Dynamic Programming

Optimize Recursive Solutions by Reusing Subproblem Results

Minseok Jeon
DGIST

November 2, 2025

Table of Contents

o S A o

Introduction

Overlapping Subproblems and Optimal Substructure
Top-down (Memoization) vs Bottom-up

State Definition and Transitions

1D /2D DP and Space Optimization

Combining DP with Data Structures

Common Pitfalls and Patterns

Summary

Introduction

What is Dynamic Programming?

Dynamic Programming (DP): An optimization technique for recursive problems

Core Idea:
® Break problem into overlapping subproblems

® Solve each subproblem once

Store results to avoid recomputation

Build solution from cached subproblem results

Key Difference from Divide-and-Conquer:
® D&C: Subproblems are independent (merge sort, quicksort)
® DP: Subproblems overlap (fibonacci, shortest path)

When to Use Dynamic Programming

Two Required Properties:

1. Overlapping Subproblems

® Same subproblems solved multiple times in naive recursion
® Caching results provides significant speedup

2. Optimal Substructure

® Optimal solution contains optimal solutions to subproblems
® Can build global optimum from local optima

Additional Requirement:
® Must be able to define recursive relation between states

Overlapping Subproblems and Optimal
Substructure

Overlapping Subproblems: Fibonacci Example

Problem: Compute n-th Fibonacci number

Observation:
e fib(3) computed 2 times (yellow)
e fib(2) computed 3 times (orange)
* Exponential time: O(2") without caching

Naive Recursion vs Memoization

Naive Recursion: O(2")

d

#

ef fib(n):
if n <= 1:
return n
return fib(n-1) + fib(n-2)

f£ib (40) takes seconds!

1
2
3
4
5

o

7
8
9
10

With Memoization: O(n)

def fib_memo(n, memo={}):
if n in memo:
return memo [n]
if n <= 1:
return n
memo [n] = fib_memo(n-1, memo) + \
fib_memo (n-2, memo)
return memo [n]

fib_memo (40) instant!

Key Insight: Cache results to avoid recomputation

® EFach subproblem solved exactly once
® |Lookup takes O(1) time
® Total time: O(n) instead of O(2")

Optimal Substructure

Definition: Optimal solution contains optimal solutions to subproblems

Example 1: Shortest Path v
® |f shortest path A — C goes through B
® Then A — B and B — C must also be shortest paths

® Can build optimal solution from optimal subproblems

Counter-example: Longest Simple Path x
® | ongest path A — C through B
Does NOT guarantee A — B and B — C are longest

Why? Cannot revisit nodes (constraint breaks substructure)
This problem is NP-hard!

Problem Classification

Problem Overlapping? | Optimal Substructure? DP?
Fibonacci Yes Yes v
Shortest path Yes Yes v

LIS Yes Yes v
Knapsack Yes Yes v
Merge sort No Yes x (D&C)
Longest simple path Yes No x (NP-hard)

When to use DP:
v' Problem has overlapping subproblems

v' Problem has optimal substructure

v' Can define recursive relation
X Subproblems independent — use divide-and-conquer
x No optimal substructure — greedy or other approach

Top-down (Memoization) vs Bottom-up

Two Approaches to Dynamic Programming

Top-down (Memoization) Bottom-up (Tabulation)
® Start from original problem e Start from base cases
® Recurse down to base cases ® Build up iteratively
® (Cache results along the way e Fill table in correct order

Natural recursive thinking ® No recursion overhead

Example: Climbing Stairs - Top-down

Problem: n stairs, can climb 1 or 2 steps at a time. How many ways to reach top?

Top-down with Memoization:

def climb_stairs_memo(n, memo={}):
Base cases
if n <= 2:
return n

Check cache
if n in memo:
return memo [n]

Recursive relation: ways(n) = ways(n-1) + ways(n-2)

memo [n] = climb_stairs_memo(n-1, memo) + \
climb_stairs_memo(n-2, memo)

return memo [n]

Time: O(n) Space: O(n) + recursion stack

Example: Climbing Stairs - Bottom-up

Bottom-up with Tabulation:

1 def climb_stairs_dp(n):
2 if n <= 2:
3 return n

5 # DP table

dp = [0] * (n + 1)
7 dpl[1] =1

8 dp[2] = 2

10
11
12
13
14

Fill table bottom-up
for i in range(3, n + 1):
dpl[i] = dpl[i-1] + dpl[i-2]

return dpl[n]

Time: O(n) Space: O(n)

No recursion overhead, better cache iocality

Comparison: Top-down vs Bottom-up

Aspect

Top-down

Bottom-up

Direction

Space

Intuition

Implementation
Subproblems

Time overhead

Space optimization

Problem — base cases
Recursion + cache
Only needed

O(n) + stack
Function calls

Natural

Harder

Base cases — problem
Iteration + table

All

O(n)

None

Requires planning
Easier

When to choose:

® Top-down: Recursive solution natural, not all subproblems needed

® Bottom-up: Want best performance, need space optimization

State Definition and Transitions

Designing a DP Solution

Core of DP: Properly defining states and transitions

5-Step Process:

1.

AR S

Identify what varies: \What parameters change between subproblems?
Define DP array: dp[il], dp[i] [j]. etc.

Specify meaning: What does dp[i] represent?

Find recurrence: How to compute dp[i] from smaller states?

Set base cases: Initial values for smallest subproblems

State: A unique subproblem characterized by parameters
Good state: Captures all information needed to solve subproblem

Example 1: Longest Increasing Subsequence

Problem: Find length of longest increasing subsequence in array

State definition: dp[i] = length of LIS ending at index i

def length_of_LIS(nums):
n = len(nums)
dp = [1] * n # Base case: each element is LIS of length 1
Transition: for each i, check all j < i
for i in range(l, n):
for j in range(i):
if nums[j] < nums[i]:
dp[i] = max(dp([i], dp[j] + 1)
return max(dp) # Answer: maximum among all dpl[il
Example: [10, 9, 2, 5, 3, 7, 101, 18]
dp = (1, 1,1, 2,2, 3, 4, 4]
& .
[2,5,7,101] or [2,5,7,18]

Time: O(n?) Space: O(n)

Example 2: 0/1 Knapsack

Problem: n items with weights and values, capacity W. Maximize value.

State: dp[i] [w] = max value using first / items with capacity w

def knapsack(weights, values, W):
n = len(weights)
dp = [[0] * (W + 1) for _ in range(n + 1)]

Transition
for i in range(l, n + 1):
for w in range(W + 1):
Don’t take item 1i-1
dp[il[w] = dpli-1][w]
Take item i-1 (if it fits)
if weights[i-1] <= w:
dp[il[w] = max(dp([i]([w],
dp[i-1]1[w - weights[i-1]] + values[i-1])

return dp[n][W]

Recurrence: dp[i] [w] = max(dpl[i-1][w], dpli-1] [w-weight[i-1]] +
value[i-1])

YOI A WN R

Example 3: Edit Distance

Problem: Min operations to convert wordl to word?2 (insert, delete, replace)

State: dp[i] [j] = min ops to convert word1[0..i-1] to word2[0..j-1]

def min_distance(wordl, word2):
m, n = len(wordl), len(word2)
dp = [[0] * (n + 1) for _ in range(m + 1)]

Base cases
for i in range(m + 1):

dp[i]l[0] = i # Delete all characters
for j in range(n + 1):

dp[0]1[j]l] = j # Insert all characters

Transition

for i in range(l, m + 1):
for j in range(l, n + 1):
if wordi[i-1] == word2[j-1]:
dp[il[j] = dp[i-11[j-1] # No operation needed
else:
dp[il1[j] = 1 + min(
dp[i-11[j], # Delete from wordl
dp[il[j-11, # Insert to wordl
dpli-11[j-1] # Replace
)

return dp[m][n]

Common State Patterns

Key Insight:

Pattern State Example Problems

Linear dp[i] Fibonacci, climbing stairs
2D grid dp[i] [j] Unique paths, edit distance
Subsequence dp[i] ending at / | LIS, max subarray
Knapsack dp[i] [w] 0/1 knapsack, coin change
Interval dp[i] [j] for [i,j] | Matrix chain mult

State machine | dp[i] [state] Stock trading

Choose state that:

Uniquely identifies each subproblem

Contains all necessary information

Allows expressing recurrence relation

Leads to polynomial time/space complexity

1D/2D DP and Space Optimization

1

~AWN

o

Space Optimization: Fibonacci

Observation: Only need previous 2 values
1D DP: O(n) space

def fib_1d(n):
dp = [0] * (n + 1)
dp[1] = 1
for i in range(2, n + 1):
dpl[il = dp[i-1] + dp[i-2]
return dp[n]

Key Idea: Keep only what you need
® |dentify dependencies in recurrence
® Store only necessary previous values

® pdate in correct order

3
4
5
6
7
8

def fib_optimized(n):

if n <= 1:
return n

prev2, prevl = 0,
for i in range(2,

curr = prevl
prev2, prevl
return prevl

Optimized: O(1) space

1

n + 1):
+ prev2
= prevl,

curr

2D DP Space Optimization: Unique Paths

Problem: m x n grid, count paths from top-left to bottom-right

2D DP: O(m x n)

def unique_paths_2d(m, n):

dp = [[0] * n for _ in range(m)]

Base cases

for i in range(m):
dplil[0] =1

for j in range(n):
dp[01[j] = 1

Fill table
for i in range(l, m):
for j in range(l, n):

dpl[il[j] = dpl[i-11[j] + \

dpl[il[j-1]

return dp[m-1][n-1]

=

Optimized: O(n)

def unique_paths_1d(m, n):

dp = [1] * n # Only current row

for i in range(l, m):
for j in range(1l, n):
dp[jl = dpl[j]l + dapl[j-1]
dp[jl: previous row
dpl[j-1]: current row

return dp[n-1]

Observation: Each row only depends on previous row

10

Rolling Array Technique

Idea: Use modulo to reuse array space

def optimized_2d(m, n):
Only keep 2 rows in memory
dp = [[0] * n for _ in range(2)]

for i in range (m):
for j in range(n):
if i == 0 or j =
dpli % 21[j]
else:

dpli % 2]1[j]

= 0:
1

dpl[(i-1) % 21[j] + dpli % 2]1[j-1]
return dp[(m-1) % 2][n-1]

When to use:
® State dp[i] [j] only depends on previous row dp[i-1][...]
® Reduces space from O(m x n) to O(2 x n) or O(n)

15

18
19

State Compression with Bitmasks

Use case: Small state space (e.g., subsets of n items)

Example: Traveling Salesman Problem

def tsp(dist):
n = len(dist)
dp[mask][i] = min cost to visit cities in mask, ending at i
mask is bitmask representing visited cities
dp = [[float(’inf’)] * n for _ in range(l << n)]
dp[11[0] = 0 # Start at city O

for mask in range(l << n):
for u in range(n):
if dp[mask][u] == float(’inf’):
continue

for v in range(n):
if mask & (1 << v): # Already visited
continue
new_mask = mask | (1 << v)

dp[new_mask] [v] = min(dp[new_mask]([v],
dp [mask] [u] + dist[ul[v])

return min(dp[(1<<n)-1][i] + dist[i][0] for i in range(l, n))

Space: O(2" x n) instead of exponential states

Space Optimization Checklist

Questions to ask:

1. Can | use only O(1) variables instead of array?
® Example: Fibonacci needs only 2 variables

2. Do | only need the previous row/column?
® Example: Unique paths, knapsack

3. Can | update in-place without affecting future computations?
® Example: Coin change with forward iteration

4. Is the state space small enough for bitmask?
® Example: TSP with n < 20 cities

Trade-off: Space optimization may reduce code clarity

Combining DP with Data Structures

DP 4+ Hash Map

Use case: Fast lookup of DP states with large or sparse index space

Problem: Count subsequences with sum k
def count_pairs_with_sum(nums, k):

0) + dpls]

dp = {} # dplsum] = count of subsequences with this sum
dp[0] = 1 # Empty subsequence
for num in nums:
new_dp = dp.copy ()
for s in dp:
new_sum = s + num
new_dp [new_sum] = new_dp.get (new_sum,
dp = new_dp
return dp.get(k, 0)
Benefit:

® No need to allocate large array
® Only store reachable states

0N WN -

©

DP 4+ Monotonic Deque

Use case: Sliding window optimization in DP

from collections import deque

Problem: Max subarray sum with length constraint (<= k)
def max_subarray_sum_with_constraint (nums, k):
n = len(nums)

dp = [0] * n
dp[0] = nums[0]

Monotonic deque maintains decreasing order of dp values
dq = deque ([0])
result = dp[0]

for i in range(l, n):
Remove elements outside window
while dq and dq[0] < i - k:
dq.popleft ()

dpl[i] = max(nums([i], nums[i] + max(dp[j]l) for j in
dp[i] = nums[i]
if dq:

dp[i] = max(dp[i], nums([i] + dp[dq[0]11)

Maintain monotonic property

while dq and dpldq[-1]] <= dpl[il:
dq.pop ()

dq.append (i)

result = max(result, dp[il)

i-k,

i-11)

NN NN N
No o R®

3

)
>

DP + Trie

Use case: String matching problems

class TrieNode:
def __init__(self):
self.children = {}
self.is_word = False

def word_break(s, word_dict):
Build Trie
root = TrieNode ()
for word in word_dict:
node = root
for char in word:
if char not in node.children:
node.children[char] = TrieNode ()
node = node.children[char]
node.is_word = True

DP with Trie

n = len(s)

dp = [False]l * (n + 1)
dp[0] = True

for i in range(l, n + 1):
node = root
for j in range(i - 1, -1, -1):
if s[j] not in node.children:
break
node = node.childrenl[s[j]]
if node.is_word and dpl[j]:

R

Common Data Structure Combinations

Data Structure

Use Case

Example

Hash Map
Segment Tree
Priority Queue
Monotonic Stack
Monotonic Deque
Trie

Union-Find

Fast state lookup
Range queries
Track k best/worst
Maintain order
Sliding window
String prefixes
Components

Two Sum, Subarray Sum
LIS with range max

K-th largest

Next greater element
Window maximum

Word Break

Islands with DP

Key Insight:

® DP handles optimal substructure

® Data structure optimizes state transitions

e Often reduces time complexity by a factor

Common Pitfalls and Patterns

Pitfall 1: Wrong Base Case

Correct:
Wrong:
1 def climb_stairs(n):
1| def climb_stairs(n): 2 if n <= 2:
2 dp = [0] * (n + 1) 3 return n
3 dp[1] = 1 # Missing dp[2] 4 dp = [0] *x (n + 1)
4 for i in range(3, n + 1): 5 dp[1], dp[2] =1, 2
5 dp[i] = dpli-1] + dpl[i-2] 6 for i in range(3, n + 1):
6 return dp[n] # Fails for n=2 7 dp[i]l = dpli-1] + dp[i-2]
8 return dp[n]

Lesson: Always verify base cases with hand calculation

Pitfall 2: Index Out of Bounds

Wrong: Correct:
1 for i in range(n): 1/ dp[0] = nums[0]
2 # Error when i=0 2| for i in range(1l, n):
3 dp[i] = dpl[i-1] + nums[i] 3 dp[i] = dpli-1] + nums[il

Lesson: Handle first/last elements separately if needed

GAWN =

Pitfall 3: Incorrect Iteration Order

Wrong (0/1 Knapsack): Correct:

for w in range(W, weights[il-1, -1):
dp[w] = max(dplw],

Forward iteration 1| # Backward iteration
for i in range(n): 2| for i in range(n):
for w in range(weights[i], W+1): 3
dp[w] = max(dplw], 4
dp [w-weights [i]] + values[il]) 5

Allows using same item multiple times!

Lesson: Iteration order matters for in-place updates

dp [w-weights[i]] + values[il)

Each item used at most once

oOUhWN R

Pitfall 4: Wrong Initialization

Wrong: Correct:
Using O for max problem 1| # Use -inf for max problems
dp = [0] * n 2/ dp = [float(’-inf’)] * n
for i in range(n): 3| dp[0] = nums[0]
dp[i] = max(dp[i-1] + nums[i], 4| for i in range(1, n):
nums [i]) 5 dp[i] = max(dp[i-1] + nums[il,
Wrong if all nums negative 6 nums [1])

Lesson: Initialize based on problem (min: 400, max: —o0)

Common DP Patterns Summary

—_

. Linear DP: dp[i] depends on dp[i-1], dp[i-2]
® Fibonacci, climbing stairs, house robber
2. Grid DP: dp[i] [j] depends on dp[i-1][j], dpl[il [j-1]
® Unique paths, minimum path sum
3. Knapsack: dp[i] [capacity] or dp[capacity]
® 0/1 knapsack, coin change, partition
4. Interval DP: dp[i] [j] for range [i, j]
® Matrix chain multiplication, burst balloons
. State Machine: dp[i] [state] for different modes
® Stock trading with cooldown
6. Bitmask DP: dp[mask] for subsets
® TSP, assignment problem

ot

Problem-Solving Checklist

When approaching a DP problem:

1. v ldentify if DP is applicable
® QOverlapping subproblems?
® Optimal substructure?
2. v’ Define state clearly
® What does dp[i] mean?
3. v Write recurrence relation
4. v ldentify base cases
5. v/ Determine iteration order
® \Which states depend on which?
6. v Consider space optimization
7. v Test with small examples
8. v/ Handle edge cases
® Empty input, single element, etc.

Debugging DP Solutions

Techniques:

® Print DP table
® Visualize how values are computed
® Spot incorrect transitions

Verify base cases
® Hand-calculate smallest instances

Check recurrence
® Does it match problem statement?

Test simple inputs first
® Edge cases: n=0,1,2

e Compare approaches
® Memoization vs tabulation should give same result

Summary

Dynamic Programming: Key Takeaways

Core Concepts:
® DP optimizes recursive solutions by caching subproblem results
® Requires overlapping subproblems + optimal substructure
® Two approaches: top-down (memoization) vs bottom-up (tabulation)

Design Process:

1. Define state (what varies?)
Find recurrence relation
Set base cases
Determine iteration order
Optimize space if needed

A

Advanced Techniques:
® Space optimization (rolling array, state compression)
e Combining with data structures (hash map, deque, trie)

& " "RParAadani=inA cAarmiman Aattarnce (Linad TSmO Aea~le tntarsal ot~)

Complexity Analysis

Time Complexity:

® Number of states x time per state
Linear DP: O(n)
2D DP: O(n?) or O(n x m)
Knapsack: O(n x W)
Interval DP: O(n®)
Bitmask DP: O(2" x n)

Space Complexity:
® \Without optimization: same as time
® With optimization: often O(n) or O(1)

® Top-down: add O(n) for recursion stack

Practice Problems

Beginner:
® Fibonacci, Climbing Stairs
® Min Cost Climbing Stairs
® House Robber

Intermediate:
® | ongest Increasing Subsequence
e Coin Change
® Edit Distance
® Unique Paths

Advanced:

0/1 Knapsack

Longest Common Subsequence
Matrix Chain Multiplication
Stock Trading with Cooldown

b R M el DR e TP T R

Resources

Online Judges:
® | eetCode DP tag problems
® (Codeforces DP problems
e AtCoder Educational DP Contest

Books:
® Introduction to Algorithms (CLRS) - Chapter 15
® Algorithm Design by Kleinberg & Tardos
o Competitive Programming 3 by Halim

Tips:
® Practice regularly - DP requires pattern recognition
® Start with simple problems and build up
® Understand the recurrence, not just memorize solutions

	Introduction
	Overlapping Subproblems and Optimal Substructure
	Top-down (Memoization) vs Bottom-up
	State Definition and Transitions
	1D/2D DP and Space Optimization
	Combining DP with Data Structures
	Common Pitfalls and Patterns
	Summary

