
Data Structures: Arrays

Minseok Jeon
DGIST

November 2, 2025

Contents

1. Introduction to Arrays

2. Static vs Dynamic Arrays

3. Amortized Analysis

4. Array Operations

5. Multidimensional Arrays

6. Memory Layout & Cache Locality

7. Applications & Limitations

8. Summary

Introduction to Arrays

What is an Array?

Definition
An array is a contiguous memory block that stores elements of the same type, supporting
O(1) indexing.

Key characteristics:
• Fixed or dynamic size
• Elements stored consecutively in memory
• Direct access via index
• Cache-friendly data structure
• Foundation for many other data structures

5
[0]

12
[1]

7
[2]

23
[3]

15
[4]

Array of 5 elements

base

Memory Address Calculation
Address of arr[i] = base_address + i × sizeof(element)

Minseok Jeon Arrays November 2, 2025 4/28

Static vs Dynamic Arrays

Static Arrays

Definition
Fixed size determined at compile time or initialization

Advantages:
• No resize overhead
• Predictable memory usage
• Slightly faster access
• Simple memory management

Disadvantages:
• Cannot grow or shrink
• Must know size in advance
• Wasted space if overallocated
• Insufficient space if underallocated

Examples
C:

1 int arr [100]; // Fixed size

Java:
1 int [] arr = new int [100];

C++:
1 int arr [100];
2 std :: array <int , 100 > arr;

Use Case
When size is known and fixed (e.g., days
of week, fixed buffers)

Minseok Jeon Arrays November 2, 2025 6/28

Dynamic Arrays

Definition
Resizable arrays that grow as needed

Growth Strategy:
• Start with small capacity
• Double capacity when full (typical)
• Allocate new array and copy elements
• Free old array

Examples:
• C++: std::vector
• Java: ArrayList
• Python: list
• C#: List<T>

Python Implementation
1 class DynamicArray :
2 def __init__ (self):
3 self. capacity = 1
4 self.size = 0
5 self. array = [None] * self.

capacity
6
7 def append (self , item):
8 if self.size == self. capacity :
9 self. _resize ()

10 self. array [self.size] = item
11 self.size += 1
12
13 def _resize (self):
14 self. capacity *= 2
15 new_array = [None] * self. capacity
16 for i in range (self.size):
17 new_array [i] = self. array [i]
18 self. array = new_array

Minseok Jeon Arrays November 2, 2025 7/28

Comparison: Static vs Dynamic Arrays

Operation Static Array Dynamic Array
Access O(1) O(1)
Append N/A O(1) amortized
Insert (middle) O(n) O(n)
Delete (middle) O(n) O(n)
Memory Exact 1.5-2× actual size
Resize No Yes (expensive)

Static Arrays Best For
• Fixed-size data
• Memory-constrained systems
• Real-time systems

Dynamic Arrays Best For
• Unknown or changing size
• Frequent additions
• General-purpose use

Minseok Jeon Arrays November 2, 2025 8/28

Amortized Analysis

Dynamic Array Resizing Cost

Resizing Strategy
When array is full, allocate new array with 2× capacity

Single Resize Cost: O(n)
• Allocate new array: O(capacity)
• Copy all n elements: O(n)
• Free old array: O(1)

But resizes are infrequent!
• Resizes at sizes: 1, 2, 4, 8, 16, ..., n
• Total resizes: log2 n

• Total copy cost: 1 + 2 + 4 + ... + n = 2n − 1

Growth Sequence

1 2 4

8

16

...

Amortized Analysis Result
Average cost per insertion: O(n)

n = O(1) amortized
Minseok Jeon Arrays November 2, 2025 10/28

Accounting Method for Amortized Analysis

Intuition
Charge extra "credits" for cheap operations to pay for expensive ones

Charge $3 per insertion:
• $1 for actual insertion
• $2 saved as credit for future resize

When resize happens:
• Need to copy n elements
• Each element has $2 credit saved
• Total credits: $2n
• Resize cost: $n (copying)
• Credits cover the cost!

Growth Factor Comparison
Factor Memory Frequency
1.5× Lower More
2× Higher Less

Shrinking Strategy
Shrink when size < capacity/4
(not capacity/2 to avoid thrashing)

Trade-off: Space efficiency vs resize frequencyMinseok Jeon Arrays November 2, 2025 11/28

Array Operations

Access and Search Operations

Access by Index: O(1)
1 element = arr[i]

Direct memory calculation:
base + i × sizeof(element)

Linear Search: O(n)

1 def linear_search (arr , target):
2 for i in range (len(arr)):
3 if arr[i] == target :
4 return i
5 return -1

Check each element sequentially

Binary Search: O(log n)
Only for sorted arrays!

1 def binary_search (arr , target):
2 left , right = 0, len(arr) - 1
3 while left <= right :
4 mid = left + (right - left) // 2
5 if arr[mid] == target :
6 return mid
7 elif arr[mid] < target :
8 left = mid + 1
9 else:

10 right = mid - 1
11 return -1

Key Insight
Binary search eliminates half the search
space each iteration

Minseok Jeon Arrays November 2, 2025 13/28

Insert and Delete Operations

Insert at Position i: O(n)

1 def insert (arr , index , value):
2 arr. append (None) # Ensure space
3 # Shift elements right
4 for i in range (len(arr) -1, index , -1):
5 arr[i] = arr[i -1]
6 arr[index] = value

Insert 99 at index 2

5 12 7 23

5 12 99 7 23

Delete at Position i: O(n)

1 def delete (arr , index):
2 # Shift elements left
3 for i in range (index , len(arr) -1):
4 arr[i] = arr[i+1]
5 arr.pop () # Remove last

Delete at index 1

5 12 7 23

5 7 23

Performance Summary
• Insert/delete at end: O(1) amortized
• Insert/delete at beginning: O(n) - worst case
• Insert/delete in middle: O(n) - must shift elements

Minseok Jeon Arrays November 2, 2025 14/28

Multidimensional Arrays

2D Arrays (Matrices)

Declaration
Python:

1 matrix = [[0]* cols for _ in range (rows)]

Java:
1 int [][] matrix = new int[rows][cols];

C++:
1 vector <vector <int >> matrix (rows ,
2 vector <int >(cols));

Accessing Elements
element = matrix[i][j]
Time: O(1)

3×4 Matrix
0 1 2 3

4 5 6 7

8 9 10 11

0

1

2

0 1 2 3

matrix[i][j]

Minseok Jeon Arrays November 2, 2025 16/28

Memory Layout: Row-Major vs Column-Major

Row-Major Order
Used in: C, C++, Python, Java
Store rows contiguously:
[row0][row1][row2]...

Address calculation:
base + (i × cols + j) × size

Better for:
• Iterating by rows
• Row-wise operations

Column-Major Order
Used in: Fortran, MATLAB
Store columns contiguously:
[col0][col1][col2]...

Address calculation:
base + (j × rows + i) × size

Better for:
• Iterating by columns
• Column-wise operations

Performance Impact
Accessing memory in the wrong order can cause 10-100× slowdown due to cache misses!

Minseok Jeon Arrays November 2, 2025 17/28

Common Matrix Operations

Transpose: O(rows × cols)

1 def transpose (matrix):
2 rows = len(matrix)
3 cols = len(matrix [0])
4 result = [[0]* rows for _ in range (cols)]
5 for i in range (rows):
6 for j in range (cols):
7 result [j][i] = matrix [i][j]
8 return result

Example

2×3
→

3×2

Rotate 90° Clockwise
1 def rotate_90 (matrix):
2 n = len(matrix)
3 # 1. Transpose
4 for i in range (n):
5 for j in range (i, n):
6 temp = matrix [i][j]
7 matrix [i][j] = matrix [j][i]
8 matrix [j][i] = temp
9

10 # 2. Reverse each row
11 for i in range (n):
12 matrix [i]. reverse ()

Matrix Multiplication
Naive: O(n3)
Strassen: O(n2.37)
Coppersmith-Winograd: O(n2.376)

Minseok Jeon Arrays November 2, 2025 18/28

Memory Layout & Cache Locality

Cache Hierarchy and Performance

Memory Hierarchy
Level Size Latency
L1 Cache 32-64 KB 1-4 cycles
L2 Cache 256 KB-1 MB 10-20 cycles
L3 Cache 8-32 MB 40-75 cycles
RAM GB 200+ cycles

Cache Line
• Typical size: 64 bytes
• Fetching one element loads entire cache

line
• Sequential access benefits from

prefetching

L1 CacheL2 Cache
L3 Cache

RAM
Faster

Memory Hierarchy

Key Insight
Accessing data in cache vs RAM can be 100-200× faster!

Minseok Jeon Arrays November 2, 2025 20/28

Spatial Locality: Good vs Bad Access Patterns

Good: Sequential Access
1 # Excellent cache locality
2 sum = 0
3 for i in range(n):
4 sum += arr[i]

• Accesses consecutive memory
• Cache prefetching works well
• Minimizes cache misses

Bad: Random Access
1 # Poor cache locality
2 sum = 0
3 for i in random_indices :
4 sum += arr[i]

• Jumps around memory
• No benefit from prefetching
• Frequent cache misses

Matrix Traversal Example (C/C++ row-major)

1 // GOOD: Row -wise iteration (follows memory layout)
2 for (int i = 0; i < rows; i++)
3 for (int j = 0; j < cols; j++)
4 sum += matrix [i][j];
5
6 // BAD: Column -wise iteration (jumps across cache lines)
7 for (int j = 0; j < cols; j++)
8 for (int i = 0; i < rows; i++)
9 sum += matrix [i][j];

Minseok Jeon Arrays November 2, 2025 21/28

Optimization: Array of Structures vs Structure of Arrays

Array of Structures (AoS)

1 struct Point {
2 float x, y, z;
3 };
4 Point points [1000];
5
6 // Access x coordinates
7 for (int i = 0; i < 1000; i++)
8 sum += points [i].x;

Memory layout:
x0 y0 z0 | x1 y1 z1 | x2 y2 z2 ...

Issue: Loading unnecessary y, z values

Structure of Arrays (SoA)

1 struct Points {
2 float x [1000];
3 float y [1000];
4 float z [1000];
5 };
6 Points points ;
7
8 // Access x coordinates
9 for (int i = 0; i < 1000; i++)

10 sum += points .x[i];

Memory layout:
x0 x1 x2 ... | y0 y1 y2 ... | z0
z1 z2 ...

Benefit: Better cache locality for single
field

When to Use SoA
SIMD operations, GPU computing, frequently accessing single fields

Minseok Jeon Arrays November 2, 2025 22/28

Applications & Limitations

When to Use Arrays

Common Applications
• Lookup tables: ASCII mappings,

precomputed values
• Buffers: Fixed-size data storage, I/O

buffers
• Stacks/Queues: Array-based

implementations
• Dynamic programming:

Memoization tables
• Sorting algorithms: In-place sorting
• Image processing: Pixel arrays

(2D/3D)
• Scientific computing: Vectors,

matrices, tensors

Advantages
✓ O(1) random access by index
✓ Cache-friendly (contiguous memory)
✓ Simple and intuitive
✓ Low memory overhead
✓ Excellent for iteration

Limitations
× Fixed size or resize overhead
× O(n) insertion/deletion in middle
× Wasted space if sparse
× Cannot efficiently grow in middle

Minseok Jeon Arrays November 2, 2025 24/28

When to Use Alternatives

Use Case Better Alternative Reason
Frequent insertions/dele-
tions

Linked List O(1) insert/delete

Unknown size, many in-
sertions

Dynamic Array Amortized O(1) ap-
pend

Key-value lookups Hash Table O(1) average lookup
Sorted data with inser-
tions

Binary Search Tree O(log n) operations

Priority queue Heap O(log n)
insert/extract-min

Sparse data Hash Table / Sparse
Matrix

Space efficient

Real-World Examples
ArrayList (Java), std::vector (C++), NumPy arrays (Python), Circular buffer,
Bitmap

Minseok Jeon Arrays November 2, 2025 25/28

Summary

Key Takeaways

Array Fundamentals
• Contiguous memory blocks with O(1) indexing
• Foundation for many data structures
• Direct memory address calculation

Static vs Dynamic
• Static: fixed size, no overhead, predictable
• Dynamic: resizable, O(1) amortized append, flexible
• Amortized analysis shows O(1) average cost for dynamic growth

Performance Considerations
• Cache locality is critical: 10-100× performance difference
• Access patterns matter: sequential > random
• Row-major vs column-major order affects cache performance
• Consider SoA vs AoS for specific access patterns

When to Use
• Best for: random access, iteration, fixed/predictable size
• Avoid for: frequent insertions/deletions, unknown size, sparse data

Minseok Jeon Arrays November 2, 2025 27/28

Thank You!
Questions?

	Introduction to Arrays
	Static vs Dynamic Arrays
	Amortized Analysis
	Array Operations
	Multidimensional Arrays
	Memory Layout & Cache Locality
	Applications & Limitations
	Summary

