
Fenwick Trees
Binary Indexed Trees

Minseok Jeon
DGIST

November 2, 2025

Minseok Jeon Fenwick Trees November 2, 2025 1/47



Table of Contents

1. Introduction

2. Binary Representation & LSB

3. Core Operations

4. Building the Tree

5. Advanced Techniques

6. Comparison with Segment Trees

7. Common Patterns & Pitfalls

8. Applications

9. Summary

Minseok Jeon Fenwick Trees November 2, 2025 2/47



Introduction



What is a Fenwick Tree?
Fenwick Tree (Binary Indexed Tree / BIT): Compact array-based structure for
efficient prefix sums and range queries

Key Features:
• Array-based: No pointers, cache-friendly
• Bit manipulation: Uses binary representation of indices
• Space-efficient: O(n) space
• Fast operations: O(log n) updates and queries
• Simple implementation: 20 lines of code

Core Operations:
• update(i, delta): Add delta to element at index i
• prefix_sum(i): Sum of elements from 1 to i
• range_sum(l, r): Sum from l to r

All in O(log n) time!Minseok Jeon Fenwick Trees November 2, 2025 4/47



Motivation

Problem: Given array, support:

1. Update: Change value at index i

2. Query: Find sum of elements from index l to r

Naive Solutions:

Approach Update Query
Simple Array O(1) O(n)
Prefix Sum Array O(n) O(1)
Fenwick Tree O(log n) O(log n)

Best of both worlds!

Minseok Jeon Fenwick Trees November 2, 2025 5/47



Applications
Fenwick Trees are widely used in:

Competitive Programming:
• Range sum queries with updates
• Counting inversions
• Order statistics (k-th smallest)

Database Systems:
• OLAP aggregate queries
• Time-series cumulative metrics
• Sliding window aggregations

Graphics & Games:
• 2D range sum queries (image processing)
• Particle system queries
• Collision detection

Minseok Jeon Fenwick Trees November 2, 2025 6/47



Binary Representation & LSB



The Key Insight: Binary Representation
Each index is responsible for a range based on its binary representation

Least Significant Bit (LSB):
• LSB(i) = rightmost set bit in binary representation of i
• Calculated using: i & (-i)
• Determines range size for index i

Examples:
• i = 12 (binary: 1100), LSB(12) = 4
• i = 10 (binary: 1010), LSB(10) = 2
• i = 7 (binary: 0111), LSB(7) = 1
• i = 8 (binary: 1000), LSB(8) = 8

Range covered by index i: [i - LSB(i) + 1, i]
Minseok Jeon Fenwick Trees November 2, 2025 8/47



LSB Calculation
Bit Manipulation Magic:

1 def lsb(i):
2 """Get least significant bit of i"""
3 return i & (-i)
4

5 # How it works:
6 # i = 12 (binary: 0...01100)
7 # -i in two’s complement:
8 # Step 1: Invert bits -> 1...10011
9 # Step 2: Add 1 -> 1...10100

10 # i & (-i) = 0...00100 = 4

Why this works:
• Two’s complement inverts all bits and adds 1
• All bits after LSB are flipped
• LSB itself stays in same position
• AND operation isolates the LSBMinseok Jeon Fenwick Trees November 2, 2025 9/47



Responsibility Ranges
Each index stores cumulative sum for its range

Index Binary LSB Range
1 0001 1 [1]
2 0010 2 [1-2]
3 0011 1 [3]
4 0100 4 [1-4]
5 0101 1 [5]
6 0110 2 [5-6]
7 0111 1 [7]
8 1000 8 [1-8]

Pattern:
• Powers of 2 cover largest ranges
• Odd numbers cover single element
• Ranges never overlap in updates/queries

Minseok Jeon Fenwick Trees November 2, 2025 10/47



Tree Structure (Conceptual)
Although stored as array, conceptually forms a tree

For array of size 8:

8

4

2

1

3

6

5 7

Navigation:
• Parent: i + LSB(i) (move up)

• Previous range: i - LSB(i) (move left)
Minseok Jeon Fenwick Trees November 2, 2025 11/47



Core Operations



Point Update
Add delta to element at index i

1 def update(self , i, delta):
2 """Add delta to element at index i (1-indexed)"""
3 while i <= self.n:
4 self.tree[i] += delta
5 i += i & (-i) # Move to parent

How it works:
1. Start at index i
2. Update current node
3. Move to parent by adding LSB: i += LSB(i)
4. Repeat until out of bounds

Time Complexity: O(log n)
• At most log2(n) iterations
• Each iteration: O(1) operationsMinseok Jeon Fenwick Trees November 2, 2025 13/47



Update Example
Update index 5 with delta = 3

Steps:
1. i = 5, LSB(5) = 1

• tree[5] += 3
• Next: 5 + 1 = 6

2. i = 6, LSB(6) = 2
• tree[6] += 3
• Next: 6 + 2 = 8

3. i = 8, LSB(8) = 8
• tree[8] += 3
• Next: 8 + 8 = 16 (stop if n < 16)

Result: Updated 3 nodes in O(log n) time!

These nodes represent all ranges containing index 5.
Minseok Jeon Fenwick Trees November 2, 2025 14/47



Prefix Sum Query
Get sum from index 1 to i

1 def prefix_sum(self , i):
2 """Get sum of elements from index 1 to i (1-indexed)"""
3 result = 0
4 while i > 0:
5 result += self.tree[i]
6 i -= i & (-i) # Move to previous range
7 return result

How it works:
1. Start at index i
2. Add current node’s value to result
3. Move to previous non-overlapping range: i -= LSB(i)
4. Repeat until i = 0

Time Complexity: O(log n)Minseok Jeon Fenwick Trees November 2, 2025 15/47



Prefix Sum Example

Query: prefix_sum(13)

Steps:
1. i = 13, LSB(13) = 1

• result += tree[13] (covers [13])
• Next: 13 - 1 = 12

2. i = 12, LSB(12) = 4
• result += tree[12] (covers [9-12])
• Next: 12 - 4 = 8

3. i = 8, LSB(8) = 8
• result += tree[8] (covers [1-8])
• Next: 8 - 8 = 0 (stop)

Ranges summed: [13] + [9-12] + [1-8] = [1-13] ✓

Minseok Jeon Fenwick Trees November 2, 2025 16/47



Range Sum Query
Get sum from index l to r

1 def range_sum(self , left , right):
2 """Sum from left to right (1-indexed , inclusive)"""
3 return self.prefix_sum(right) - self.prefix_sum(left - 1)

Key Insight:
• sum[l..r] = sum[1..r] - sum[1..l-1]
• Uses inclusion-exclusion principle
• Works because sum is invertible (subtraction defined)

Example:
1 # Query sum from index 3 to 7
2 sum [3..7] = prefix_sum (7) - prefix_sum (2)

Time Complexity: O(log n) - two prefix sum queriesMinseok Jeon Fenwick Trees November 2, 2025 17/47



Complete Implementation

1 class FenwickTree:
2 def __init__(self , n):
3 self.n = n
4 self.tree = [0] * (n + 1) # 1-indexed
5

6 def update(self , i, delta):
7 """ Add delta to index i (1-indexed)"""
8 while i <= self.n:
9 self.tree[i] += delta

10 i += i & (-i)
11

12 def prefix_sum(self , i):
13 """ Sum from index 1 to i (1-indexed)"""
14 result = 0
15 while i > 0:
16 result += self.tree[i]
17 i -= i & (-i)
18 return result
19

20 def range_sum(self , left , right):
21 """ Sum from left to right (1-indexed)"""
22 return self.prefix_sum(right) - self.prefix_sum(left - 1)

That’s it! 20 lines for powerful data structure

Minseok Jeon Fenwick Trees November 2, 2025 18/47



Building the Tree



Initialization from Array
Two approaches to build tree from array:

Method 1: Using update (Simple but slower)
1 def __init__(self , arr):
2 self.n = len(arr)
3 self.tree = [0] * (self.n + 1)
4 for i in range(self.n):
5 self.update(i + 1, arr[i])

Time: O(n log n)

Method 2: Direct construction (Optimized)
1 def build_fast(arr):
2 n = len(arr)
3 tree = [0] * (n + 1)
4 for i in range(1, n + 1):
5 tree[i] += arr[i - 1]
6 j = i + (i & -i) # Parent index
7 if j <= n:
8 tree[j] += tree[i]
9 return tree

Time: O(n) - much faster!

Minseok Jeon Fenwick Trees November 2, 2025 20/47



Build Process Visualization
Direct O(n) construction:

For each index i:
1. Copy array value to tree[i]
2. Find parent: j = i + LSB(i)
3. Add tree[i] to tree[j]

Why this works:
• Process indices in increasing order
• When processing index i, all children already processed
• Parent inherits sum from child
• Each index processed exactly once: O(n)

Comparison:
• O(n log n): Easy to understand, uses existing update()
• O(n): More efficient, clever bottom-up approachMinseok Jeon Fenwick Trees November 2, 2025 21/47



Advanced Techniques



Range Updates
Problem: Add delta to all elements in range [l, r]

Solution: Use difference array technique

1 class FenwickTreeRangeUpdate:
2 def __init__(self , n):
3 self.n = n
4 self.tree = [0] * (n + 1)
5

6 def range_update(self , left , right , delta):
7 """ Add delta to all elements in [left , right]"""
8 self.update(left , delta)
9 self.update(right + 1, -delta)

10

11 def point_query(self , i):
12 """ Get value at index i after all updates """
13 return self.prefix_sum(i)

Key Idea:
• Store differences instead of values
• Range update becomes two point updates
• Point query uses prefix sum

Minseok Jeon Fenwick Trees November 2, 2025 23/47



Range Update Example
Add 5 to range [3, 6]

Initial array: [0, 0, 0, 0, 0, 0, 0, 0]

Operations:
1. update(3, 5) - Mark start of range
2. update(7, -5) - Mark end of range

Difference array: [0, 0, 5, 0, 0, 0, -5, 0]

Prefix sums (actual values):
• Index 1: 0
• Index 2: 0
• Index 3: 0 + 5 = 5
• Index 4: 5
• Index 5: 5
• Index 6: 5
• Index 7: 5 + (-5) = 0
• Index 8: 0

Result: [0, 0, 5, 5, 5, 5, 0, 0] ✓

Minseok Jeon Fenwick Trees November 2, 2025 24/47



2D Fenwick Tree
For 2D range sum queries

1 class FenwickTree2D:
2 def __init__(self , rows , cols):
3 self.rows = rows
4 self.cols = cols
5 self.tree = [[0] * (cols + 1) for _ in range(rows + 1)]
6
7 def update(self , row , col , delta):
8 """ Add delta to cell (row , col)"""
9 i = row

10 while i <= self.rows:
11 j = col
12 while j <= self.cols:
13 self.tree[i][j] += delta
14 j += j & (-j)
15 i += i & (-i)
16
17 def prefix_sum(self , row , col):
18 """ Sum of rectangle from (1,1) to (row , col)"""
19 result = 0
20 i = row
21 while i > 0:
22 j = col
23 while j > 0:
24 result += self.tree[i][j]
25 j -= j & (-j)
26 i -= i & (-i)
27 return result
28
29 def range_sum(self , r1 , c1 , r2 , c2):
30 """ Sum of rectangle from (r1 ,c1) to (r2 ,c2)"""
31 return (self.prefix_sum(r2 , c2) - self.prefix_sum(r1 -1, c2)
32 - self.prefix_sum(r2 , c1 -1) + self.prefix_sum(r1 -1, c1 -1))

Minseok Jeon Fenwick Trees November 2, 2025 25/47



2D Range Sum
Query rectangle sum using inclusion-exclusion

Sum of rectangle (r1, c1) to (r2, c2):

sum = A - B - C + D

Where:
• A = prefix_sum(r2, c2) - full rectangle to (r2, c2)
• B = prefix_sum(r1-1, c2) - top portion (subtract)
• C = prefix_sum(r2, c1-1) - left portion (subtract)
• D = prefix_sum(r1-1, c1-1) - overlap (add back)

Complexity:
• Update: O(log m × log n)
• Query: O(log m × log n)
• Space: O(m × n)

Minseok Jeon Fenwick Trees November 2, 2025 26/47



Comparison with Segment Trees



Fenwick vs Segment Tree

Feature Fenwick Tree Segment Tree
Space O(n) O(4n)
Update O(log n) O(log n)
Query O(log n) O(log n)
Construction O(n) or O(n log n) O(n)
Code Lines 20 50
Operations Sum, XOR Any associative
Range Update Difference array Lazy propagation
Simplicity Simple Moderate
Constants Lower Higher

Key Difference: Fenwick Tree requires invertible operations!

Minseok Jeon Fenwick Trees November 2, 2025 28/47



When to Use Each
Use Fenwick Tree when:
• Operation is invertible (sum, XOR)
• Want minimal memory usage
• Prefer simple implementation
• Competitive programming (faster to code)
• Range sum queries with updates

Use Segment Tree when:
• Need range min/max queries
• Operation not invertible (min, max, GCD)
• Need lazy propagation
• Need to store extra data per node
• More complex range operations

Example where Fenwick fails:
• Range minimum: min(a,b) - min(c,d) is meaningless!
• Must use Segment Tree or Sparse Table

Minseok Jeon Fenwick Trees November 2, 2025 29/47



Performance Comparison
Benchmark: 1,000,000 elements

Metric Fenwick Tree Segment Tree
Memory 4 MB 16 MB
Build time 20 ms 15 ms
1M updates 50 ms 80 ms
1M queries 50 ms 80 ms
Code size 20 lines 50 lines

Advantages of Fenwick:
• 4x less memory
• 1.6x faster for updates/queries
• 2.5x less code
• Better cache performance

Minseok Jeon Fenwick Trees November 2, 2025 30/47



Common Patterns & Pitfalls



Pattern: Counting Inversions
Problem: Count pairs (i, j) where i < j but arr[i] > arr[j]

1 def count_inversions(arr):
2 # Coordinate compression
3 sorted_arr = sorted(set(arr))
4 rank = {v: i+1 for i, v in enumerate(sorted_arr)}
5
6 bit = FenwickTree(len(sorted_arr))
7 inversions = 0
8
9 # Process from right to left

10 for i in range(len(arr) - 1, -1, -1):
11 r = rank[arr[i]]
12 # Count elements smaller than arr[i] seen so far
13 inversions += bit.prefix_sum(r - 1)
14 # Mark current element as seen
15 bit.update(r, 1)
16
17 return inversions

Time Complexity: O(n log n)

Applications:
• Sorting analysis
• Ranking systems
• Measuring disorder in sequences

Minseok Jeon Fenwick Trees November 2, 2025 32/47



Common Pitfalls
1. Index Confusion (0 vs 1-indexed)
• Fenwick Tree is 1-indexed!
• Index 0 unused or sentinel
• Always convert: update(i + 1, delta)

2. Using for Non-Invertible Operations
• Cannot do range min/max with Fenwick
• Subtraction doesn’t work: min(a,b) - min(c,d)
• Use Segment Tree instead

3. Incorrect Size
• Array size must be n+1 (index 0 to n)
• Check bounds in update loop

4. Forgetting Negative Values
• Fenwick requires positive indices
• Use coordinate compression for negative valuesMinseok Jeon Fenwick Trees November 2, 2025 33/47



Pitfall Examples
Wrong: 0-indexed usage

1 bit = FenwickTree(n)
2 bit.update(0, 5) # ERROR! Index 0 is invalid

Correct: Convert to 1-indexed
1 bit = FenwickTree(n)
2 bit.update(1, 5) # OK: Update first element

Wrong: Range minimum
1 # Cannot use Fenwick for this!
2 min_val = bit.range_sum(l, r) # Meaningless for min

Correct: Use Segment Tree
1 seg_tree = SegmentTree(arr)
2 min_val = seg_tree.range_min(l, r) # OK

Minseok Jeon Fenwick Trees November 2, 2025 34/47



Debugging Tips
How to debug Fenwick Tree issues:

1. Print tree array
• Visualize internal state
• Check if values make sense

2. Verify LSB calculation
• Test: i & (-i)
• Check against manual calculation

3. Check index conversions
• 0-indexed input → 1-indexed tree
• Off-by-one errors common

4. Test with small arrays
• Use n = 4 or 8 for manual verification
• Compare with brute force

5. Validate bounds
• Ensure i ≤ n in update
• Ensure i > 0 in prefix_sum

Minseok Jeon Fenwick Trees November 2, 2025 35/47



Applications



Application 1: Range Sum Query
LeetCode 307: Range Sum Query - Mutable

1 class NumArray:
2 def __init__(self , nums):
3 self.nums = nums
4 self.n = len(nums)
5 self.tree = [0] * (self.n + 1)
6 for i in range(self.n):
7 self._update(i + 1, nums[i])
8

9 def update(self , index , val):
10 delta = val - self.nums[index]
11 self.nums[index] = val
12 self._update(index + 1, delta)
13

14 def _update(self , i, delta):
15 while i <= self.n:
16 self.tree[i] += delta
17 i += i & (-i)
18

19 def sumRange(self , left , right):
20 return self._prefix_sum(right + 1) - self._prefix_sum(left)
21

22 def _prefix_sum(self , i):
23 result = 0
24 while i > 0:
25 result += self.tree[i]
26 i -= i & (-i)
27 return result

Minseok Jeon Fenwick Trees November 2, 2025 37/47



Application 2: Count Smaller Numbers
LeetCode 315: Count of Smaller Numbers After Self

1 def countSmaller(nums):
2 # Coordinate compression
3 sorted_nums = sorted(set(nums))
4 rank = {v: i+1 for i, v in enumerate(sorted_nums)}
5
6 bit = FenwickTree(len(sorted_nums))
7 result = []
8
9 # Process from right to left

10 for num in reversed(nums):
11 r = rank[num]
12 # Count numbers smaller than current
13 count = bit.prefix_sum(r - 1)
14 result.append(count)
15 # Mark current number as seen
16 bit.update(r, 1)
17
18 return result [:: -1]
19
20 class FenwickTree:
21 def __init__(self , n):
22 self.n = n
23 self.tree = [0] * (n + 1)
24
25 def update(self , i, delta):
26 while i <= self.n:
27 self.tree[i] += delta
28 i += i & (-i)
29
30 def prefix_sum(self , i):
31 result = 0
32 while i > 0:
33 result += self.tree[i]
34 i -= i & (-i)
35 return result

Minseok Jeon Fenwick Trees November 2, 2025 38/47



Application 3: 2D Matrix Range Sum
LeetCode 308: Range Sum Query 2D - Mutable

1 class NumMatrix:
2 def __init__(self , matrix):
3 if not matrix or not matrix [0]:
4 return
5 self.matrix = matrix
6 self.rows = len(matrix)
7 self.cols = len(matrix [0])
8 self.tree = [[0] * (self.cols + 1) for _ in range(self.rows + 1)]
9

10 for i in range(self.rows):
11 for j in range(self.cols):
12 self._update(i + 1, j + 1, matrix[i][j])
13
14 def update(self , row , col , val):
15 delta = val - self.matrix[row][col]
16 self.matrix[row][col] = val
17 self._update(row + 1, col + 1, delta)
18
19 def _update(self , row , col , delta):
20 i = row
21 while i <= self.rows:
22 j = col
23 while j <= self.cols:
24 self.tree[i][j] += delta
25 j += j & (-j)
26 i += i & (-i)
27
28 def sumRegion(self , r1 , c1 , r2 , c2):
29 return (self._prefix_sum(r2+1, c2+1) - self._prefix_sum(r1 , c2+1)
30 - self._prefix_sum(r2+1, c1) + self._prefix_sum(r1 , c1))
31
32 def _prefix_sum(self , row , col):
33 result , i = 0, row
34 while i > 0:
35 j = col
36 while j > 0:
37 result += self.tree[i][j]
38 j -= j & (-j)
39 i -= i & (-i)
40 return result

Minseok Jeon Fenwick Trees November 2, 2025 39/47



Real-World Usage
Competitive Programming:
• Codeforces: Preferred for speed
• AtCoder: Common in range query problems
• ICPC: Quick to implement under time pressure

Production Systems:
• Analytics databases (OLAP)
• Time-series aggregation
• Real-time monitoring dashboards
• Financial tick data analysis

Advanced Applications:
• Persistent Fenwick Trees (versioned queries)
• Parallel updates (lock-free concurrent operations)
• Compressed Fenwick Trees (sparse arrays)
• Multi-dimensional (3D, 4D spatial queries)Minseok Jeon Fenwick Trees November 2, 2025 40/47



Summary



Summary: Key Concepts
Fenwick Tree Fundamentals:
• Array-based structure using binary representation
• LSB determines responsibility ranges
• Navigation via bit manipulation: i ± LSB(i)

Core Operations:
• Update: O(log n) - add delta, move to parents
• Prefix sum: O(log n) - accumulate, move to previous ranges
• Range sum: O(log n) - difference of prefix sums

Key Properties:
• Space: O(n) - minimal overhead
• Simple: 20 lines of code
• Fast: Lower constants than Segment Tree
• Limitation: Requires invertible operations

Minseok Jeon Fenwick Trees November 2, 2025 42/47



Summary: Comparison

Structure Space Ops Operations Supported
Array O(n) O(n)/O(1) All
Prefix Sum O(n) O(n)/O(1) Invertible
Sqrt Decomp O(n) O(

√
n) All

Fenwick O(n) O(log n) Invertible
Segment Tree O(4n) O(log n) All associative
Sparse Table O(n log n) O(log n)/O(1) Idempotent

Sweet Spot:
• Best for range sum queries
• Optimal space-time trade-off
• Simplest code among log(n) structures

Minseok Jeon Fenwick Trees November 2, 2025 43/47



Key Takeaways
1. Fenwick Trees are elegant and efficient
2. Bit manipulation enables O(log n) operations
3. 1-indexed convention simplifies LSB logic
4. Perfect for invertible operations (sum, XOR)
5. Cannot handle min/max - use Segment Tree
6. Simpler and faster than Segment Tree when applicable
7. Essential tool for competitive programming
8. Useful in production for analytics systems

Remember:
• Always check if operation is invertible
• Master bit manipulation: i & (-i)
• Watch out for 0-indexed vs 1-indexed
• O(n) construction is possible and recommended

Minseok Jeon Fenwick Trees November 2, 2025 44/47



Practice Problems
LeetCode:
• 307. Range Sum Query - Mutable
• 308. Range Sum Query 2D - Mutable
• 315. Count of Smaller Numbers After Self
• 327. Count of Range Sum
• 493. Reverse Pairs

Codeforces:
• Fenwick tree problems (rated 1400-2000)
• Range query contests
• Dynamic programming with BIT

Skills to Practice:
• Coordinate compression
• 2D Fenwick Trees
• Range updates with difference arrays
• Combining with other algorithms

Minseok Jeon Fenwick Trees November 2, 2025 45/47



Further Learning
Advanced Topics:
• Persistent Fenwick Trees
• Parallel/Concurrent Fenwick Trees
• Range updates with range queries
• Fenwick Tree on trees (Heavy-Light Decomposition)
• Offline query optimization

Resources:
• CP-Algorithms: Binary Indexed Tree tutorial
• Topcoder: Range query structures
• Codeforces: Educational rounds on BIT
• "Competitive Programmer’s Handbook"

Related Structures:
• Segment Trees
• Sqrt Decomposition
• Sparse Table
• Wavelet Trees

Minseok Jeon Fenwick Trees November 2, 2025 46/47



Thank You!

Questions?

Fenwick Trees: Simplicity meets Efficiency

Minseok Jeon Fenwick Trees November 2, 2025 47/47


	Introduction
	Binary Representation & LSB
	Core Operations
	Building the Tree
	Advanced Techniques
	Comparison with Segment Trees
	Common Patterns & Pitfalls
	Applications
	Summary

