

Dynamic Programming

Optimize Recursive Solutions by Reusing Subproblem Results

Minseok Jeon
DGIST

November 2, 2025

Table of Contents

1. Introduction
2. Overlapping Subproblems and Optimal Substructure
3. Top-down (Memoization) vs Bottom-up
4. State Definition and Transitions
5. 1D/2D DP and Space Optimization
6. Combining DP with Data Structures
7. Common Pitfalls and Patterns
8. Summary

Introduction

What is Dynamic Programming?

Dynamic Programming (DP): An optimization technique for recursive problems

Core Idea:

- Break problem into overlapping subproblems
- Solve each subproblem once
- Store results to avoid recomputation
- Build solution from cached subproblem results

Key Difference from Divide-and-Conquer:

- **D&C:** Subproblems are independent (merge sort, quicksort)
- **DP:** Subproblems overlap (fibonacci, shortest path)

When to Use Dynamic Programming

Two Required Properties:

1. Overlapping Subproblems

- Same subproblems solved multiple times in naive recursion
- Caching results provides significant speedup

2. Optimal Substructure

- Optimal solution contains optimal solutions to subproblems
- Can build global optimum from local optima

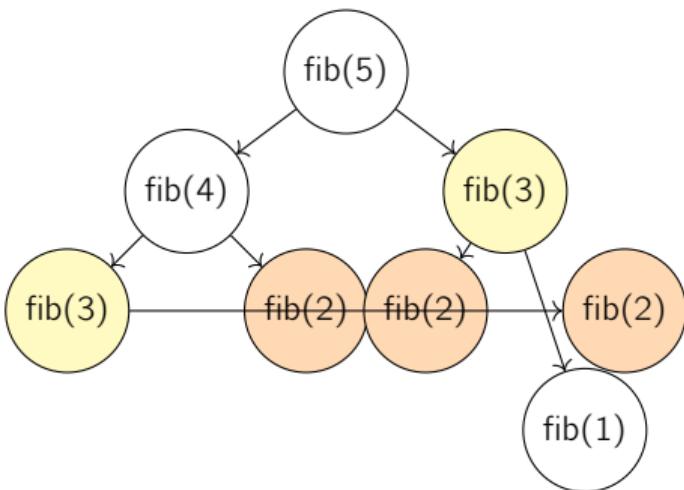
Additional Requirement:

- Must be able to define recursive relation between states

Overlapping Subproblems and Optimal Substructure

Overlapping Subproblems: Fibonacci Example

Problem: Compute n -th Fibonacci number



Observation:

- $\text{fib}(3)$ computed 2 times (yellow)
- $\text{fib}(2)$ computed 3 times (orange)
- **Exponential time:** $O(2^n)$ without caching

Naive Recursion vs Memoization

Naive Recursion: $O(2^n)$

```
1 def fib(n):
2     if n <= 1:
3         return n
4     return fib(n-1) + fib(n-2)
5
6 # fib(40) takes seconds!
```

With Memoization: $O(n)$

```
1 def fib_memo(n, memo={}):
2     if n in memo:
3         return memo[n]
4     if n <= 1:
5         return n
6     memo[n] = fib_memo(n-1, memo) + \
7               fib_memo(n-2, memo)
8     return memo[n]
9
10 # fib_memo(40) instant!
```

Key Insight: Cache results to avoid recomputation

- Each subproblem solved exactly once
- Lookup takes $O(1)$ time
- Total time: $O(n)$ instead of $O(2^n)$

Optimal Substructure

Definition: Optimal solution contains optimal solutions to subproblems

Example 1: Shortest Path ✓

- If shortest path $A \rightarrow C$ goes through B
- Then $A \rightarrow B$ and $B \rightarrow C$ must also be shortest paths
- Can build optimal solution from optimal subproblems

Counter-example: Longest Simple Path ✗

- Longest path $A \rightarrow C$ through B
- Does **NOT** guarantee $A \rightarrow B$ and $B \rightarrow C$ are longest
- Why? Cannot revisit nodes (constraint breaks substructure)
- This problem is NP-hard!

Problem Classification

Problem	Overlapping?	Optimal Substructure?	DP?
Fibonacci	Yes	Yes	✓
Shortest path	Yes	Yes	✓
LIS	Yes	Yes	✓
Knapsack	Yes	Yes	✓
Merge sort	No	Yes	✗ (D&C)
Longest simple path	Yes	No	✗ (NP-hard)

When to use DP:

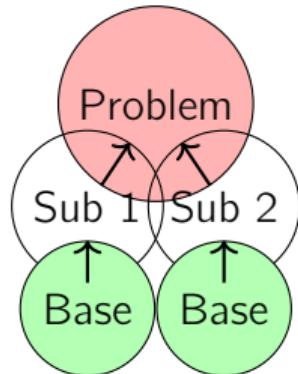
- ✓ Problem has overlapping subproblems
- ✓ Problem has optimal substructure
- ✓ Can define recursive relation
- ✗ Subproblems independent → use divide-and-conquer
- ✗ No optimal substructure → greedy or other approach

Top-down (Memoization) vs Bottom-up

Two Approaches to Dynamic Programming

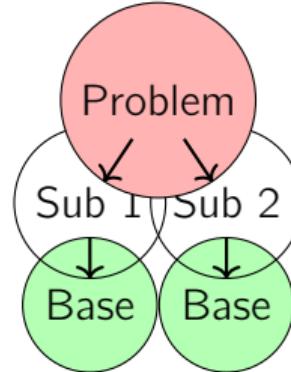
Top-down (Memoization)

- Start from original problem
- Recurse down to base cases
- Cache results along the way
- Natural recursive thinking



Bottom-up (Tabulation)

- Start from base cases
- Build up iteratively
- Fill table in correct order
- No recursion overhead



Example: Climbing Stairs - Top-down

Problem: n stairs, can climb 1 or 2 steps at a time. How many ways to reach top?

Top-down with Memoization:

```
1 def climb_stairs_memo(n, memo={}):
2     # Base cases
3     if n <= 2:
4         return n
5
6     # Check cache
7     if n in memo:
8         return memo[n]
9
10    # Recursive relation: ways(n) = ways(n-1) + ways(n-2)
11    memo[n] = climb_stairs_memo(n-1, memo) + \
12              climb_stairs_memo(n-2, memo)
13    return memo[n]
```

Time: $O(n)$ **Space:** $O(n)$ + recursion stack

Example: Climbing Stairs - Bottom-up

Bottom-up with Tabulation:

```
1 def climb_stairs_dp(n):
2     if n <= 2:
3         return n
4
5     # DP table
6     dp = [0] * (n + 1)
7     dp[1] = 1
8     dp[2] = 2
9
10    # Fill table bottom-up
11    for i in range(3, n + 1):
12        dp[i] = dp[i-1] + dp[i-2]
13
14    return dp[n]
```

Time: $O(n)$ **Space:** $O(n)$

No recursion overhead, better cache locality

Comparison: Top-down vs Bottom-up

Aspect	Top-down	Bottom-up
Direction	Problem → base cases	Base cases → problem
Implementation	Recursion + cache	Iteration + table
Subproblems	Only needed	All
Space	$O(n)$ + stack	$O(n)$
Time overhead	Function calls	None
Intuition	Natural	Requires planning
Space optimization	Harder	Easier

When to choose:

- **Top-down:** Recursive solution natural, not all subproblems needed
- **Bottom-up:** Want best performance, need space optimization

State Definition and Transitions

Designing a DP Solution

Core of DP: Properly defining states and transitions

5-Step Process:

1. **Identify what varies:** What parameters change between subproblems?
2. **Define DP array:** $dp[i]$, $dp[i][j]$, etc.
3. **Specify meaning:** What does $dp[i]$ represent?
4. **Find recurrence:** How to compute $dp[i]$ from smaller states?
5. **Set base cases:** Initial values for smallest subproblems

State: A unique subproblem characterized by parameters

Good state: Captures all information needed to solve subproblem

Example 1: Longest Increasing Subsequence

Problem: Find length of longest increasing subsequence in array

State definition: $dp[i]$ = length of LIS ending at index i

```
1 def length_of_LIS(nums):
2     n = len(nums)
3     dp = [1] * n # Base case: each element is LIS of length 1
4
5     # Transition: for each i, check all j < i
6     for i in range(1, n):
7         for j in range(i):
8             if nums[j] < nums[i]:
9                 dp[i] = max(dp[i], dp[j] + 1)
10
11    return max(dp) # Answer: maximum among all dp[i]
12
13 # Example: [10, 9, 2, 5, 3, 7, 101, 18]
14 # dp =      [1,  1, 1, 2, 2, 3, 4,   4]
15 #
16 #                      [2,5,7,101] or [2,5,7,18]
```

Time: $O(n^2)$ **Space:** $O(n)$

Example 2: 0/1 Knapsack

Problem: n items with weights and values, capacity W . Maximize value.

State: $dp[i][w] = \max$ value using first i items with capacity w

```
1 def knapsack(weights, values, W):
2     n = len(weights)
3     dp = [[0] * (W + 1) for _ in range(n + 1)]
4
5     # Transition
6     for i in range(1, n + 1):
7         for w in range(W + 1):
8             # Don't take item i-1
9             dp[i][w] = dp[i-1][w]
10
11            # Take item i-1 (if it fits)
12            if weights[i-1] <= w:
13                dp[i][w] = max(dp[i][w],
14                                dp[i-1][w - weights[i-1]] + values[i-1])
15
16    return dp[n][W]
```

Recurrence: $dp[i][w] = \max(dp[i-1][w], dp[i-1][w - \text{weight}[i-1]] + \text{value}[i-1])$

Example 3: Edit Distance

Problem: Min operations to convert word1 to word2 (insert, delete, replace)

State: $dp[i][j] = \min \text{ ops to convert word1}[0..i-1] \text{ to word2}[0..j-1]$

```
1 def min_distance(word1, word2):
2     m, n = len(word1), len(word2)
3     dp = [[0] * (n + 1) for _ in range(m + 1)]
4
5     # Base cases
6     for i in range(m + 1):
7         dp[i][0] = i    # Delete all characters
8     for j in range(n + 1):
9         dp[0][j] = j    # Insert all characters
10
11    # Transition
12    for i in range(1, m + 1):
13        for j in range(1, n + 1):
14            if word1[i-1] == word2[j-1]:
15                dp[i][j] = dp[i-1][j-1]    # No operation needed
16            else:
17                dp[i][j] = 1 + min(
18                    dp[i-1][j],            # Delete from word1
19                    dp[i][j-1],            # Insert to word1
20                    dp[i-1][j-1]          # Replace
21                )
22    return dp[m][n]
```

Common State Patterns

Pattern	State	Example Problems
Linear	$dp[i]$	Fibonacci, climbing stairs
2D grid	$dp[i][j]$	Unique paths, edit distance
Subsequence	$dp[i]$ ending at i	LIS, max subarray
Knapsack	$dp[i][w]$	0/1 knapsack, coin change
Interval	$dp[i][j]$ for $[i,j]$	Matrix chain mult
State machine	$dp[i][\text{state}]$	Stock trading

Key Insight: Choose state that:

- Uniquely identifies each subproblem
- Contains all necessary information
- Allows expressing recurrence relation
- Leads to polynomial time/space complexity

1D/2D DP and Space Optimization

Space Optimization: Fibonacci

Observation: Only need previous 2 values

1D DP: $O(n)$ space

```
1 def fib_1d(n):  
2     dp = [0] * (n + 1)  
3     dp[1] = 1  
4     for i in range(2, n + 1):  
5         dp[i] = dp[i-1] + dp[i-2]  
6     return dp[n]
```

Optimized: $O(1)$ space

```
1 def fib_optimized(n):  
2     if n <= 1:  
3         return n  
4     prev2, prev1 = 0, 1  
5     for i in range(2, n + 1):  
6         curr = prev1 + prev2  
7         prev2, prev1 = prev1, curr  
8     return prev1
```

Key Idea: Keep only what you need

- Identify dependencies in recurrence
- Store only necessary previous values
- Update in correct order

2D DP Space Optimization: Unique Paths

Problem: $m \times n$ grid, count paths from top-left to bottom-right

2D DP: $O(m \times n)$

```
1 def unique_paths_2d(m, n):
2     dp = [[0] * n for _ in range(m)]
3
4     # Base cases
5     for i in range(m):
6         dp[i][0] = 1
7     for j in range(n):
8         dp[0][j] = 1
9
10    # Fill table
11    for i in range(1, m):
12        for j in range(1, n):
13            dp[i][j] = dp[i-1][j] + \
14                dp[i][j-1]
15
16    return dp[m-1][n-1]
```

Optimized: $O(n)$

```
1 def unique_paths_1d(m, n):
2     dp = [1] * n # Only current row
3
4     for i in range(1, m):
5         for j in range(1, n):
6             dp[j] = dp[j] + dp[j-1]
7             # dp[j]: previous row
8             # dp[j-1]: current row
9
10    return dp[n-1]
```

Observation: Each row only depends on previous row

Rolling Array Technique

Idea: Use modulo to reuse array space

```
1 def optimized_2d(m, n):
2     # Only keep 2 rows in memory
3     dp = [[0] * n for _ in range(2)]
4
5     for i in range(m):
6         for j in range(n):
7             if i == 0 or j == 0:
8                 dp[i % 2][j] = 1
9             else:
10                 dp[i % 2][j] = dp[(i-1) % 2][j] + dp[i % 2][j-1]
11
12     return dp[(m-1) % 2][n-1]
```

When to use:

- State $dp[i][j]$ only depends on previous row $dp[i-1][\dots]$
- Reduces space from $O(m \times n)$ to $O(2 \times n)$ or $O(n)$

State Compression with Bitmasks

Use case: Small state space (e.g., subsets of n items)

Example: Traveling Salesman Problem

```
1 def tsp(dist):
2     n = len(dist)
3     # dp[mask][i] = min cost to visit cities in mask, ending at i
4     # mask is bitmask representing visited cities
5     dp = [[float('inf')]*n for _ in range(1 << n)]
6     dp[1][0] = 0 # Start at city 0
7
8     for mask in range(1 << n):
9         for u in range(n):
10            if dp[mask][u] == float('inf'):
11                continue
12            for v in range(n):
13                if mask & (1 << v): # Already visited
14                    continue
15                new_mask = mask | (1 << v)
16                dp[new_mask][v] = min(dp[new_mask][v],
17                                      dp[mask][u] + dist[u][v])
18
19     return min(dp[(1<<n)-1][i] + dist[i][0] for i in range(1, n))
```

Space: $O(2^n \times n)$ instead of exponential states

Space Optimization Checklist

Questions to ask:

1. Can I use only $O(1)$ variables instead of array?
 - Example: Fibonacci needs only 2 variables
2. Do I only need the previous row/column?
 - Example: Unique paths, knapsack
3. Can I update in-place without affecting future computations?
 - Example: Coin change with forward iteration
4. Is the state space small enough for bitmask?
 - Example: TSP with $n \leq 20$ cities

Trade-off: Space optimization may reduce code clarity

Combining DP with Data Structures

DP + Hash Map

Use case: Fast lookup of DP states with large or sparse index space

```
1 # Problem: Count subsequences with sum k
2 def count_pairs_with_sum(nums, k):
3     dp = {} # dp[sum] = count of subsequences with this sum
4     dp[0] = 1 # Empty subsequence
5
6     for num in nums:
7         new_dp = dp.copy()
8         for s in dp:
9             new_sum = s + num
10            new_dp[new_sum] = new_dp.get(new_sum, 0) + dp[s]
11            dp = new_dp
12
13    return dp.get(k, 0)
```

Benefit:

- No need to allocate large array
- Only store reachable states

DP + Monotonic Deque

Use case: Sliding window optimization in DP

```
1  from collections import deque
2
3  # Problem: Max subarray sum with length constraint (<= k)
4  def max_subarray_sum_with_constraint(nums, k):
5      n = len(nums)
6      dp = [0] * n
7      dp[0] = nums[0]
8
9      # Monotonic deque maintains decreasing order of dp values
10     dq = deque([0])
11     result = dp[0]
12
13    for i in range(1, n):
14        # Remove elements outside window
15        while dq and dq[0] < i - k:
16            dq.popleft()
17
18        # dp[i] = max(nums[i], nums[i] + max(dp[j]) for j in [i-k, i-1])
19        dp[i] = nums[i]
20        if dq:
21            dp[i] = max(dp[i], nums[i] + dp[dq[0]])
22
23        # Maintain monotonic property
24        while dq and dp[dq[-1]] <= dp[i]:
25            dq.pop()
26        dq.append(i)
27        result = max(result, dp[i])
28
29    return result
```

DP + Trie

Use case: String matching problems

```
1  class TrieNode:
2      def __init__(self):
3          self.children = {}
4          self.is_word = False
5
6  def word_break(s, word_dict):
7      # Build Trie
8      root = TrieNode()
9      for word in word_dict:
10         node = root
11         for char in word:
12             if char not in node.children:
13                 node.children[char] = TrieNode()
14             node = node.children[char]
15         node.is_word = True
16
17     # DP with Trie
18     n = len(s)
19     dp = [False] * (n + 1)
20     dp[0] = True
21
22     for i in range(1, n + 1):
23         node = root
24         for j in range(i - 1, -1, -1):
25             if s[j] not in node.children:
26                 break
27             node = node.children[s[j]]
28             if node.is_word and dp[j]:
29                 dp[i] = True
```

Common Data Structure Combinations

Data Structure	Use Case	Example
Hash Map	Fast state lookup	Two Sum, Subarray Sum
Segment Tree	Range queries	LIS with range max
Priority Queue	Track k best/worst	K-th largest
Monotonic Stack	Maintain order	Next greater element
Monotonic Deque	Sliding window	Window maximum
Trie	String prefixes	Word Break
Union-Find	Components	Islands with DP

Key Insight:

- DP handles optimal substructure
- Data structure optimizes state transitions
- Often reduces time complexity by a factor

Common Pitfalls and Patterns

Pitfall 1: Wrong Base Case

Wrong:

```
1 def climb_stairs(n):
2     dp = [0] * (n + 1)
3     dp[1] = 1 # Missing dp[2]
4     for i in range(3, n + 1):
5         dp[i] = dp[i-1] + dp[i-2]
6     return dp[n] # Fails for n=2
```

Correct:

```
1 def climb_stairs(n):
2     if n <= 2:
3         return n
4     dp = [0] * (n + 1)
5     dp[1], dp[2] = 1, 2
6     for i in range(3, n + 1):
7         dp[i] = dp[i-1] + dp[i-2]
8     return dp[n]
```

Lesson: Always verify base cases with hand calculation

Pitfall 2: Index Out of Bounds

Wrong:

```
1 for i in range(n):
2     # Error when i=0
3     dp[i] = dp[i-1] + nums[i]
```

Correct:

```
1 dp[0] = nums[0]
2 for i in range(1, n):
3     dp[i] = dp[i-1] + nums[i]
```

Lesson: Handle first/last elements separately if needed

Pitfall 3: Incorrect Iteration Order

Wrong (0/1 Knapsack):

```
1 # Forward iteration
2 for i in range(n):
3     for w in range(weights[i], W+1):
4         dp[w] = max(dp[w],
5                     dp[w-weights[i]] + values[i])
6 # Allows using same item multiple times!
```

Correct:

```
1 # Backward iteration
2 for i in range(n):
3     for w in range(W, weights[i]-1, -1):
4         dp[w] = max(dp[w],
5                     dp[w-weights[i]] + values[i])
6 # Each item used at most once
```

Lesson: Iteration order matters for in-place updates

Pitfall 4: Wrong Initialization

Wrong:

```
1 # Using 0 for max problem
2 dp = [0] * n
3 for i in range(n):
4     dp[i] = max(dp[i-1] + nums[i],
5                  nums[i])
6 # Wrong if all nums negative
```

Correct:

```
1 # Use -inf for max problems
2 dp = [float('-inf')] * n
3 dp[0] = nums[0]
4 for i in range(1, n):
5     dp[i] = max(dp[i-1] + nums[i],
6                  nums[i])
```

Lesson: Initialize based on problem (min: $+\infty$, max: $-\infty$)

Common DP Patterns Summary

1. **Linear DP**: $dp[i]$ depends on $dp[i-1]$, $dp[i-2]$
 - Fibonacci, climbing stairs, house robber
2. **Grid DP**: $dp[i][j]$ depends on $dp[i-1][j]$, $dp[i][j-1]$
 - Unique paths, minimum path sum
3. **Knapsack**: $dp[i][\text{capacity}]$ or $dp[\text{capacity}]$
 - 0/1 knapsack, coin change, partition
4. **Interval DP**: $dp[i][j]$ for range $[i, j]$
 - Matrix chain multiplication, burst balloons
5. **State Machine**: $dp[i][\text{state}]$ for different modes
 - Stock trading with cooldown
6. **Bitmask DP**: $dp[\text{mask}]$ for subsets
 - TSP, assignment problem

Problem-Solving Checklist

When approaching a DP problem:

1. ✓ Identify if DP is applicable
 - Overlapping subproblems?
 - Optimal substructure?
2. ✓ Define state clearly
 - What does $dp[i]$ mean?
3. ✓ Write recurrence relation
4. ✓ Identify base cases
5. ✓ Determine iteration order
 - Which states depend on which?
6. ✓ Consider space optimization
7. ✓ Test with small examples
8. ✓ Handle edge cases
 - Empty input, single element, etc.

Debugging DP Solutions

Techniques:

- **Print DP table**
 - Visualize how values are computed
 - Spot incorrect transitions
- **Verify base cases**
 - Hand-calculate smallest instances
- **Check recurrence**
 - Does it match problem statement?
- **Test simple inputs first**
 - Edge cases: $n = 0, 1, 2$
- **Compare approaches**
 - Memoization vs tabulation should give same result

Summary

Dynamic Programming: Key Takeaways

Core Concepts:

- DP optimizes recursive solutions by caching subproblem results
- Requires overlapping subproblems + optimal substructure
- Two approaches: top-down (memoization) vs bottom-up (tabulation)

Design Process:

1. Define state (what varies?)
2. Find recurrence relation
3. Set base cases
4. Determine iteration order
5. Optimize space if needed

Advanced Techniques:

- Space optimization (rolling array, state compression)
- Combining with data structures (hash map, deque, trie)
- Recognizing common patterns (linear, grid, knapsack, interval, etc.)

Complexity Analysis

Time Complexity:

- Number of states \times time per state
- Linear DP: $O(n)$
- 2D DP: $O(n^2)$ or $O(n \times m)$
- Knapsack: $O(n \times W)$
- Interval DP: $O(n^3)$
- Bitmask DP: $O(2^n \times n)$

Space Complexity:

- Without optimization: same as time
- With optimization: often $O(n)$ or $O(1)$
- Top-down: add $O(n)$ for recursion stack

Practice Problems

Beginner:

- Fibonacci, Climbing Stairs
- Min Cost Climbing Stairs
- House Robber

Intermediate:

- Longest Increasing Subsequence
- Coin Change
- Edit Distance
- Unique Paths

Advanced:

- 0/1 Knapsack
- Longest Common Subsequence
- Matrix Chain Multiplication
- Stock Trading with Cooldown
- Traveling Salesman Problem

Resources

Online Judges:

- LeetCode DP tag problems
- Codeforces DP problems
- AtCoder Educational DP Contest

Books:

- *Introduction to Algorithms* (CLRS) - Chapter 15
- *Algorithm Design* by Kleinberg & Tardos
- *Competitive Programming 3* by Halim

Tips:

- Practice regularly - DP requires pattern recognition
- Start with simple problems and build up
- Understand the recurrence, not just memorize solutions