
Dynamic Programming
Optimize Recursive Solutions by Reusing Subproblem Results

Minseok Jeon
DGIST

November 2, 2025

Minseok Jeon Dynamic Programming November 2, 2025 1/45



Table of Contents

1. Introduction

2. Overlapping Subproblems and Optimal Substructure

3. Top-down (Memoization) vs Bottom-up

4. State Definition and Transitions

5. 1D/2D DP and Space Optimization

6. Combining DP with Data Structures

7. Common Pitfalls and Patterns

8. Summary

Minseok Jeon Dynamic Programming November 2, 2025 2/45



Introduction



What is Dynamic Programming?

Dynamic Programming (DP): An optimization technique for recursive problems

Core Idea:
• Break problem into overlapping subproblems
• Solve each subproblem once
• Store results to avoid recomputation
• Build solution from cached subproblem results

Key Difference from Divide-and-Conquer:
• D&C: Subproblems are independent (merge sort, quicksort)
• DP: Subproblems overlap (fibonacci, shortest path)

Minseok Jeon Dynamic Programming November 2, 2025 4/45



When to Use Dynamic Programming

Two Required Properties:

1. Overlapping Subproblems
• Same subproblems solved multiple times in naive recursion
• Caching results provides significant speedup

2. Optimal Substructure
• Optimal solution contains optimal solutions to subproblems
• Can build global optimum from local optima

Additional Requirement:
• Must be able to define recursive relation between states

Minseok Jeon Dynamic Programming November 2, 2025 5/45



Overlapping Subproblems and Optimal
Substructure



Overlapping Subproblems: Fibonacci Example
Problem: Compute n-th Fibonacci number

fib(5)

fib(4) fib(3)

fib(3) fib(2) fib(2) fib(2)

fib(1)

Observation:
• fib(3) computed 2 times (yellow)
• fib(2) computed 3 times (orange)
• Exponential time: O(2n) without caching

Minseok Jeon Dynamic Programming November 2, 2025 7/45



Naive Recursion vs Memoization

Naive Recursion: O(2n)
1 def fib(n):
2 if n <= 1:
3 return n
4 return fib(n-1) + fib(n-2)
5
6 # fib (40) takes seconds!

With Memoization: O(n)
1 def fib_memo(n, memo ={}):
2 if n in memo:
3 return memo[n]
4 if n <= 1:
5 return n
6 memo[n] = fib_memo(n-1, memo) + \
7 fib_memo(n-2, memo)
8 return memo[n]
9

10 # fib_memo (40) instant!

Key Insight: Cache results to avoid recomputation
• Each subproblem solved exactly once
• Lookup takes O(1) time
• Total time: O(n) instead of O(2n)

Minseok Jeon Dynamic Programming November 2, 2025 8/45



Optimal Substructure

Definition: Optimal solution contains optimal solutions to subproblems

Example 1: Shortest Path ✓
• If shortest path A→ C goes through B
• Then A→ B and B → C must also be shortest paths
• Can build optimal solution from optimal subproblems

Counter-example: Longest Simple Path ×
• Longest path A→ C through B
• Does NOT guarantee A→ B and B → C are longest
• Why? Cannot revisit nodes (constraint breaks substructure)
• This problem is NP-hard!

Minseok Jeon Dynamic Programming November 2, 2025 9/45



Problem Classification

Problem Overlapping? Optimal Substructure? DP?
Fibonacci Yes Yes ✓
Shortest path Yes Yes ✓
LIS Yes Yes ✓
Knapsack Yes Yes ✓
Merge sort No Yes × (D&C)
Longest simple path Yes No × (NP-hard)

When to use DP:
• ✓ Problem has overlapping subproblems
• ✓ Problem has optimal substructure
• ✓ Can define recursive relation
• × Subproblems independent → use divide-and-conquer
• × No optimal substructure → greedy or other approach

Minseok Jeon Dynamic Programming November 2, 2025 10/45



Top-down (Memoization) vs Bottom-up



Two Approaches to Dynamic Programming
Top-down (Memoization)
• Start from original problem
• Recurse down to base cases
• Cache results along the way
• Natural recursive thinking

Problem

Sub 1 Sub 2

Base Base

Bottom-up (Tabulation)
• Start from base cases
• Build up iteratively
• Fill table in correct order
• No recursion overhead

Base Base

Sub 1 Sub 2

Problem

Minseok Jeon Dynamic Programming November 2, 2025 12/45



Example: Climbing Stairs - Top-down
Problem: n stairs, can climb 1 or 2 steps at a time. How many ways to reach top?

Top-down with Memoization:

1 def climb_stairs_memo(n, memo ={}):
2 # Base cases
3 if n <= 2:
4 return n
5

6 # Check cache
7 if n in memo:
8 return memo[n]
9

10 # Recursive relation: ways(n) = ways(n-1) + ways(n-2)
11 memo[n] = climb_stairs_memo(n-1, memo) + \
12 climb_stairs_memo(n-2, memo)
13 return memo[n]

Time: O(n) Space: O(n) + recursion stack
Minseok Jeon Dynamic Programming November 2, 2025 13/45



Example: Climbing Stairs - Bottom-up
Bottom-up with Tabulation:

1 def climb_stairs_dp(n):
2 if n <= 2:
3 return n
4

5 # DP table
6 dp = [0] * (n + 1)
7 dp[1] = 1
8 dp[2] = 2
9

10 # Fill table bottom -up
11 for i in range(3, n + 1):
12 dp[i] = dp[i-1] + dp[i-2]
13

14 return dp[n]

Time: O(n) Space: O(n)

No recursion overhead, better cache localityMinseok Jeon Dynamic Programming November 2, 2025 14/45



Comparison: Top-down vs Bottom-up

Aspect Top-down Bottom-up
Direction Problem → base cases Base cases → problem
Implementation Recursion + cache Iteration + table
Subproblems Only needed All
Space O(n) + stack O(n)

Time overhead Function calls None
Intuition Natural Requires planning
Space optimization Harder Easier

When to choose:
• Top-down: Recursive solution natural, not all subproblems needed
• Bottom-up: Want best performance, need space optimization

Minseok Jeon Dynamic Programming November 2, 2025 15/45



State Definition and Transitions



Designing a DP Solution

Core of DP: Properly defining states and transitions

5-Step Process:
1. Identify what varies: What parameters change between subproblems?

2. Define DP array: dp[i], dp[i][j], etc.

3. Specify meaning: What does dp[i] represent?

4. Find recurrence: How to compute dp[i] from smaller states?

5. Set base cases: Initial values for smallest subproblems

State: A unique subproblem characterized by parameters
Good state: Captures all information needed to solve subproblem

Minseok Jeon Dynamic Programming November 2, 2025 17/45



Example 1: Longest Increasing Subsequence

Problem: Find length of longest increasing subsequence in array

State definition: dp[i] = length of LIS ending at index i
1 def length_of_LIS(nums):
2 n = len(nums)
3 dp = [1] * n # Base case: each element is LIS of length 1
4
5 # Transition: for each i, check all j < i
6 for i in range(1, n):
7 for j in range(i):
8 if nums[j] < nums[i]:
9 dp[i] = max(dp[i], dp[j] + 1)

10
11 return max(dp) # Answer: maximum among all dp[i]
12
13 # Example: [10, 9, 2, 5, 3, 7, 101, 18]
14 # dp = [1, 1, 1, 2, 2, 3, 4, 4]
15 # ^ ^
16 # [2,5,7,101] or [2,5,7,18]

Time: O(n2) Space: O(n)

Minseok Jeon Dynamic Programming November 2, 2025 18/45



Example 2: 0/1 Knapsack

Problem: n items with weights and values, capacity W . Maximize value.

State: dp[i][w] = max value using first i items with capacity w
1 def knapsack(weights , values , W):
2 n = len(weights)
3 dp = [[0] * (W + 1) for _ in range(n + 1)]
4
5 # Transition
6 for i in range(1, n + 1):
7 for w in range(W + 1):
8 # Don’t take item i-1
9 dp[i][w] = dp[i-1][w]

10
11 # Take item i-1 (if it fits)
12 if weights[i-1] <= w:
13 dp[i][w] = max(dp[i][w],
14 dp[i-1][w - weights[i-1]] + values[i-1])
15
16 return dp[n][W]

Recurrence: dp[i][w] = max(dp[i-1][w], dp[i-1][w-weight[i-1]] +
value[i-1])

Minseok Jeon Dynamic Programming November 2, 2025 19/45



Example 3: Edit Distance
Problem: Min operations to convert word1 to word2 (insert, delete, replace)

State: dp[i][j] = min ops to convert word1[0..i-1] to word2[0..j-1]
1 def min_distance(word1 , word2):
2 m, n = len(word1), len(word2)
3 dp = [[0] * (n + 1) for _ in range(m + 1)]
4
5 # Base cases
6 for i in range(m + 1):
7 dp[i][0] = i # Delete all characters
8 for j in range(n + 1):
9 dp[0][j] = j # Insert all characters

10
11 # Transition
12 for i in range(1, m + 1):
13 for j in range(1, n + 1):
14 if word1[i-1] == word2[j-1]:
15 dp[i][j] = dp[i-1][j-1] # No operation needed
16 else:
17 dp[i][j] = 1 + min(
18 dp[i-1][j], # Delete from word1
19 dp[i][j-1], # Insert to word1
20 dp[i-1][j-1] # Replace
21 )
22 return dp[m][n]

Minseok Jeon Dynamic Programming November 2, 2025 20/45



Common State Patterns

Pattern State Example Problems
Linear dp[i] Fibonacci, climbing stairs
2D grid dp[i][j] Unique paths, edit distance
Subsequence dp[i] ending at i LIS, max subarray
Knapsack dp[i][w] 0/1 knapsack, coin change
Interval dp[i][j] for [i,j] Matrix chain mult
State machine dp[i][state] Stock trading

Key Insight: Choose state that:
• Uniquely identifies each subproblem
• Contains all necessary information
• Allows expressing recurrence relation
• Leads to polynomial time/space complexity

Minseok Jeon Dynamic Programming November 2, 2025 21/45



1D/2D DP and Space Optimization



Space Optimization: Fibonacci

Observation: Only need previous 2 values

1D DP: O(n) space
1 def fib_1d(n):
2 dp = [0] * (n + 1)
3 dp[1] = 1
4 for i in range(2, n + 1):
5 dp[i] = dp[i-1] + dp[i-2]
6 return dp[n]

Optimized: O(1) space
1 def fib_optimized(n):
2 if n <= 1:
3 return n
4 prev2 , prev1 = 0, 1
5 for i in range(2, n + 1):
6 curr = prev1 + prev2
7 prev2 , prev1 = prev1 , curr
8 return prev1

Key Idea: Keep only what you need
• Identify dependencies in recurrence
• Store only necessary previous values
• Update in correct order

Minseok Jeon Dynamic Programming November 2, 2025 23/45



2D DP Space Optimization: Unique Paths

Problem: m × n grid, count paths from top-left to bottom-right
2D DP: O(m × n)

1 def unique_paths_2d(m, n):
2 dp = [[0] * n for _ in range(m)]
3
4 # Base cases
5 for i in range(m):
6 dp[i][0] = 1
7 for j in range(n):
8 dp[0][j] = 1
9

10 # Fill table
11 for i in range(1, m):
12 for j in range(1, n):
13 dp[i][j] = dp[i-1][j] + \
14 dp[i][j-1]
15
16 return dp[m-1][n-1]

Optimized: O(n)
1 def unique_paths_1d(m, n):
2 dp = [1] * n # Only current row
3
4 for i in range(1, m):
5 for j in range(1, n):
6 dp[j] = dp[j] + dp[j-1]
7 # dp[j]: previous row
8 # dp[j-1]: current row
9

10 return dp[n-1]

Observation: Each row only depends on previous row

Minseok Jeon Dynamic Programming November 2, 2025 24/45



Rolling Array Technique
Idea: Use modulo to reuse array space

1 def optimized_2d(m, n):
2 # Only keep 2 rows in memory
3 dp = [[0] * n for _ in range (2)]
4

5 for i in range(m):
6 for j in range(n):
7 if i == 0 or j == 0:
8 dp[i % 2][j] = 1
9 else:

10 dp[i % 2][j] = dp[(i-1) % 2][j] + dp[i % 2][j-1]
11

12 return dp[(m-1) % 2][n-1]

When to use:
• State dp[i][j] only depends on previous row dp[i-1][...]
• Reduces space from O(m × n) to O(2× n) or O(n)

Minseok Jeon Dynamic Programming November 2, 2025 25/45



State Compression with Bitmasks

Use case: Small state space (e.g., subsets of n items)

Example: Traveling Salesman Problem
1 def tsp(dist):
2 n = len(dist)
3 # dp[mask][i] = min cost to visit cities in mask , ending at i
4 # mask is bitmask representing visited cities
5 dp = [[float(’inf’)] * n for _ in range (1 << n)]
6 dp [1][0] = 0 # Start at city 0
7
8 for mask in range(1 << n):
9 for u in range(n):

10 if dp[mask][u] == float(’inf’):
11 continue
12 for v in range(n):
13 if mask & (1 << v): # Already visited
14 continue
15 new_mask = mask | (1 << v)
16 dp[new_mask ][v] = min(dp[new_mask ][v],
17 dp[mask][u] + dist[u][v])
18
19 return min(dp[(1<<n) -1][i] + dist[i][0] for i in range(1, n))

Space: O(2n × n) instead of exponential states

Minseok Jeon Dynamic Programming November 2, 2025 26/45



Space Optimization Checklist

Questions to ask:

1. Can I use only O(1) variables instead of array?
• Example: Fibonacci needs only 2 variables

2. Do I only need the previous row/column?
• Example: Unique paths, knapsack

3. Can I update in-place without affecting future computations?
• Example: Coin change with forward iteration

4. Is the state space small enough for bitmask?
• Example: TSP with n ≤ 20 cities

Trade-off: Space optimization may reduce code clarity

Minseok Jeon Dynamic Programming November 2, 2025 27/45



Combining DP with Data Structures



DP + Hash Map
Use case: Fast lookup of DP states with large or sparse index space

1 # Problem: Count subsequences with sum k
2 def count_pairs_with_sum(nums , k):
3 dp = {} # dp[sum] = count of subsequences with this sum
4 dp[0] = 1 # Empty subsequence
5

6 for num in nums:
7 new_dp = dp.copy()
8 for s in dp:
9 new_sum = s + num

10 new_dp[new_sum] = new_dp.get(new_sum , 0) + dp[s]
11 dp = new_dp
12

13 return dp.get(k, 0)

Benefit:
• No need to allocate large array
• Only store reachable states

Minseok Jeon Dynamic Programming November 2, 2025 29/45



DP + Monotonic Deque
Use case: Sliding window optimization in DP

1 from collections import deque
2
3 # Problem: Max subarray sum with length constraint (<= k)
4 def max_subarray_sum_with_constraint(nums , k):
5 n = len(nums)
6 dp = [0] * n
7 dp[0] = nums [0]
8
9 # Monotonic deque maintains decreasing order of dp values

10 dq = deque ([0])
11 result = dp[0]
12
13 for i in range(1, n):
14 # Remove elements outside window
15 while dq and dq[0] < i - k:
16 dq.popleft ()
17
18 # dp[i] = max(nums[i], nums[i] + max(dp[j]) for j in [i-k, i-1])
19 dp[i] = nums[i]
20 if dq:
21 dp[i] = max(dp[i], nums[i] + dp[dq[0]])
22
23 # Maintain monotonic property
24 while dq and dp[dq[-1]] <= dp[i]:
25 dq.pop()
26 dq.append(i)
27 result = max(result , dp[i])
28
29 return result

Minseok Jeon Dynamic Programming November 2, 2025 30/45



DP + Trie
Use case: String matching problems

1 class TrieNode:
2 def __init__(self):
3 self.children = {}
4 self.is_word = False
5
6 def word_break(s, word_dict):
7 # Build Trie
8 root = TrieNode ()
9 for word in word_dict:

10 node = root
11 for char in word:
12 if char not in node.children:
13 node.children[char] = TrieNode ()
14 node = node.children[char]
15 node.is_word = True
16
17 # DP with Trie
18 n = len(s)
19 dp = [False] * (n + 1)
20 dp[0] = True
21
22 for i in range(1, n + 1):
23 node = root
24 for j in range(i - 1, -1, -1):
25 if s[j] not in node.children:
26 break
27 node = node.children[s[j]]
28 if node.is_word and dp[j]:
29 dp[i] = True
30 break
31
32 return dp[n]

Minseok Jeon Dynamic Programming November 2, 2025 31/45



Common Data Structure Combinations

Data Structure Use Case Example
Hash Map Fast state lookup Two Sum, Subarray Sum
Segment Tree Range queries LIS with range max
Priority Queue Track k best/worst K-th largest
Monotonic Stack Maintain order Next greater element
Monotonic Deque Sliding window Window maximum
Trie String prefixes Word Break
Union-Find Components Islands with DP

Key Insight:
• DP handles optimal substructure
• Data structure optimizes state transitions
• Often reduces time complexity by a factor

Minseok Jeon Dynamic Programming November 2, 2025 32/45



Common Pitfalls and Patterns



Pitfall 1: Wrong Base Case

Wrong:
1 def climb_stairs(n):
2 dp = [0] * (n + 1)
3 dp[1] = 1 # Missing dp[2]
4 for i in range(3, n + 1):
5 dp[i] = dp[i-1] + dp[i-2]
6 return dp[n] # Fails for n=2

Correct:
1 def climb_stairs(n):
2 if n <= 2:
3 return n
4 dp = [0] * (n + 1)
5 dp[1], dp[2] = 1, 2
6 for i in range(3, n + 1):
7 dp[i] = dp[i-1] + dp[i-2]
8 return dp[n]

Lesson: Always verify base cases with hand calculation

Minseok Jeon Dynamic Programming November 2, 2025 34/45



Pitfall 2: Index Out of Bounds

Wrong:
1 for i in range(n):
2 # Error when i=0
3 dp[i] = dp[i-1] + nums[i]

Correct:
1 dp[0] = nums [0]
2 for i in range(1, n):
3 dp[i] = dp[i-1] + nums[i]

Lesson: Handle first/last elements separately if needed

Minseok Jeon Dynamic Programming November 2, 2025 35/45



Pitfall 3: Incorrect Iteration Order

Wrong (0/1 Knapsack):
1 # Forward iteration
2 for i in range(n):
3 for w in range(weights[i], W+1):
4 dp[w] = max(dp[w],
5 dp[w-weights[i]] + values[i])
6 # Allows using same item multiple times!

Correct:
1 # Backward iteration
2 for i in range(n):
3 for w in range(W, weights[i]-1, -1):
4 dp[w] = max(dp[w],
5 dp[w-weights[i]] + values[i])
6 # Each item used at most once

Lesson: Iteration order matters for in-place updates

Minseok Jeon Dynamic Programming November 2, 2025 36/45



Pitfall 4: Wrong Initialization

Wrong:
1 # Using 0 for max problem
2 dp = [0] * n
3 for i in range(n):
4 dp[i] = max(dp[i-1] + nums[i],
5 nums[i])
6 # Wrong if all nums negative

Correct:
1 # Use -inf for max problems
2 dp = [float(’-inf’)] * n
3 dp[0] = nums [0]
4 for i in range(1, n):
5 dp[i] = max(dp[i-1] + nums[i],
6 nums[i])

Lesson: Initialize based on problem (min: +∞, max: −∞)

Minseok Jeon Dynamic Programming November 2, 2025 37/45



Common DP Patterns Summary

1. Linear DP: dp[i] depends on dp[i-1], dp[i-2]
• Fibonacci, climbing stairs, house robber

2. Grid DP: dp[i][j] depends on dp[i-1][j], dp[i][j-1]
• Unique paths, minimum path sum

3. Knapsack: dp[i][capacity] or dp[capacity]
• 0/1 knapsack, coin change, partition

4. Interval DP: dp[i][j] for range [i, j]
• Matrix chain multiplication, burst balloons

5. State Machine: dp[i][state] for different modes
• Stock trading with cooldown

6. Bitmask DP: dp[mask] for subsets
• TSP, assignment problem

Minseok Jeon Dynamic Programming November 2, 2025 38/45



Problem-Solving Checklist
When approaching a DP problem:

1. ✓ Identify if DP is applicable
• Overlapping subproblems?
• Optimal substructure?

2. ✓ Define state clearly
• What does dp[i] mean?

3. ✓ Write recurrence relation
4. ✓ Identify base cases
5. ✓ Determine iteration order

• Which states depend on which?

6. ✓ Consider space optimization
7. ✓ Test with small examples
8. ✓ Handle edge cases

• Empty input, single element, etc.
Minseok Jeon Dynamic Programming November 2, 2025 39/45



Debugging DP Solutions
Techniques:

• Print DP table
• Visualize how values are computed
• Spot incorrect transitions

• Verify base cases
• Hand-calculate smallest instances

• Check recurrence
• Does it match problem statement?

• Test simple inputs first
• Edge cases: n = 0, 1, 2

• Compare approaches
• Memoization vs tabulation should give same result

Minseok Jeon Dynamic Programming November 2, 2025 40/45



Summary



Dynamic Programming: Key Takeaways
Core Concepts:
• DP optimizes recursive solutions by caching subproblem results
• Requires overlapping subproblems + optimal substructure
• Two approaches: top-down (memoization) vs bottom-up (tabulation)

Design Process:
1. Define state (what varies?)
2. Find recurrence relation
3. Set base cases
4. Determine iteration order
5. Optimize space if needed

Advanced Techniques:
• Space optimization (rolling array, state compression)
• Combining with data structures (hash map, deque, trie)
• Recognizing common patterns (linear, grid, knapsack, interval, etc.)Minseok Jeon Dynamic Programming November 2, 2025 42/45



Complexity Analysis

Time Complexity:
• Number of states × time per state
• Linear DP: O(n)
• 2D DP: O(n2) or O(n ×m)
• Knapsack: O(n ×W )
• Interval DP: O(n3)
• Bitmask DP: O(2n × n)

Space Complexity:
• Without optimization: same as time
• With optimization: often O(n) or O(1)
• Top-down: add O(n) for recursion stack

Minseok Jeon Dynamic Programming November 2, 2025 43/45



Practice Problems
Beginner:
• Fibonacci, Climbing Stairs
• Min Cost Climbing Stairs
• House Robber

Intermediate:
• Longest Increasing Subsequence
• Coin Change
• Edit Distance
• Unique Paths

Advanced:
• 0/1 Knapsack
• Longest Common Subsequence
• Matrix Chain Multiplication
• Stock Trading with Cooldown
• Traveling Salesman Problem

Minseok Jeon Dynamic Programming November 2, 2025 44/45



Resources
Online Judges:
• LeetCode DP tag problems
• Codeforces DP problems
• AtCoder Educational DP Contest

Books:
• Introduction to Algorithms (CLRS) - Chapter 15
• Algorithm Design by Kleinberg & Tardos
• Competitive Programming 3 by Halim

Tips:
• Practice regularly - DP requires pattern recognition
• Start with simple problems and build up
• Understand the recurrence, not just memorize solutions

Minseok Jeon Dynamic Programming November 2, 2025 45/45


	Introduction
	Overlapping Subproblems and Optimal Substructure
	Top-down (Memoization) vs Bottom-up
	State Definition and Transitions
	1D/2D DP and Space Optimization
	Combining DP with Data Structures
	Common Pitfalls and Patterns
	Summary

