

Least Significant Bit (LSB):
® | SB(i) = rightmost set bit in binary representation of i
® (Calculated using: i & (-1i)
® Determines range size for index i

Examples:
e i =12 (binary: 1100), LSB(12) = 4
e i =10 (binary: 1010), LSB(10) = 2
® | =7 (binary: 0111), LSB(7) =1
® | =8 (binary: 1000), LSB(8) =8

Range covered by index i: [i - LSB(i) + 1, i

© 0w N o U A W N R

=
o

LSB Calculation

Bit Manipulation Magic:

def 1sb(i):
"""Get least significant bit of i"""
return i & (-1)

How it works:

i = 12 (binary: 0...01100)

-1 in two’s complement:

Step 1: Invert bits -> 1...10011

Step 2: Add 1 -> 1...10100

1 & (-i) = 0...00100 = 4

Why this works:
® Two's complement inverts all bits and adds 1
e All bits after LSB are flipped
® | SB itself stays in same position
€ "'AND oneration icolatec the | SR

Responsibility Ranges

Each index stores cumulative sum for its range

Index | Binary | LSB | Range
1 0001 1 [1]
2 0010 2 [1-2]
3 0011 1 [3]
4 0100 4 [1-4]
5 0101 1 [5]
6 0110 2 [5-6]
7 0111 1 [7]
8 1000 38 [1-8]

Pattern:

® Powers of 2 cover largest ranges
® Odd numbers cover single element

® Ranges never overlap in updates/queries

Tree Structure (Conceptual)

Although stored as array, conceptually forms a tree

For array of size 8:

Navigation:
e Parent: i + LSB(i) (move up)

® Previous range: i - LSB(i) (move left)

Core Operations

(S N R

Point Update

Add delta to element at index i

def update(self, i, delta):
"""Add delta to element at index i (1-indexed)"""
while i1 <= self .n:
self .treel[i] += delta
i += 1 & (-i) # Move to parent

How it works:
1. Start at index i
2. Update current node
3. Move to parent by adding LSB: i += LSB(i)
4. Repeat until out of bounds

Time Complexity: O(log n)
® At most log,(n) iterations
& 'EFach iteration: O(1) aneratinne

Update Example

Update index 5 with delta = 3

Steps:

1.i=5LSB(5) =1

® tree[5] += 3

® Next: 54+1=6
2.1=6,LSB(6) =2

® tree[6] += 3

® Next: 6+2=28
3.1=8,LSB(8) =8

® tree[8] += 3

® Next: 8 + 8 =16 (stop if n < 16)

Result: Updated 3 nodes in O(log n) time!

These nodes represent all ranges containing index 5.

1
2
3
4
5
6
7

Prefix Sum Query

Get sum from index 1 to i

def prefix_sum(self, 1i):

"""Get sum of elements from index 1 to i (1-indexed)"""
result = 0
while i > O:
result += self.treel[il
i -= 1 & (-1) # Move to previous range
return result

How it works:

1

2
3
4

. Start at index i

. Add current node's value to result

. Move to previous non-overlapping range: i -= LSB(i)
. Repeat untili=0

Time Complexity: O(log n)

Prefix Sum Example

Query: prefix _sum(13)

Steps:

1. i=13,LSB(13) =1
® result += tree[13] (covers [13])
® Next: 13-1=12

2.1=12,LSB(12) =4
® result += tree[12] (covers [9-12])
® Next: 12-4 =28

3.1=8,LSB(8) =8
® result += tree[8] (covers [1-8])
® Next: 8 -8 =0 (stop)

Ranges summed: [13] + [9-12] + [1-8] = [1-13] v

Range Sum Query

Get sum from index | to r

1 def range_sum(self, left, right):
2 """Sum from left to right (1-indexed, inclusive)"""
3 return self.prefix_sum(right) - self.prefix_sum(left - 1)

Key Insight:
® sumll..r] = sum[1l..r] - sum[1..I-1]
® {Jses inclusion-exclusion principle
® \Works because sum is invertible (subtraction defined)

Example:
1/# Query sum from index 3 to 7

2 sum[3..7] = prefix_sum(7) - prefix_sum(2)

Time Complexity: O(log n) - two prefix sum queries

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

19

Complete Implementation

class FenwickTree:

def

def

def

__init__(self, n):
self.n = n
self.tree = [0] * (n + 1) # 1-indexed

update (self, i, delta):
"""Add delta to index i (1-indexed)"""
while i <= self.n:

self .tree[i] += delta

i +=1i & (-1i)

prefix_sum(self, i):
"""Suym from index 1 to i (1-indexed)"""
result = 0
while i > O:
result += self.treel[i]
i -=1i & (-1i)
return result

Building the Tree

a r oW N

[N B UGV SR

Initialization from Array

Two approaches to build tree from array:

Method 1: Using update (Simple but slower)

def

__init__(self, arr):
self.n = len(arr)
self.tree = [0] * (self.n + 1)
for i in range(self.n):
self .update(i + 1, arr[i])

Time: O(n log n)

Method 2: Direct construction (Optimized)

def

build_fast (arr):
n = len(arr)
tree = [0] * (n + 1)
for i in range(l, n + 1):
tree[i] += arr([i - 1]
i =1 + (i & -i) # Parent rindex

Build Process Visualization

Direct O(n) construction:

For each index i:
1. Copy array value to tree]i]
2. Find parent: j =i + LSB(i)
3. Add tree]i] to tree[j]

Why this works:
® Process indices in increasing order
® \When processing index i, all children already processed
® Parent inherits sum from child
® Each index processed exactly once: O(n)

Comparison:
® O(nlog n): Easy to understand, uses existing update()
®.O(n): More efficient, clever bottom-up.approach

Advanced Techniques

Range Updates

Problem: Add delta to all elements in range [I, r]

Solution: Use difference array technique

1 class FenwickTreeRangeUpdate:

2
3
4
5
6
7
8
9

10
11
12
13

def

def

def

__init__(self, n):

self .n = n
self.tree = [0] * (n + 1)

range_update (self, left, right, delta):

"""Add delta to all elements in [left, right]"""
self .update(left, delta)

self .update(right + 1, -delta)

point_query (self, 1i):
"""Get value at index 1 after all updates

return self.prefix_sum(i)

Kev ldan-

Range Update Example

Add 5 to range [3, 6]
Initial array: [0, 0, 0, 0, 0, O, 0, 0]

Operations:
1. update(3, 5) - Mark start of range
2. update(7, -5) - Mark end of range

Difference array: [0, 0, 5, 0, 0, O, -5, O]

Prefix sums (actual values):
® [ndex 1: 0

Index 2: 0

Index 3: 0 +5=5

Index 4: 5

Index 5: 5

1~ 1. . -

©O~NOO s WN

2D Fenwick Tree

For 2D range sum queries

class FenwickTree2D:

def __init__(self, rows, cols):
self .rows = rows
self.cols = cols
self.tree = [[0] * (cols + 1) for _ in range(rows + 1)]

def update(self, row, col, delta):
"v""Add delta to cell (row, col)"""

i = row
while i <= self.rows:
j = col

while j <= self.cols:
self.tree[i][j] += delta
jo+=3 & (-3)

i+=1i& (-1)

def prefix_sum(self, row, col):
"""Sum of rectangle from (1,1) to (row, col)"""
result = 0

i = row
while i > 0:
j = col

while j > 0:
result += self.treel[i][j]
jo-=3 & (-3)
i-=1 & (-i)
return result

2D Range Sum

Query rectangle sum using inclusion-exclusion

Sum of rectangle (r1, cl) to (r2, c2):
sum = A -B-C+D

Where:
® A = prefix_sum(r2, c2) - full rectangle to (r2, c2)
® B = prefix_sum(rl-1, c2) - top portion (subtract)
® C = prefix_sum(r2, cl-1) - left portion (subtract)
® D = prefix_sum(rl-1, c1-1) - overlap (add back)

Complexity:
e Update: O(log m x log n)
® Query: O(log m x log n)
® Space: O(m x n)

Comparison with Segment Trees

Fenwick vs Segment Tree

Key Difference:

Feature Fenwick Tree Segment Tree
Space O(n) O(4n)
Update O(log n) O(log n)
Query O(log n) O(log n)
Construction | O(n) or O(n log n) O(n)

Code Lines 20 50
Operations Sum, XOR Any associative
Range Update Difference array Lazy propagation
Simplicity Simple Moderate
Constants Lower Higher

Fenwick Tree requires invertible operations!

When to Use Each

Use Fenwick Tree when:
® Operation is invertible (sum, XOR)
® \Want minimal memory usage
e Prefer simple implementation
e Competitive programming (faster to code)
® Range sum queries with updates
Use Segment Tree when:
Need range min/max queries
e Operation not invertible (min, max, GCD)
® Need lazy propagation
® Need to store extra data per node
® More complex range operations

Example where Fenwick fails:

& ""RPanAae minimiim: rminfla kY _ minl~ A e A asainalacel

Performance Comparison

Benchmark: 1,000,000 elements

Metric Fenwick Tree | Segment Tree
Memory 4 MB 16 MB
Build time 20 ms 15 ms
1M updates 50 ms 80 ms
1M queries 50 ms 80 ms
Code size 20 lines 50 lines

Advantages of Fenwick:

4x less memory

1.6x faster for updates/queries

2.5x less code

Better cache performance

Common Patterns & Pitfalls

©O~NOO s WN

Pattern: Counting Inversions

Problem: Count pairs (i, j) where i < j but arr[i] > arr[j]

def count_inversions(arr):
Coordinate compression
sorted_arr = sorted(set(arr))
rank = {v: i+1 for i, v in enumerate(sorted_arr)}

bit = FenwickTree(len(sorted_arr))
inversions = 0

Process from right to left

for i in range(len(arr) - 1, -1, -1):
r = rank([arr[i]]
Count elements smaller than arr[i] seen so far
inversions += bit.prefix_sum(r - 1)

Mark current element as seen
bit.update(r, 1)

return inversions

Time Complexity: O(n log n)

Applications:
® Sorting analysis
®_ Ranking systems

Common Pitfalls

1. Index Confusion (0 vs 1-indexed)
® Fenwick Tree is 1-indexed!
® |ndex O unused or sentinel
e Always convert: update(i + 1, delta)

2. Using for Non-Invertible Operations
e Cannot do range min/max with Fenwick
® Subtraction doesn't work: min(a,b) - min(c,d)
® Use Segment Tree instead

3. Incorrect Size
® Array size must be n+1 (index 0 to n)
® Check bounds in update loop

4. Forgetting Negative Values
® Fenwick requires positive indices
e |)Jse coordinate combression for neaative vialies

Pitfall Examples

Wrong: 0-indexed usage

bit = FenwickTree (n)

bit.update(0, 5) # ERROR! Index O is invalid
Correct: Convert to 1-indexed

bit = FenwickTree(n)
bit.update (1, 5) # 0K: Update first element

Wrong: Range minimum

Cannot use Fenwick for this!
min_val = bit.range_sum(l, r) # Meaningless for min

Correct: Use Segment Tree

seg_tree = SegmentTree (arr)
min_val = seg_tree.range_min(l, r) # 0K

Debugging Tips

How to debug Fenwick Tree issues:

1. Print tree array
® Visualize internal state
® Check if values make sense
2. Verify LSB calculation
® Test: i & (-1)
® Check against manual calculation
3. Check index conversions
® (O-indexed input — 1-indexed tree
® Off-by-one errors common
4. Test with small arrays
® Use n = 4 or 8 for manual verification
® Compare with brute force
5. Validate bounds
® Ensure i < n in update
® Ensurei > 0 in prefix sum

Applications

Application 1: Range Sum Query

LeetCode 307: Range Sum Query - Mutable

1 class NumArray:

2 def __init__(self, nums):

3 self .nums = nums

4 self.n = len(nums)

5 self.tree = [0] * (self.n + 1)
6 for i in range(self.n):

7 self._update(i + 1, nums[i])
8

9 def update(self, index, val):

10 delta = val - self.nums[index]
11 self .nums [index] = val

12 self . _update(index + 1, delta)
13

14 def _update(self, i, delta):

15 while i <= self .n:

16 self.tree[i] += delta

17 i += 1 & (-1i)

19

Application 2: Count Smaller Numbers

LeetCode 315: Count of Smaller Numbers After Self

1/ def countSmaller (nums):

2 # Coordinate compression

3 sorted_nums = sorted(set(nums))

4 rank = {v: i+1 for i, v in enumerate(sorted_nums)}
5

6 bit = FenwickTree(len(sorted_nums))
7 result = []

8

9 # Process from right to left

10 for num in reversed(nums):

11 r = rank[num]

12 # Count numbers smaller than current
13 count = bit.prefix_sum(r - 1)
14 result.append (count)

15 # Mark current number as seen
16 bit.update(r, 1)

17

18 return result[::-1]

19

20| class FenwickTree:

21 def __init__(self, n):

22 self.n = n

23 self.tree = [0] * (n + 1)

24

25 def update(self, i, delta):

26 while i <= self.n:

27 self.tree[i] += delta

28 i4+=1i & (-1)

©O~NOO s WN

Application 3: 2D Matrix Range Sum

LeetCode 308: Range Sum Query 2D - Mutable

class NumMatrix:

def __init__(self, matrix):
if not matrix or not matrix[0]:
return
self .matrix = matrix
self .rows = len(matrix)
self.cols = len(matrix[0])
self .tree = [[0] * (self.cols + 1) for _ in range(self.rows + 1)]

for i in range(self.rows):
for j in range(self.cols):
self. _update(i + 1, j + 1, matrix[il[jl1)

def update(self, row, col, val):
delta = val - self.matrix[row][col]
self .matrix[row][col]l = val
self . _update(row + 1, col + 1, delta)

def _update(self, row, col, delta):

i = row
while i <= self.rows:
j = col

while j <= self.cols:
self.tree[i] [j] += delta
it=3& D

i+=1 & (-i)

def sumRegion(self,

L am

Real-World Usage

Competitive Programming:
® (Codeforces: Preferred for speed
e AtCoder: Common in range query problems
® |CPC: Quick to implement under time pressure

Production Systems:
® Analytics databases (OLAP)
® Time-series aggregation
® Real-time monitoring dashboards
® Financial tick data analysis

Advanced Applications:
Persistent Fenwick Trees (versioned queries)
Parallel updates (lock-free concurrent operations)

[]
[]
e Compressed Fenwick Trees (sparse arrays)
& 'Niilti_Aimeancianal (2D AD cnatial Aniaviaa)

Summary

Summary: Key Concepts

Fenwick Tree Fundamentals:
® Array-based structure using binary representation
® | SB determines responsibility ranges
® Navigation via bit manipulation: i + LSB(i)

Core Operations:
e Update: O(log n) - add delta, move to parents
® Prefix sum: O(log n) - accumulate, move to previous ranges
® Range sum: O(log n) - difference of prefix sums

Key Properties:

Space: O(n) - minimal overhead

Simple: 20 lines of code

Fast: Lower constants than Segment Tree
Limitation: Requires invertible operations

Summary: Comparison

Structure Space Ops Operations Supported
Array O(n) O(n)/0(1) All

Prefix Sum O(n) O(n)/0(1) Invertible

Sqrt Decomp O(n) O(vn) All

Fenwick O(n) O(log n) Invertible
Segment Tree O(4n) O(log n) All associative
Sparse Table O(nlog n) | O(log n)/O(1) Idempotent

Sweet Spot:

® Best for range sum queries

® Optimal space-time trade-off

® Simplest code among log(n) structures

Key Takeaways

Fenwick Trees are elegant and efficient

Bit manipulation enables O(log n) operations
1-indexed convention simplifies LSB logic

Perfect for invertible operations (sum, XOR)

Cannot handle min/max - use Segment Tree

Simpler and faster than Segment Tree when applicable
Essential tool for competitive programming

Useful in production for analytics systems

O NS Tt LN

Remember:

Always check if operation is invertible

Master bit manipulation: i & (-i)

Watch out for O-indexed vs 1-indexed

O(n) construction is possible and recommended

Practice Problems

LeetCode:
® 307. Range Sum Query - Mutable
® 308. Range Sum Query 2D - Mutable
® 315. Count of Smaller Numbers After Self
e 327. Count of Range Sum
® 493, Reverse Pairs
Codeforces:

® Fenwick tree problems (rated 1400-2000)
® Range query contests
® Dynamic programming with BIT

Skills to Practice:
® Coordinate compression
® 2D Fenwick Trees

&8 " "RPanAae 1indatac with Aiffaranca arrayv/c

Further Learning

Advanced Topics:
® Persistent Fenwick Trees
e Parallel/Concurrent Fenwick Trees
® Range updates with range queries
® Fenwick Tree on trees (Heavy-Light Decomposition)
o Offline query optimization

Resources:

CP-Algorithms: Binary Indexed Tree tutorial
® Topcoder: Range query structures

e (Codeforces: Educational rounds on BIT

e "Competitive Programmer’s Handbook"

Related Structures:
® Segment Trees

& ' TAart DearAmMmnAaciHiAn

Thank Youl

Questions?

Fenwick Trees: Simplicity meets Efficiency

	Introduction
	Binary Representation & LSB
	Core Operations
	Building the Tree
	Advanced Techniques
	Comparison with Segment Trees
	Common Patterns & Pitfalls
	Applications
	Summary

