B-Trees and B+ Trees

Disk-Friendly Balanced Trees for Indexing and Storage

Minseok Jeon
DGIST

November 2, 2025

Table of Contents

Introduction

Node Structure and Order
Insertion and Split

Deletion and Merge

Height and Complexity

B-Tree vs B+ Tree

Range Scans and Storage Locality

Database and Filesystem Applications

© ©® N o gk W N

Summary

Introduction

What are B-Trees?

B-Trees: Self-balancing tree data structures optimized for disk storage

Key Characteristics:

e Generalization of binary search trees (multi-way trees)

Designed for systems with slow, block-based storage (disks)

Minimize disk 1/O operations

All leaves at the same depth (perfectly balanced)

High branching factor (many children per node)

Why B-Trees?
® Disk access is 100,000x slower than RAM
® Reading a disk block has fixed cost (4KB, 8KB)

® Solution: Pack many keys per node to reduce tree height

Historical Context

Invented in 1970 by Rudolf Bayer and Edward McCreight

Timeline:

® 1970: B-Tree invented at Boeing Research Labs
1979: B+ Tree variant introduced
1980s: Adopted by major database systems

Today: Standard for database indexes and filesystems

Impact:
® Revolutionized database indexing
® Enabled efficient large-scale data storage

® Foundation of modern relational databases

Node Structure and Order

Node Structure and Order

Order (m): Maximum number of children a node can have

Node Properties:
® Each node contains up to m — 1 keys

Each node has up to m children

Keys stored in sorted order

Internal nodes: keys + child pointers

Leaf nodes: keys + data (or pointers to data)

Common Order Values:
® Small trees: m=3,5,7
® Disk-based systems: m = 100 to 1000

A wWN =

~ o

B-Tree Node Implementation

class BTreeNode:
def __init__(self, order, is_leaf=False):
self .order = order
self .keys = []
self.children = []
self.is_leaf = is_leaf
self.n = 0

#*

H* 3 B 3

Current number of keys

Node Constraints:
® Root: 1 to m—1 keys, 2 to m children (if not leaf)
¢ Internal nodes: [m/2] — 1 to m— 1 keys, [m/2] to m children
® Leaf nodes: [m/2] —1to m—1 keys
¢ All leaves at same depth (balanced)

Example: B-Tree of Order 5

Node Structure (m = 5):
® Min keys (internal): [5/2] —1=2
® Max keys: 4
Min children (internal): [5/2] =3
Max children: 5

Example Node:

10 | 20 | 30 | 40
I ¥ 3T I+ T

<10 10-2020-3030-40 >40

Memory Layout Considerations

Node Size Matching Disk Block Size

Example Calculation:

Disk block size: 4KB (4096 bytes)

® Key size: 8 bytes

® Pointer size: 8 bytes

® Available space: = 4000 bytes (accounting for metadata)

Order Calculation:

® Node contains: m pointers + (m — 1) keys
Space: 8m+8(m — 1) = 16m — 8 bytes
16m — 8 < 4000
m < 250.5
Order m =~ 250

Impact: 250-way branching means very shallow trees!

Insertion and Split

Insertion Algorithm Overview

Steps:
1. Search for leaf: Traverse tree to find appropriate leaf node
2. Insert in leaf: Add key in sorted position
3. Check overflow: If node has m keys (too many), split
4. Split operation:
® (Create new node
Move upper half of keys to new node

[)
® Promote middle key to parent
® |f parent overflows, split recursively up to root

Key Property: Splits propagate upward, may create new root

Insertion Implementation - Main Function

def

insert (root, key):

If root is full, split it

if root.n == root.order - 1:
new_root = BTreeNode (root.order)
new_root.children.append(root)
split_child (new_root, 0)
root = new_root

insert_non_full (root, key)
return root

insert_non_full (node, key):
if node.is_leaf:
Insert key in sorted position
node.keys.insert(bisect_left (node.keys, key), key)
node.n += 1
else:
Find child to insert into
i = bisect_left(node.keys, key)
if node.children[i]l.n == node.order - 1:
split_child (node, i)
if key > node.keys[i]:
i+=1
insert_non_full (node.children[i], key)

~NOo oA WN

[e]

©

Split Child Operation

def split_child(
full_child =
new_child =

parent, index):
parent.children [index]
BTreeNode (full_child.order, full_child.is_leaf)

mid = full_child.order // 2

Promote mi
parent . keys.

ddle key to parent
insert (index, full_child.keys[mid])

parent.children.insert(index + 1, new_child)

Split keys

and children

new_child.keys = full_childAkeys[mid+1J

full_child.k

if not full_

eys = full_child.keys[:mid]

child.is_leaf:

new_child.children = full_child.children[mid+1:]

full_chi

1d.children = full_child.children[:mid+1]

Update counts

new_child.n
full_child.n
parent.n +=

= len(new_child.keys)
= len(full_child.keys)
1

Insertion Example: Step-by-Step

Insert into B-Tree of order 3 (max 2 keys per node)

30 | 40

Initial tree:

Insert 35:
® Navigate to right child [30 | 40]
® Insert 35: [30 | 35 | 40] - overflow!
® Split: promote 35 to parent

After split:

20 | 35

(0] [30] [40]

Deletion and Merge

Deletion Algorithm Overview

More Complex than Insertion - Three Cases:

Case 1: Key in Leaf Node
® Simply remove the key
® Check for underflow

Case 2: Key in Internal Node
® Replace with predecessor or successor
® Delete predecessor/successor from leaf
® Handle any resulting underflow

Case 3: Underflow Handling
® Node has fewer than [m/2] — 1 keys
® Option A: Borrow from sibling (if sibling has extra keys)
® Option B: Merge with sibling (if sibling at minimum)

Deletion Case 1: Delete from Leaf

Simple Case - No Underflow

Before:

10 | 20 | 30

Delete 20
After:

10| 30

Condition: Resulting node still has > [m/2] — 1 keys

Deletion Case 2: Delete from Internal Node

Replace with Predecessor

Before:

Delete 20:
® Find predecessor (largest in left subtree): 10
® Replace 20 with 10
® Delete 10 from leaf

After:

Nl |

(CD)
D

Deletion Case 3: Merge Siblings

When Underflow Occurs and Sibling Can’t Lend

Before:

10| 40 | 50

Delete 10:
o | eft child becomes empty (underflow)
® Right sibling has only 2 keys (can’t lend)
® Solution: Merge left and right with parent key 30

After merge:

30 | 40 | 50

Result: Parent key pulled down, siblings merged

Height and Complexity

Height Formula and Analysis

For n keys and order m:

Height Bounds:
® Minimum height: log,,(n+ 1) (fully packed nodes)
® Maximum height: log,/»((n+1)/2) (minimum occupancy)

Example: 1 Million Keys, Order m = 100
® Minimum children per internal node: [100/2] = 50
® Height < loggg(1,000,000) ~ 3.5
® Only 4 disk accesses to find any key!

Key Insight:
® High branching factor dramatically reduces height
® Each level = one disk 1/O
® Shallow tree = fast queries

Time Complexity Analysis

Operation | Time Complexity Disk 1/0s
Search O(log,,, n) O(log,, n)
Insert O(log,, n) O(log,, n)
Delete O(log,,, n) O(log,, n)
Range Scan O(log,, n + k) O(log,, n+ k/b)

Where:

n = number of keys

m = order (branching factor)
k = number of results in range query

b = keys per block

Space Complexity: O(n)
® Minimum 50% space utilization (except root)
® Average 67-75% utilization in practice

Comparison with Binary Search Trees

Tree Type Height for 1M keys | Disk 1/0s
Binary tree (balanced) log,(10°) ~ 20 20
B-Tree (m = 100) l09100(10°) ~ 3 3
B-Tree (m = 1000) 1091000(10°) ~ 2 2

Why B-Trees are Efficient:

High branching factor — shallow tree

Fewer disk accesses (dominant cost in |/O-bound systems)
Each node fits in one disk block (4KB, 8KB)
Sequential access within nodes (cache-friendly)

Result: 6-7x reduction in disk 1/Os compared to balanced BST

B-Tree vs B+ Tree

B-Tree Structure

Classic B-Tree Characteristics:

Structure:
® Keys and data in all nodes (internal + leaf)
® Fach key appears exactly once
® No linked list between leaves

Advantages:
® Better for exact-match queries (may find in internal node)
e Slightly less space (no duplicate keys)

Disadvantages:
® Range queries less efficient
® Variable-size records complicate node management
® Must traverse tree for sequential access

B+ Tree Structure

Enhanced Variant for Databases:

Structure:

All data in leaf nodes only

® [nternal nodes contain only keys (for routing)

e Keys may be duplicated (in internal + leaf)

® Leaves linked in sorted order (doubly linked list)

Advantages:

Excellent for range queries (scan linked leaves)
More keys per internal node (no data overhead)
Sequential access via leaf chain

Consistent performance (always reach leaf)

Disadvantages:
® Duplicate keys use extra space
e Alwavs traverse to leaf (even if kevian-dnternal node)

Visual Comparison

B-Tree (order 3):

30 | 40
data data
All nodes contain data
B+ Tree (order 3):
20 | 30
(10— 20 | 25 %30 | 40
data data data

o Y N D L e | D L e |

Detailed Comparison Table

Feature B-Tree B+ Tree
Data location All nodes Leaf only
Internal nodes Keys + data Keys only
Key duplication No Yes

Leaf linkage No Yes

Keys per internal Fewer More
Range queries O(logn—+ k) | O(logn+ k/b)
Point queries Faster Always to leaf
Sequential access Poor Excellent
Use case General DB/Filesystem

Why Databases Prefer B+ Trees

Five Key Reasons:

1. Range Queries:
® Common in SQL: SELECT * WHERE age BETWEEN 20 AND 30
e [Efficient leaf chain scanning
2. Sequential Scans:
® Full table scans via leaf chain
® No need to traverse internal nodes repeatedly
3. Higher Fanout:
® More keys per internal node — shorter tree
® |nternal nodes don't store data
4. Predictable Performance:
® Always same depth to leaf
e Consistent query response times
5. Easier Concurrency:
®. Lock leaves independently

Range Scans and Storage Locality

Range Query in B+ Tree

Algorithm:
1. Find start key: O(log,, n) - traverse to leaf
2. Scan leaves: Follow linked list until end key
3. Total cost: O(log,, n+ k) where k = results

Example Query:
SELECT * FROM users WHERE age BETWEEN 25 AND 35

Execution Steps:
® Step 1: Search for age=25 — reach leaf L
® Step 2: Scan L1 — L, — L3 until age > 35
® Step 3: Return all records found

Disk 1/0s:
® 1 (root) + 1 (internal) + 1 (leaf) + k/b (scan)
® Much better than k separate point queries!

Range Query in B-Tree

Less Efficient - Must Use In-Order Traversal

Problem:
® No leaf linkage
® Must jump between internal and leaf nodes
® Random access pattern

Complexity:
® O(log,, n+ klog,, n) - revisit internal nodes
® Much worse than B+ Tree for large ranges

Example:
® Range query with 1000 results
® B+ Tree: 3410 =13 1/Os (assuming 100 keys/block)
® B-Tree: 3+ 1000 x 3 =3003 I/Os

Storage Locality Benefits

Sequential Disk Access:
® | eaves stored contiguously on disk
e QOperating system prefetches adjacent blocks
® Minimizes seek time (critical for HDDs)

Cache-Friendly:
® Scanning leaves keeps data in cache
® No random jumps between levels
® High cache hit rate

Performance Impact:
® Random access: 10ms per seek (HDD)
¢ Sequential access: 100MB/s throughput
® | ocality can provide 100x speedup for range queries

Bulk Loading

Building B+ Tree Bottom-Up

Algorithm:
1. Sort all keys
2. Create leaves left-to-right
3. Build internal levels bottom-up

Advantages:
® 100% space utilization (vs 67% for incremental insert)
® Optimal storage locality
® Much faster than individual inserts
[}

Speed: 100,000+ ops/sec vs 1,000-10,000 for random inserts

Use Cases:
® |nitial database load
® |ndex rebuilding
e Data warehouse ETL

Bulk Loading Implementation

def

def

bulk_load(sorted_keys):

Create leaf level

leaves = []

for i in range(0, len(sorted_keys), LEAF_SIZE):
leaf = create_leaf (sorted_keys[i:i+LEAF_SIZE])
leaves.append (leaf)

Link leaves
for i in range(len(leaves)-1):

leaves[i] .next = leaves[i+1]
leaves[i+1].prev = leaves[il
Build internal levels bottom-up

return build_internal_levels(leaves)

build_internal_levels (nodes):
while len(nodes) > 1:

parents = []

for i in range (0, len(nodes), ORDER):
parent = create_internal_node(nodes[i:i+0RDER])
parents.append (parent)

nodes = parents

return nodes[0] # Root

OAWN =

Optimization: Prefix Compression

Store Only Distinguishing Prefix in Internal Nodes

Example:
® Full keys: ["apple", "application", "apply"]
e Compressed: ["app", "appl"]
® Savings: 50% space in internal nodes

Benefits:
® Higher fanout (more keys per node)
® Shorter tree height
e Fewer disk 1/Os

Implementation:

def compress_key(left_key, right_key):
Find shortest prefix that distinguishes keys
for i in range(min(len(left_key), len(right_key))):
if left_key[i] != right_keyl[il:
return left_keyl[:i+1]
return left_key # One is prefix of other

N

©ww~NO O s W

N
~No s W

NN NN

®

B+ Tree Leaf Node Implementation

class BPlusTreeLeaf:
def __init__(self, order):

self .order = order

self .keys = [] # Sorted keys

self.values = [] # Corresponding values/data
self .next = None # Next leaf (right sibling)
self .prev = None # Previous leaf (left sibling)
self.parent = None # Parent node

self.n = 0 # Current number of keys

def range_scan(self, start_key, end_key):
"""Efficient range query using leaf chain
results = []
current = self

Find starting position in first leaf
start_idx = bisect_left(current.keys, start_key)

Scan leaves until end_key
while current:
for i in range(start_idx, current.n):
if current.keys[i] > end_key:
return results
results.append ((current.keys[i], current.values[i]))
current = current.next
start_idx = 0 # Start from beginning in subsequent leaves

return results

Database and Filesystem Applications

Database Indexes

Primary Index: B+ Tree on primary key
® | eaf nodes contain actual data rows (clustered index)
e Example: MySQL InnoDB primary key index
® Data physically sorted by primary key

Secondary Index: B+ Tree on non-primary key
® | eaf nodes contain pointers to primary key
® Example: Index on email column
® Requires two lookups: secondary index — primary index

Composite Index: Multi-column B+ Tree
® Keys are tuples: (last_name, first_name)
® Supports queries on prefix: WHERE last_name = ’Smith’
® | eft-to-right column ordering matters

Database Systems Using B+ Trees

Database

Index Type

Details

MySQL InnoDB

B+ Tree

Clustered PK, secondary in-
dexes

PostgreSQL B-Tree* Actually B+ Tree, default type
SQLite B+ Tree Table and index storage
Oracle B+ Tree Index-organized tables

SQL Server B+ Tree Clustered and non-clustered

Note: PostgreSQL calls it "B-Tree" but implements B+ Tree variant

© O~ sWN -

Example: MySQL InnoDB

Clustered index (B+ Tree on primary key)
CREATE TABLE users (
id INT PRIMARY KEY, -- B+ Tree root
name VARCHAR (100),
email VARCHAR (100),
age INT,
INDEX idx_email (email), -- Secondary B+ Tree
INDEX idx_age_name (age, name) -- Composite B+ Tree
)
-- Range query (efficient - uses B+ Tree leaf chain)
SELECT * FROM users WHERE id BETWEEN 1000 AND 2000;

-- Composite index query (uses idx_age_name)
SELECT * FROM users WHERE age = 25 AND name LIKE ’J%’;

-- Index-only scan (covering index)
SELECT age, name FROM users WHERE age BETWEEN 20 AND 30;
A1l data in B+ Tree leaves, no table lookup needed

e
NHOO®ONOUA~WNR

-
w

e e e
© 0w~ 0N

NN
= o

Example: PostgreSQL B-Tree Index

-- Create index
CREATE INDEX idx_users_age ON users(age);

-- Explain query plan

EXPLAIN SELECT * FROM users WHERE age > 25;
Output:

-- Index Scan using idx_users_age

-- Index Cond: (age > 25)

-- Composite index for multiple columns
CREATE INDEX idx_users_city_age ON users(city, age);

-- Query using composite index
SELECT * FROM users WHERE city = ’Seoul’ AND age BETWEEN 20 AND 30;
-- Uses idx_users_city_age for both conditions

-- Index-only scan (no table access)

EXPLAIN SELECT age FROM users WHERE age > 25;
-- Output:

-- Index Only Scan using idx_users_age

-- Index Cond: (age > 25)

Filesystem Applications

File Allocation:
® B+ Tree maps file blocks to disk blocks
® Fast random access within files
e Efficient sparse file support

Directory Structure:
® B+ Tree for large directories (thousands of files)
e Efficient filename lookups
® Example: /usr/bin with 10,000 files

Filesystem | B-Tree Usage

ext4 HTree (B-Tree) for directories
XFS B+ Trees for free space, inodes
Btrfs B-Trees for all metadata

NTFS B+ Trees for file records (MFT)
HFES+ B-Trees for catalog file

Filesystem Example: Directory Lookup

Without B-Tree:
® Directory: /usr/bin (10,000 files)
® | ookup: find "python3"
® Method: Linear scan through directory entries
e Complexity: O(n) - 10,000 comparisons

With B-Tree (ext4 HTree):
® Same directory with B-Tree index
® | ookup: "python3"
® Method: B-Tree search
e Complexity: O(logn) ~ 4 disk accesses

Performance Impact:
e 2500x faster for large directories
e C(ritical for directories with many files
® Example: /var/mail, /tmp

Performance Characteristics

Insert Performance:
e Random inserts: 1,000-10,000 ops/sec
® Bulk inserts: 100,000+ ops/sec (bulk loading)

Query Performance:
® Point query: 1-3 disk I/Os (typical depth)
® Range query: 1-3 + k/b 1/Os (k results, b per block)

Space Overhead:
® 50-75% space utilization (minimum 50%)
e |nternal nodes: 1-2% of total space
® | eaf nodes: 98-99% of total space

Real-World Example:
® MySQL InnoDB with 10M rows
® |ndex size: ~ 500MB
e Querv time: 1-5ms (warm cache) 30=50ms (cold)

Advanced Features

Write-Ahead Logging (WAL):
® | og changes before applying to B+ Tree
® Enables crash recovery
® Used in PostgreSQL, SQLite

MVCC (Multi-Version Concurrency Control):
® Multiple versions of same row
® Readers don't block writers
® Used in PostgreSQL, InnoDB

Compression:
® Prefix compression (internal nodes)
® Page compression (entire blocks)
® Higher fanout, better performance

Partitioning:
e Dictribute B+ Tree across multinle idigsks

Summary

Key Takeaways

B-Trees and B+ Trees:
® Purpose: Disk-friendly balanced trees for large datasets
e Key idea: High branching factor — shallow tree — few |/Os
® Order m: Typically 100-1000 for disk-based systems

Operations:
® Search, Insert, Delete: O(log,, n) time, O(log,, n) 1/Os
® Split on overflow, merge on underflow
® Maintains balance automatically

B+ Tree Advantages:

All data in leaves — better range queries
Leaf linkage — efficient sequential scans
More keys per internal node — shorter tree
Standard for databases and filesystems

When to Use B-Trees

Use B-Trees/B+ Trees when:
e Data doesn't fit in memory (disk-based storage)
Need efficient range queries
Building database indexes
Implementing filesystems
Sequential access patterns common

Don’t use when:
® Data fits in memory (use hash tables, AVL/Red-Black trees)
® Only point queries (hash tables may be faster)
® Frequent updates to same keys (consider LSM-trees)

Modern Alternatives:
® LSM-Trees: Write-optimized (Cassandra, RocksDB)
® Tries: String-specific (Redis)
e Skip Lists: Simpler implementation (Redis, LevelDB)

Practice Problems

Problem 1: Height Calculation
® Given: 1 billion keys, order m = 500
® Question: What is the maximum tree height?
® Hint: Use logy,/o1((n+1)/2)

Problem 2: Insertion Trace
® Insert keys [10, 20, 30, 40, 50] into empty B-Tree (order 3)
® Draw tree after each insertion
® Show all split operations

Problem 3: B+ Tree Range Query
® Given: B+ Tree with 1M keys, order 100
® Query: SELECT * WHERE id BETWEEN 1000 AND 2000
e Calculate: Number of disk 1/Os

Resources

Academic Papers:
® Bayer & McCreight (1972): "Organization and Maintenance of Large Ordered
Indexes"
e Comer (1979): "The Ubiquitous B-Tree"

Books:
e "Database System Concepts" (Silberschatz et al.)
e "Introduction to Algorithms" (CLRS) - Chapter 18

Online Resources:
* MySQL InnoDB documentation
® PostgreSQL B-Tree implementation details
® Visualization: https://www.cs.usfca.edu/galles/visualization/

Implementation Projects:
® Build your own B+ Tree in Python/C++
e |mbplement database index 1isina B4 Tree

	Introduction
	Node Structure and Order
	Insertion and Split
	Deletion and Merge
	Height and Complexity
	B-Tree vs B+ Tree
	Range Scans and Storage Locality
	Database and Filesystem Applications
	Summary

