Data Structures: Arrays

Minseok Jeon
DGIST

November 2, 2025

Contents

1. Introduction to Arrays

2. Static vs Dynamic Arrays
Amortized Analysis

Array Operations
Multidimensional Arrays

Memory Layout & Cache Locality

Applications & Limitations

® N vk W

Summary

Introduction to Arrays

What is an Array?

Definition

An array is a contiguous memory block that stores elements of the same type, supporting
O(1) indexing.

Key characteristics:

® Fixed or dynamic size bj;e

® Elements stored consecutively in memory | 5 || 12 || 7 || 23 || 15 |
® Direct access via index o 0 o B M
e Cache-friendly data structure Array of 5 elements

[]

Foundation for many other data structures

Memory Address Calculation

Address of arr[i] = base_address + i x sizeof (element)

Static vs Dynamic Arrays

Static Arrays

Fixed size determined at compile time or initialization

Advantages:
® No resize overhead
® Predictable memory usage
® Slightly faster access

® Simple memory management

Disadvantages:
e Cannot grow or shrink
® Must know size in advance

® Wasted space if overallocated

C:

int arr[100]; // Fixed size
Java:

int [] arr = new int[100];
C++:

int arr[100];
std::array<int, 100> arr;

Use Case

Dynamic Arrays

Definition

Resizable arrays that grow as needed

Growth Strategy:
® Start with small capacity
® Double capacity when full (typical)
® Allocate new array and copy elements

® Free old array

Examples:
e C++: std::vector
® Java: Arraylist
® Python: list
o C#: List<T>

1
2
3
4
5

® ~ o

10
11
12
13
14
15
16

18

Python Implementation

class DynamicArray:

def

__init__(self):

self.capacity = 1

self.size = 0

self.array = [Nonel * self.
capacity

append(self, item):

if self.size == self.capacity:
self . _resize ()
self.array[self.size]l = item

self.size += 1

_resize(self):

self.capacity *= 2

new_array = [Nonel * self.capacity

for i in range(self.size):
new_array[i] = self.arrayl[i]

self.array = new_array

Comparison: Static vs Dynamic Arrays

Operation ‘ Static Array ‘ Dynamic Array
Access 0(1) 0(1)
Append N/A O(1) amortized
Insert (middle) O(n) O(n)
Delete (middle) O(n) O(n)
Memory Exact 1.5-2x actual size
Resize No Yes (expensive)

Static Arrays Best For Dynamic Arrays Best For
® Fixed-size data ® Unknown or changing size
® Memory-constrained systems ® Frequent additions

® Real-time systems ® General-purpose use

Amortized Analysis

Dynamic Array Resizing Cost

Resizing Strategy

When array is full, allocate new array with 2x capacity

Single Resize Cost: O(n)

® Allocate new array: O(capacity) Growth Sequence
e Copy all n elements: O(n) o
® Free old array: O(1)
But resizes are infrequent!
® Resizes at sizes: 1, 2, 4, 8,16, ..., n I 16

® Total resizes: logyn
® Total copy cost: 1+2+4+...+n=2n—1

Amortized Analysis Result

Accounting Method for Amortized Analysis

Intuition
Charge extra "credits" for cheap operations to pay for expensive ones

Charge $3 per insertion:

e $1 for actual insertion Growth Factor Comparison

e $2 saved as credit for future resize Factor | Memory | Frequency
1.5x% Lower More
When resize happens: 2% Higher Lesa

® Need to copy n elements

® Each element has $2 credit saved R ——
rinkin, rate
e Total credits: $2n : & &
Shrink when size < capacity/4

® Resize cost: $n (copying) (not capacity/2 to avoid thrashing)

Credits cover the cost!

Trade-off: Space efficiency: vs resize frequency

Array Operations

Access and Search Operations

Binary Search: O(log n)

Access by Index: O(1)

Only for sorted arrays!

1 element = arr[il]
1 def binary_search(arr, target):
2 left, right = 0, len(arr) - 1
Direct memory calculation: S
4 mid = left + (right - left) // 2
base + i x sizeof (element) 5 if arr[mid] == target:
6 return mid
7 elif arr[mid] < target:
8 left = mid + 1
N 9 else:
Linear Search: O(n) 10 right = mid - 1
11 return -1

1 def linear_search(arr, target):
2 for i in range(len(arr)):

3 if arr[i] == target:
4
5

o Key Insight
Binary search eliminates half the search

Check each element sequentially space cadh Temten

o UEWN

Insert and Delete Operations

Insert at Position i: O(n)

Delete at Position i: O(n)

def insert (arr, index, value):

1 def delete(arr, index):
o appand(Tone) & PRstre Epece 2 # Shift elements left
& Sh%ﬁ? SLOEORHF wFIG . 3 for i in range(index, len(arr)-1):
for i in range(len(arr)-1, index, -1): 2 arr[i] = arrli+i]
arr[i] : arr[i-1] 5 arr.pop() # Remove last

arr [index] value

Insert 99 at index 2 Delete at index 1

Performance Summary
® Insert/delete at end: O(1) amortized
® Insert/delete at beginning: O(n) - worst case
¢ Insert/delete in middle: O(n) - must shift elements

Multidimensional Arrays

2D Arrays (Matrices)

Python:
matrix = [[0]*cols for _ in range (rows)]
Java: .
3 x4 Matrix

int [1[] matrix = new int[rows][cols];

0 0 1 2 3
C++: 1 [affsffe]f7
vector<vector<int>> matrix(rows, 2 [8fooy

vector<int>(cols)); matrix[i][j]

Accessing Elements

element = matrix[i] [j]

Time: O(1)

Memory Layout: Row-Major vs Column-Major

Row-Major Order Column-Major Order

Used in: C, C++, Python, Java Used in: Fortran, MATLAB
Store rows contiguously: Store columns contiguously:
[rowO] [rowl] [row2] ... [col0] [col1] [col2]...
Address calculation: Address calculation:
base + (i x cols + j) x size base + (j x rows + i) x size
Better for: Better for:

® |terating by rows ® |terating by columns

® Row-wise operations ® Column-wise operations

Performance Impact

Accessing memory in the wrong order can cause 10-100x slowdown due to cache misses!

Common Matrix Operations

Rotate 90° Clockwise

O(rows x cols)

WNOUAWN R

1 def rotate_90(matrix):

2 n = len(matrix)

3 # 1. Transpose

def transpose(matrix): 4 for i in range(n):
rows = len(matrix) 5 for j in range(i, n):
cols = len(matrix[0]) 6 temp = matrix[il[j]
result = [[0l*rows for _ in range(cols)] 7 matrix[i1[j] = matrix[j][i]
for i in range(rows): 8 matrix[j1[i]l = temp
for j in range(cols): 9
result[jI1[i] = matrix[il[j] 10 # 2. Reverse each row

return result 11 for i in range(m):

12 matrix[i].reverse ()

Example
OoQg-— 00

Matrix Multiplication
o Naive: O(n%)

LI

Strassen: O(n?37)

Coppersmith-Winograd: O(n?-376)

Memory Layout & Cache Locality

Cache Hierarchy and Performance

Memory Hierarchy

Level | Size | Latency
L1 Cache 32-64 KB 1-4 cycles
L2 Cache | 256 KB-1 MB | 10-20 cycles
L3 Cache 8-32 MB 40-75 cycles
RAM GB 200+ cycles

J/Faster
Cache Line

® Typical size: 64 bytes

Memory Hierarchy

® Fetching one element loads entire cache
line

® Sequential access benefits from
prefetching

Spatial Locality: Good vs Bad Access Patterns

Good: Sequential Access Bad: Random Access

Excellent cache locality 1| # Poor cache locality
sum = O 2 sum = 0
for i in range (n): 33 for i in random_indices:
sum += arr[i] 4 sum += arr[i]
® Accesses consecutive memory ® Jumps around memory
e Cache prefetching works well ® No benefit from prefetching
® Minimizes cache misses ® Frequent cache misses

Matrix Traversal Example (C/C++ row-major)

1| // GOOD: Row-wise iteration (follows memory layout)
2 for (int i = 0; i < rows; i++)

3 for (int j = 0; j < cols; j++)

4 sum += matrix[il[i]l:

Optimization: Array of Structures vs Structure of Arrays

Structure of Arrays

Array of Structures (AoS)

1/ struct Points {
2 float x[1000];
3 float y[1000];
struct Point { 4 float z[1000];
float x, y, z; 5/ };
15 6 Points points;
Point points[1000]; 7
8| // Access x coordinates
// Access x coordinates 9 for (int i = 0; i < 1000; i++)
for (int i = 0; i < 1000; i++) 10 sum += points.x[il;

0N U R WN

sum += points[il.x;

Memory layout:
x0 x1 x2 ... | y0oyly2 ... | 20
zl z2

Memory layout:

x0 yO z0 | x1 y1 z1 | x2 y2 22
Issue: Loading unnecessary y, z values . i .
Benefit: Better cache locality for single
field

Arrays November 2, 2025

Applications & Limitations

When to Use Arrays

Common Applications
. Advantages

Lookup tables: ASCIlI mappings, :
precomputed values v O(1) random access by index

* Buffers: Fixed-size data storage, /0 v’ Cache-friendly (contiguous memory)

buffers v' Simple and intuitive
® Stacks/Queues: Array-based v Low memory overhead
implementations v Excellent for iteration

® Dynamic programming;:

Memoization tables

® Sorting algorithms: In-place sorting x Fixed size or resize overhead
® |mage processing: Pixel arrays % O(n) insertion/deletion in middle
(2D/3D) x Woasted space if sparse

e Scientific computing: Vectors,
matrices, tensors

x Cannot efficiently grow in middle

When to Use Alternatives

Use Case

‘ Better Alternative

‘ Reason

Frequent insertions/dele-
tions

Linked List

O(1) insert/delete

Unknown size, many in-
sertions

Dynamic Array

Amortized O(1) ap-
pend

Key-value lookups

Hash Table

‘ O(1) average lookup

Sorted data with inser-
tions

Binary Search Tree

O(log n) operations

Priority queue

Heap

O(log

insert/extract-min

n)

Sparse data

Hash Table / Sparse
Matrix

Space efficient

Summary

Key Takeaways

Array Fundamentals

¢ Contiguous memory blocks with O(1) indexing
® Foundation for many data structures

® Direct memory address calculation

Static vs Dynamic

® Static: fixed size, no overhead, predictable
® Dynamic: resizable, O(1) amortized append, flexible

e Amortized analysis shows O(1) average cost for dynamic growth

Performance Considerations

® Cache locality is critical: 10-100x performance difference
® Access patterns matter: sequential > random

® Row-major vs column-major order affects cache performance

Thank You!

Questions?

	Introduction to Arrays
	Static vs Dynamic Arrays
	Amortized Analysis
	Array Operations
	Multidimensional Arrays
	Memory Layout & Cache Locality
	Applications & Limitations
	Summary

