
B-Trees and B+ Trees
Disk-Friendly Balanced Trees for Indexing and Storage

Minseok Jeon
DGIST

November 2, 2025

Minseok Jeon B-Trees and B+ Trees November 2, 2025 1/52

Table of Contents

1. Introduction

2. Node Structure and Order

3. Insertion and Split

4. Deletion and Merge

5. Height and Complexity

6. B-Tree vs B+ Tree

7. Range Scans and Storage Locality

8. Database and Filesystem Applications

9. Summary

Minseok Jeon B-Trees and B+ Trees November 2, 2025 2/52

Introduction

What are B-Trees?

B-Trees: Self-balancing tree data structures optimized for disk storage

Key Characteristics:
• Generalization of binary search trees (multi-way trees)
• Designed for systems with slow, block-based storage (disks)
• Minimize disk I/O operations
• All leaves at the same depth (perfectly balanced)
• High branching factor (many children per node)

Why B-Trees?
• Disk access is 100,000x slower than RAM
• Reading a disk block has fixed cost (4KB, 8KB)
• Solution: Pack many keys per node to reduce tree height

Minseok Jeon B-Trees and B+ Trees November 2, 2025 4/52

Historical Context

Invented in 1970 by Rudolf Bayer and Edward McCreight

Timeline:
• 1970: B-Tree invented at Boeing Research Labs
• 1979: B+ Tree variant introduced
• 1980s: Adopted by major database systems
• Today: Standard for database indexes and filesystems

Impact:
• Revolutionized database indexing
• Enabled efficient large-scale data storage
• Foundation of modern relational databases

Minseok Jeon B-Trees and B+ Trees November 2, 2025 5/52

Node Structure and Order

Node Structure and Order

Order (m): Maximum number of children a node can have

Node Properties:
• Each node contains up to m − 1 keys
• Each node has up to m children
• Keys stored in sorted order
• Internal nodes: keys + child pointers
• Leaf nodes: keys + data (or pointers to data)

Common Order Values:
• Small trees: m = 3, 5, 7
• Disk-based systems: m = 100 to 1000

Minseok Jeon B-Trees and B+ Trees November 2, 2025 7/52

B-Tree Node Implementation

1 class BTreeNode:
2 def __init__(self , order , is_leaf=False):
3 self.order = order # Maximum children
4 self.keys = [] # Sorted keys
5 self.children = [] # Child pointers
6 self.is_leaf = is_leaf # Leaf flag
7 self.n = 0 # Current number of keys

Node Constraints:
• Root: 1 to m − 1 keys, 2 to m children (if not leaf)
• Internal nodes: ⌈m/2⌉ − 1 to m − 1 keys, ⌈m/2⌉ to m children
• Leaf nodes: ⌈m/2⌉ − 1 to m − 1 keys
• All leaves at same depth (balanced)

Minseok Jeon B-Trees and B+ Trees November 2, 2025 8/52

Example: B-Tree of Order 5

Node Structure (m = 5):
• Min keys (internal): ⌈5/2⌉ − 1 = 2
• Max keys: 4
• Min children (internal): ⌈5/2⌉ = 3
• Max children: 5

Example Node:

10 | 20 | 30 | 40

<10 10-2020-3030-40 >40

Minseok Jeon B-Trees and B+ Trees November 2, 2025 9/52

Memory Layout Considerations
Node Size Matching Disk Block Size

Example Calculation:
• Disk block size: 4KB (4096 bytes)
• Key size: 8 bytes
• Pointer size: 8 bytes
• Available space: ≈ 4000 bytes (accounting for metadata)

Order Calculation:
• Node contains: m pointers + (m − 1) keys
• Space: 8m + 8(m − 1) = 16m − 8 bytes
• 16m − 8 ≤ 4000
• m ≤ 250.5
• Order m ≈ 250

Impact: 250-way branching means very shallow trees!
Minseok Jeon B-Trees and B+ Trees November 2, 2025 10/52

Insertion and Split

Insertion Algorithm Overview

Steps:
1. Search for leaf: Traverse tree to find appropriate leaf node

2. Insert in leaf: Add key in sorted position

3. Check overflow: If node has m keys (too many), split
4. Split operation:

• Create new node
• Move upper half of keys to new node
• Promote middle key to parent
• If parent overflows, split recursively up to root

Key Property: Splits propagate upward, may create new root

Minseok Jeon B-Trees and B+ Trees November 2, 2025 12/52

Insertion Implementation - Main Function

1 def insert(root , key):
2 # If root is full , split it
3 if root.n == root.order - 1:
4 new_root = BTreeNode(root.order)
5 new_root.children.append(root)
6 split_child(new_root , 0)
7 root = new_root
8
9 insert_non_full(root , key)

10 return root
11
12 def insert_non_full(node , key):
13 if node.is_leaf:
14 # Insert key in sorted position
15 node.keys.insert(bisect_left(node.keys , key), key)
16 node.n += 1
17 else:
18 # Find child to insert into
19 i = bisect_left(node.keys , key)
20 if node.children[i].n == node.order - 1:
21 split_child(node , i)
22 if key > node.keys[i]:
23 i += 1
24 insert_non_full(node.children[i], key)

Minseok Jeon B-Trees and B+ Trees November 2, 2025 13/52

Split Child Operation

1 def split_child(parent , index):
2 full_child = parent.children[index]
3 new_child = BTreeNode(full_child.order , full_child.is_leaf)
4
5 mid = full_child.order // 2
6
7 # Promote middle key to parent
8 parent.keys.insert(index , full_child.keys[mid])
9 parent.children.insert(index + 1, new_child)

10
11 # Split keys and children
12 new_child.keys = full_child.keys[mid +1:]
13 full_child.keys = full_child.keys[:mid]
14
15 if not full_child.is_leaf:
16 new_child.children = full_child.children[mid +1:]
17 full_child.children = full_child.children [:mid+1]
18
19 # Update counts
20 new_child.n = len(new_child.keys)
21 full_child.n = len(full_child.keys)
22 parent.n += 1

Minseok Jeon B-Trees and B+ Trees November 2, 2025 14/52

Insertion Example: Step-by-Step
Insert into B-Tree of order 3 (max 2 keys per node)

Initial tree:
20

10 30 | 40

Insert 35:
• Navigate to right child [30 | 40]
• Insert 35: [30 | 35 | 40] - overflow!
• Split: promote 35 to parent

After split:

20 | 35

10 30 40
Minseok Jeon B-Trees and B+ Trees November 2, 2025 15/52

Deletion and Merge

Deletion Algorithm Overview
More Complex than Insertion - Three Cases:

Case 1: Key in Leaf Node
• Simply remove the key
• Check for underflow

Case 2: Key in Internal Node
• Replace with predecessor or successor
• Delete predecessor/successor from leaf
• Handle any resulting underflow

Case 3: Underflow Handling
• Node has fewer than ⌈m/2⌉ − 1 keys
• Option A: Borrow from sibling (if sibling has extra keys)
• Option B: Merge with sibling (if sibling at minimum)

Minseok Jeon B-Trees and B+ Trees November 2, 2025 17/52

Deletion Case 1: Delete from Leaf

Simple Case - No Underflow

Before:

10 | 20 | 30

Delete 20

After:

10 | 30

Condition: Resulting node still has ≥ ⌈m/2⌉ − 1 keys

Minseok Jeon B-Trees and B+ Trees November 2, 2025 18/52

Deletion Case 2: Delete from Internal Node
Replace with Predecessor

Before:
20

10 30

Delete 20:
• Find predecessor (largest in left subtree): 10
• Replace 20 with 10
• Delete 10 from leaf

After:
10

[] 30

Note: Left child underflow requires handling

Minseok Jeon B-Trees and B+ Trees November 2, 2025 19/52

Deletion Case 3: Merge Siblings
When Underflow Occurs and Sibling Can’t Lend

Before:
30

10 40 | 50

Delete 10:
• Left child becomes empty (underflow)
• Right sibling has only 2 keys (can’t lend)
• Solution: Merge left and right with parent key 30

After merge:

30 | 40 | 50

Result: Parent key pulled down, siblings merged
Minseok Jeon B-Trees and B+ Trees November 2, 2025 20/52

Height and Complexity

Height Formula and Analysis
For n keys and order m:

Height Bounds:
• Minimum height: logm(n + 1) (fully packed nodes)
• Maximum height: log⌈m/2⌉((n + 1)/2) (minimum occupancy)

Example: 1 Million Keys, Order m = 100
• Minimum children per internal node: ⌈100/2⌉ = 50
• Height ≤ log50(1, 000, 000) ≈ 3.5
• Only 4 disk accesses to find any key!

Key Insight:
• High branching factor dramatically reduces height
• Each level = one disk I/O
• Shallow tree = fast queries

Minseok Jeon B-Trees and B+ Trees November 2, 2025 22/52

Time Complexity Analysis
Operation Time Complexity Disk I/Os
Search O(logm n) O(logm n)

Insert O(logm n) O(logm n)

Delete O(logm n) O(logm n)

Range Scan O(logm n + k) O(logm n + k/b)

Where:
• n = number of keys
• m = order (branching factor)
• k = number of results in range query
• b = keys per block

Space Complexity: O(n)
• Minimum 50% space utilization (except root)
• Average 67-75% utilization in practice

Minseok Jeon B-Trees and B+ Trees November 2, 2025 23/52

Comparison with Binary Search Trees

Tree Type Height for 1M keys Disk I/Os
Binary tree (balanced) log2(10

6) ≈ 20 20
B-Tree (m = 100) log100(10

6) ≈ 3 3
B-Tree (m = 1000) log1000(10

6) ≈ 2 2

Why B-Trees are Efficient:
• High branching factor → shallow tree
• Fewer disk accesses (dominant cost in I/O-bound systems)
• Each node fits in one disk block (4KB, 8KB)
• Sequential access within nodes (cache-friendly)

Result: 6-7x reduction in disk I/Os compared to balanced BST

Minseok Jeon B-Trees and B+ Trees November 2, 2025 24/52

B-Tree vs B+ Tree

B-Tree Structure
Classic B-Tree Characteristics:

Structure:
• Keys and data in all nodes (internal + leaf)
• Each key appears exactly once
• No linked list between leaves

Advantages:
• Better for exact-match queries (may find in internal node)
• Slightly less space (no duplicate keys)

Disadvantages:
• Range queries less efficient
• Variable-size records complicate node management
• Must traverse tree for sequential access

Minseok Jeon B-Trees and B+ Trees November 2, 2025 26/52

B+ Tree Structure
Enhanced Variant for Databases:

Structure:
• All data in leaf nodes only
• Internal nodes contain only keys (for routing)
• Keys may be duplicated (in internal + leaf)
• Leaves linked in sorted order (doubly linked list)

Advantages:
• Excellent for range queries (scan linked leaves)
• More keys per internal node (no data overhead)
• Sequential access via leaf chain
• Consistent performance (always reach leaf)

Disadvantages:
• Duplicate keys use extra space
• Always traverse to leaf (even if key in internal node)Minseok Jeon B-Trees and B+ Trees November 2, 2025 27/52

Visual Comparison
B-Tree (order 3):

20

10 30 | 40

data

data data

All nodes contain data

B+ Tree (order 3):

20 | 30

10 20 | 25 30 | 40
data data data

Only leaves contain data, leaves are linked
Minseok Jeon B-Trees and B+ Trees November 2, 2025 28/52

Detailed Comparison Table

Feature B-Tree B+ Tree
Data location All nodes Leaf only
Internal nodes Keys + data Keys only
Key duplication No Yes
Leaf linkage No Yes
Keys per internal Fewer More
Range queries O(log n + k) O(log n + k/b)

Point queries Faster Always to leaf
Sequential access Poor Excellent
Use case General DB/Filesystem

Minseok Jeon B-Trees and B+ Trees November 2, 2025 29/52

Why Databases Prefer B+ Trees
Five Key Reasons:

1. Range Queries:
• Common in SQL: SELECT * WHERE age BETWEEN 20 AND 30
• Efficient leaf chain scanning

2. Sequential Scans:
• Full table scans via leaf chain
• No need to traverse internal nodes repeatedly

3. Higher Fanout:
• More keys per internal node → shorter tree
• Internal nodes don’t store data

4. Predictable Performance:
• Always same depth to leaf
• Consistent query response times

5. Easier Concurrency:
• Lock leaves independently
• Better parallelism for reads

Minseok Jeon B-Trees and B+ Trees November 2, 2025 30/52

Range Scans and Storage Locality

Range Query in B+ Tree
Algorithm:

1. Find start key: O(logm n) - traverse to leaf
2. Scan leaves: Follow linked list until end key
3. Total cost: O(logm n + k) where k = results

Example Query:

SELECT * FROM users WHERE age BETWEEN 25 AND 35

Execution Steps:
• Step 1: Search for age=25 → reach leaf L1
• Step 2: Scan L1 → L2 → L3 until age > 35
• Step 3: Return all records found

Disk I/Os:
• 1 (root) + 1 (internal) + 1 (leaf) + k/b (scan)
• Much better than k separate point queries!

Minseok Jeon B-Trees and B+ Trees November 2, 2025 32/52

Range Query in B-Tree
Less Efficient - Must Use In-Order Traversal

Problem:
• No leaf linkage
• Must jump between internal and leaf nodes
• Random access pattern

Complexity:
• O(logm n + k logm n) - revisit internal nodes
• Much worse than B+ Tree for large ranges

Example:
• Range query with 1000 results
• B+ Tree: 3 + 10 = 13 I/Os (assuming 100 keys/block)
• B-Tree: 3 + 1000× 3 = 3003 I/Os

Minseok Jeon B-Trees and B+ Trees November 2, 2025 33/52

Storage Locality Benefits
Sequential Disk Access:
• Leaves stored contiguously on disk
• Operating system prefetches adjacent blocks
• Minimizes seek time (critical for HDDs)

Cache-Friendly:
• Scanning leaves keeps data in cache
• No random jumps between levels
• High cache hit rate

Performance Impact:
• Random access: 10ms per seek (HDD)
• Sequential access: 100MB/s throughput
• Locality can provide 100x speedup for range queries

Minseok Jeon B-Trees and B+ Trees November 2, 2025 34/52

Bulk Loading
Building B+ Tree Bottom-Up

Algorithm:
1. Sort all keys
2. Create leaves left-to-right
3. Build internal levels bottom-up

Advantages:
• 100% space utilization (vs 67% for incremental insert)
• Optimal storage locality
• Much faster than individual inserts
• Speed: 100,000+ ops/sec vs 1,000-10,000 for random inserts

Use Cases:
• Initial database load
• Index rebuilding
• Data warehouse ETLMinseok Jeon B-Trees and B+ Trees November 2, 2025 35/52

Bulk Loading Implementation

1 def bulk_load(sorted_keys):
2 # Create leaf level
3 leaves = []
4 for i in range(0, len(sorted_keys), LEAF_SIZE):
5 leaf = create_leaf(sorted_keys[i:i+LEAF_SIZE])
6 leaves.append(leaf)
7
8 # Link leaves
9 for i in range(len(leaves) -1):

10 leaves[i].next = leaves[i+1]
11 leaves[i+1]. prev = leaves[i]
12
13 # Build internal levels bottom -up
14 return build_internal_levels(leaves)
15
16 def build_internal_levels(nodes):
17 while len(nodes) > 1:
18 parents = []
19 for i in range(0, len(nodes), ORDER):
20 parent = create_internal_node(nodes[i:i+ORDER])
21 parents.append(parent)
22 nodes = parents
23 return nodes [0] # Root

Minseok Jeon B-Trees and B+ Trees November 2, 2025 36/52

Optimization: Prefix Compression
Store Only Distinguishing Prefix in Internal Nodes

Example:
• Full keys: ["apple", "application", "apply"]
• Compressed: ["app", "appl"]
• Savings: 50% space in internal nodes

Benefits:
• Higher fanout (more keys per node)
• Shorter tree height
• Fewer disk I/Os

Implementation:
1 def compress_key(left_key , right_key):
2 # Find shortest prefix that distinguishes keys
3 for i in range(min(len(left_key), len(right_key))):
4 if left_key[i] != right_key[i]:
5 return left_key [:i+1]
6 return left_key # One is prefix of other

Minseok Jeon B-Trees and B+ Trees November 2, 2025 37/52

B+ Tree Leaf Node Implementation
1 class BPlusTreeLeaf:
2 def __init__(self , order):
3 self.order = order
4 self.keys = [] # Sorted keys
5 self.values = [] # Corresponding values/data
6 self.next = None # Next leaf (right sibling)
7 self.prev = None # Previous leaf (left sibling)
8 self.parent = None # Parent node
9 self.n = 0 # Current number of keys

10
11 def range_scan(self , start_key , end_key):
12 """ Efficient range query using leaf chain """
13 results = []
14 current = self
15
16 # Find starting position in first leaf
17 start_idx = bisect_left(current.keys , start_key)
18
19 # Scan leaves until end_key
20 while current:
21 for i in range(start_idx , current.n):
22 if current.keys[i] > end_key:
23 return results
24 results.append ((current.keys[i], current.values[i]))
25 current = current.next
26 start_idx = 0 # Start from beginning in subsequent leaves
27
28 return results

Minseok Jeon B-Trees and B+ Trees November 2, 2025 38/52

Database and Filesystem Applications

Database Indexes
Primary Index: B+ Tree on primary key
• Leaf nodes contain actual data rows (clustered index)
• Example: MySQL InnoDB primary key index
• Data physically sorted by primary key

Secondary Index: B+ Tree on non-primary key
• Leaf nodes contain pointers to primary key
• Example: Index on email column
• Requires two lookups: secondary index → primary index

Composite Index: Multi-column B+ Tree
• Keys are tuples: (last_name, first_name)
• Supports queries on prefix: WHERE last_name = ’Smith’
• Left-to-right column ordering matters

Minseok Jeon B-Trees and B+ Trees November 2, 2025 40/52

Database Systems Using B+ Trees

Database Index Type Details
MySQL InnoDB B+ Tree Clustered PK, secondary in-

dexes
PostgreSQL B-Tree* Actually B+ Tree, default type
SQLite B+ Tree Table and index storage
Oracle B+ Tree Index-organized tables
SQL Server B+ Tree Clustered and non-clustered

Note: PostgreSQL calls it "B-Tree" but implements B+ Tree variant

Minseok Jeon B-Trees and B+ Trees November 2, 2025 41/52

Example: MySQL InnoDB

1 -- Clustered index (B+ Tree on primary key)
2 CREATE TABLE users (
3 id INT PRIMARY KEY , -- B+ Tree root
4 name VARCHAR (100) ,
5 email VARCHAR (100) ,
6 age INT ,
7 INDEX idx_email (email), -- Secondary B+ Tree
8 INDEX idx_age_name (age , name) -- Composite B+ Tree
9);

10
11 -- Range query (efficient - uses B+ Tree leaf chain)
12 SELECT * FROM users WHERE id BETWEEN 1000 AND 2000;
13
14 -- Composite index query (uses idx_age_name)
15 SELECT * FROM users WHERE age = 25 AND name LIKE ’J%’;
16
17 -- Index -only scan (covering index)
18 SELECT age , name FROM users WHERE age BETWEEN 20 AND 30;
19 -- All data in B+ Tree leaves , no table lookup needed

Minseok Jeon B-Trees and B+ Trees November 2, 2025 42/52

Example: PostgreSQL B-Tree Index

1 -- Create index
2 CREATE INDEX idx_users_age ON users(age);
3
4 -- Explain query plan
5 EXPLAIN SELECT * FROM users WHERE age > 25;
6 -- Output:
7 -- Index Scan using idx_users_age
8 -- Index Cond: (age > 25)
9

10 -- Composite index for multiple columns
11 CREATE INDEX idx_users_city_age ON users(city , age);
12
13 -- Query using composite index
14 SELECT * FROM users WHERE city = ’Seoul ’ AND age BETWEEN 20 AND 30;
15 -- Uses idx_users_city_age for both conditions
16
17 -- Index -only scan (no table access)
18 EXPLAIN SELECT age FROM users WHERE age > 25;
19 -- Output:
20 -- Index Only Scan using idx_users_age
21 -- Index Cond: (age > 25)

Minseok Jeon B-Trees and B+ Trees November 2, 2025 43/52

Filesystem Applications
File Allocation:
• B+ Tree maps file blocks to disk blocks
• Fast random access within files
• Efficient sparse file support

Directory Structure:
• B+ Tree for large directories (thousands of files)
• Efficient filename lookups
• Example: /usr/bin with 10,000 files

Filesystem B-Tree Usage
ext4 HTree (B-Tree) for directories
XFS B+ Trees for free space, inodes
Btrfs B-Trees for all metadata
NTFS B+ Trees for file records (MFT)
HFS+ B-Trees for catalog fileMinseok Jeon B-Trees and B+ Trees November 2, 2025 44/52

Filesystem Example: Directory Lookup
Without B-Tree:
• Directory: /usr/bin (10,000 files)
• Lookup: find "python3"
• Method: Linear scan through directory entries
• Complexity: O(n) - 10,000 comparisons

With B-Tree (ext4 HTree):
• Same directory with B-Tree index
• Lookup: "python3"
• Method: B-Tree search
• Complexity: O(log n) ≈ 4 disk accesses

Performance Impact:
• 2500x faster for large directories
• Critical for directories with many files
• Example: /var/mail, /tmp

Minseok Jeon B-Trees and B+ Trees November 2, 2025 45/52

Performance Characteristics
Insert Performance:
• Random inserts: 1,000-10,000 ops/sec
• Bulk inserts: 100,000+ ops/sec (bulk loading)

Query Performance:
• Point query: 1-3 disk I/Os (typical depth)
• Range query: 1-3 + k/b I/Os (k results, b per block)

Space Overhead:
• 50-75% space utilization (minimum 50%)
• Internal nodes: 1-2% of total space
• Leaf nodes: 98-99% of total space

Real-World Example:
• MySQL InnoDB with 10M rows
• Index size: ≈ 500MB
• Query time: 1-5ms (warm cache), 10-50ms (cold)Minseok Jeon B-Trees and B+ Trees November 2, 2025 46/52

Advanced Features
Write-Ahead Logging (WAL):
• Log changes before applying to B+ Tree
• Enables crash recovery
• Used in PostgreSQL, SQLite

MVCC (Multi-Version Concurrency Control):
• Multiple versions of same row
• Readers don’t block writers
• Used in PostgreSQL, InnoDB

Compression:
• Prefix compression (internal nodes)
• Page compression (entire blocks)
• Higher fanout, better performance

Partitioning:
• Distribute B+ Tree across multiple disks
• Parallel query execution
• Scale to petabyte-scale data

Minseok Jeon B-Trees and B+ Trees November 2, 2025 47/52

Summary

Key Takeaways
B-Trees and B+ Trees:
• Purpose: Disk-friendly balanced trees for large datasets
• Key idea: High branching factor → shallow tree → few I/Os
• Order m: Typically 100-1000 for disk-based systems

Operations:
• Search, Insert, Delete: O(logm n) time, O(logm n) I/Os
• Split on overflow, merge on underflow
• Maintains balance automatically

B+ Tree Advantages:
• All data in leaves → better range queries
• Leaf linkage → efficient sequential scans
• More keys per internal node → shorter tree
• Standard for databases and filesystems

Minseok Jeon B-Trees and B+ Trees November 2, 2025 49/52

When to Use B-Trees
Use B-Trees/B+ Trees when:
• Data doesn’t fit in memory (disk-based storage)
• Need efficient range queries
• Building database indexes
• Implementing filesystems
• Sequential access patterns common

Don’t use when:
• Data fits in memory (use hash tables, AVL/Red-Black trees)
• Only point queries (hash tables may be faster)
• Frequent updates to same keys (consider LSM-trees)

Modern Alternatives:
• LSM-Trees: Write-optimized (Cassandra, RocksDB)
• Tries: String-specific (Redis)
• Skip Lists: Simpler implementation (Redis, LevelDB)

Minseok Jeon B-Trees and B+ Trees November 2, 2025 50/52

Practice Problems
Problem 1: Height Calculation
• Given: 1 billion keys, order m = 500
• Question: What is the maximum tree height?
• Hint: Use log⌈m/2⌉((n + 1)/2)

Problem 2: Insertion Trace
• Insert keys [10, 20, 30, 40, 50] into empty B-Tree (order 3)
• Draw tree after each insertion
• Show all split operations

Problem 3: B+ Tree Range Query
• Given: B+ Tree with 1M keys, order 100
• Query: SELECT * WHERE id BETWEEN 1000 AND 2000
• Calculate: Number of disk I/Os

Minseok Jeon B-Trees and B+ Trees November 2, 2025 51/52

Resources
Academic Papers:
• Bayer & McCreight (1972): "Organization and Maintenance of Large Ordered

Indexes"
• Comer (1979): "The Ubiquitous B-Tree"

Books:
• "Database System Concepts" (Silberschatz et al.)
• "Introduction to Algorithms" (CLRS) - Chapter 18

Online Resources:
• MySQL InnoDB documentation
• PostgreSQL B-Tree implementation details
• Visualization: https://www.cs.usfca.edu/g̃alles/visualization/

Implementation Projects:
• Build your own B+ Tree in Python/C++
• Implement database index using B+ Tree
• Study SQLite’s B+ Tree implementation

Minseok Jeon B-Trees and B+ Trees November 2, 2025 52/52

	Introduction
	Node Structure and Order
	Insertion and Split
	Deletion and Merge
	Height and Complexity
	B-Tree vs B+ Tree
	Range Scans and Storage Locality
	Database and Filesystem Applications
	Summary

