
Practical Applications & Projects
Building Real-World Systems with Data Structures

Minseok Jeon
DGIST

November 2, 2025

Minseok Jeon Practical Applications & Projects November 2, 2025 1/49



Outline

1. Introduction

2. Text Editor with Undo/Redo

3. Database Index with B-Trees

4. Social Network Graph Analysis

5. Autocomplete Engine

6. Memory Allocator Simulator

7. Project Structuring and Testing

8. Summary

Minseok Jeon Practical Applications & Projects November 2, 2025 2/49



Introduction



Course Overview

Learning by Building
Apply data structures concepts by implementing complete, working systems

Projects Covered:
• Text editor with undo/redo (Stack)
• Simple database index (B-Trees)
• Social network graph analysis (Graphs)
• Autocomplete engine (Tries)
• Memory allocator simulator (Free lists)
• Project structuring and testing

Minseok Jeon Practical Applications & Projects November 2, 2025 4/49



Why Practical Projects?

Benefits:
• Deeper Understanding: See how data structures solve real problems
• Design Skills: Learn to choose appropriate structures
• Integration: Combine multiple data structures effectively
• Testing: Develop comprehensive testing strategies
• Portfolio: Build projects for interviews and resumes

Key Principle
Every project demonstrates a core data structure in a practical context

Minseok Jeon Practical Applications & Projects November 2, 2025 5/49



Text Editor with Undo/Redo



Project 1: Text Editor with Undo/Redo

Project Requirements:
• Basic text operations: insert, delete,

replace
• Undo last operation
• Redo previously undone operation
• Multiple undo/redo levels
• Clear redo stack on new operations

Core Data Structure:
• Stack for undo/redo
• Two stacks: undo stack and redo stack
• Command pattern for operations

Complexity:
• Undo/Redo: O(1)
• Operations: O(n) worst case

Minseok Jeon Practical Applications & Projects November 2, 2025 7/49



Design: Command Pattern

Command
+execute()

+undo()

InsertCommand DeleteCommand ReplaceCommand

Undo Stack
Command 3
Command 2
Command 1

Redo Stack
Command 4
Command 5

Executed operations Undone operations

Minseok Jeon Practical Applications & Projects November 2, 2025 8/49



Implementation: Command Interface
1 from abc import ABC , abstractmethod
2
3 class Command (ABC):
4 """ Abstract base class for text editor commands ."""
5
6 @abstractmethod
7 def execute (self , text: List[str ]) -> None:
8 """ Execute the command ."""
9 pass

10
11 @abstractmethod
12 def undo(self , text: List[str ]) -> None:
13 """ Undo the command ."""
14 pass
15
16 class InsertCommand ( Command ):
17 def __init__ (self , position : int , text: str):
18 self. position = position
19 self.text = text
20
21 def execute (self , text: List[str ]) -> None:
22 for i, char in enumerate (self.text):
23 text. insert (self. position + i, char)
24
25 def undo(self , text: List[str ]) -> None:
26 for _ in range (len(self.text)):
27 text.pop(self. position )

Minseok Jeon Practical Applications & Projects November 2, 2025 9/49



Implementation: TextEditor Class

1 class TextEditor :
2 def __init__ (self):
3 self.text: List[str] = []
4 self. undo_stack : List[ Command ] = []
5 self. redo_stack : List[ Command ] = []
6
7 def execute (self , command : Command ) -> None:
8 command . execute (self.text)
9 self. undo_stack . append ( command )

10 self. redo_stack . clear () # Clear redo on new operation
11
12 def undo(self) -> bool:
13 if not self. undo_stack :
14 return False
15 command = self. undo_stack .pop ()
16 command .undo(self.text)
17 self. redo_stack . append ( command )
18 return True
19
20 def redo(self) -> bool:
21 if not self. redo_stack :
22 return False
23 command = self. redo_stack .pop ()
24 command . execute (self.text)
25 self. undo_stack . append ( command )
26 return True

Minseok Jeon Practical Applications & Projects November 2, 2025 10/49



Text Editor: Key Design Decisions

Stack Operations:
• Push to undo stack on execute
• Pop from undo, push to redo on undo
• Pop from redo, push to undo on redo
• Clear redo stack on new operation

Extensions:
• Compound commands (macro

recording)
• History size limit
• Save state detection
• Text statistics
• Find and replace all

Testing Strategy
• Test each command type independently
• Test undo/redo sequences
• Test redo clearing on new operation
• Test edge cases (empty stack, invalid positions)

Minseok Jeon Practical Applications & Projects November 2, 2025 11/49



Database Index with B-Trees



Project 2: Database Index using B-Trees

Project Requirements:
• Store key-value pairs with sorted keys
• Insert, search, delete operations
• Handle large datasets efficiently
• Maintain balance automatically
• Support range queries

Core Data Structure:
• B-Tree (order t)
• Each node: t − 1 to 2t − 1 keys
• Self-balancing
• Disk-friendly (minimize I/O)

Complexity:
• Search: O(log n)
• Insert: O(log n)
• Delete: O(log n)

Minseok Jeon Practical Applications & Projects November 2, 2025 13/49



B-Tree Structure

[20, 40]

[5, 10, 15] [25, 30, 35] [45, 50, 55]
< 20 20 ≤ k < 40 ≥ 40

Root Node

Leaf Leaf Leaf

B-Tree Properties (order t = 3)
• Each node has 2 ≤ keys ≤ 5 (except root)
• Keys are sorted within each node
• All leaves at the same level

Minseok Jeon Practical Applications & Projects November 2, 2025 14/49



Implementation: B-Tree Node

1 class BTreeNode :
2 def __init__ (self , leaf=True):
3 self.keys = [] # List of keys
4 self. values = [] # List of values (for leaf nodes )
5 self. children = [] # List of child nodes
6 self.leaf = leaf # Is this a leaf node?
7
8 class BTree :
9 def __init__ (self , t=3):

10 """ Initialize B-Tree with minimum degree t."""
11 self.root = BTreeNode ()
12 self.t = t # Each node: t -1 to 2t -1 keys
13
14 def search (self , key , node=None):
15 """ Search for a key in O(log n) time."""
16 if node is None:
17 node = self.root
18
19 i = 0
20 while i < len(node.keys) and key > node.keys[i]:
21 i += 1
22
23 if i < len(node.keys) and key == node.keys[i]:
24 return node. values [i] if node.leaf else self. search (key , node. children [i])
25
26 return None if node.leaf else self. search (key , node. children [i])

Minseok Jeon Practical Applications & Projects November 2, 2025 15/49



Implementation: B-Tree Insert
1 def insert (self , key , value ):
2 root = self.root
3
4 # If root is full , split it
5 if len(root.keys) == (2 * self.t) - 1:
6 new_root = BTreeNode (leaf= False )
7 new_root . children . append (self.root)
8 self. _split_child (new_root , 0)
9 self.root = new_root

10
11 self. _insert_non_full (self.root , key , value )
12
13 def _split_child (self , parent , index ):
14 """ Split a full child node."""
15 t = self.t
16 full_child = parent . children [ index ]
17 new_child = BTreeNode (leaf= full_child .leaf)
18
19 mid_index = t - 1
20 # Move middle key up to parent
21 parent .keys. insert (index , full_child .keys[ mid_index ])
22
23 # Split keys and values
24 new_child .keys = full_child .keys[ mid_index + 1:]
25 full_child .keys = full_child .keys [: mid_index ]
26 # ... ( similar for values and children )
27
28 parent . children . insert ( index + 1, new_child )

Minseok Jeon Practical Applications & Projects November 2, 2025 16/49



B-Tree Operations: Visual Example

Inserting 17 into a full node causes split:

Before:

[5, 10, 15, 20, 25]

Full node (5 keys)

After Split:
[15]

[5, 10] [20, 25]

2 keys 2 keys

• Middle key (15) promoted to parent
• Left child contains smaller keys
• Right child contains larger keys
• Both children have valid number of keys

Minseok Jeon Practical Applications & Projects November 2, 2025 17/49



Database Integration

Simple Database System:
• Primary key index (B-Tree)
• Secondary indexes (multiple B-Trees)
• Insert records with auto-increment ID
• Search by ID or indexed field
• Range queries
• Delete records

Use Cases:
• Database management systems
• File systems (e.g., ext4, NTFS)
• Any sorted data on disk

Why B-Trees?
• Minimize disk I/O
• Nodes = disk blocks
• Shallow tree (high branching factor)
• All leaves at same level

Minseok Jeon Practical Applications & Projects November 2, 2025 18/49



Social Network Graph Analysis



Project 3: Social Network Graph Analysis

Project Requirements:
• Represent users and friendships
• Find degrees of separation (shortest

path)
• Suggest friends (mutual connections)
• Detect communities
• Calculate influence metrics
• Clustering coefficient

Core Data Structure:
• Graph (adjacency list)
• Undirected or directed
• Efficient for sparse graphs

Algorithms:
• BFS for shortest path
• DFS for communities
• PageRank for influence

Minseok Jeon Practical Applications & Projects November 2, 2025 20/49



Social Network: Graph Representation

Alice

Bob

Charlie

Diana Eve Frank

Community 1

Community 2

Graph Metrics:
• Alice to Frank: 4 degrees of separation (Alice → Charlie → Eve → Frank)
• Bob has highest clustering coefficient (friends are connected)
• Two communities visibleMinseok Jeon Practical Applications & Projects November 2, 2025 21/49



Implementation: Social Network
1 from collections import defaultdict , deque
2
3 class SocialNetwork :
4 def __init__ (self , directed = False ):
5 self. users = {} # user_id -> User object
6 self. graph = defaultdict (set) # adjacency list
7 self. directed = directed
8
9 def add_connection (self , user1_id , user2_id ):

10 """ Add friendship / follow relationship ."""
11 self. graph [ user1_id ]. add( user2_id )
12 if not self. directed :
13 self. graph [ user2_id ]. add( user1_id )
14
15 def degrees_of_separation (self , user1_id , user2_id ):
16 """ Find shortest path using BFS."""
17 if user1_id == user2_id :
18 return (0, [ user1_id ])
19
20 visited = { user1_id }
21 queue = deque ([( user1_id , [ user1_id ]) ])
22
23 while queue :
24 current_id , path = queue . popleft ()
25 for friend_id in self. graph [ current_id ]:
26 if friend_id == user2_id :
27 return (len(path), path + [ friend_id ])
28 if friend_id not in visited :
29 visited .add( friend_id )
30 queue . append (( friend_id , path + [ friend_id ]))
31
32 return (-1, []) # No path

Minseok Jeon Practical Applications & Projects November 2, 2025 22/49



Friend Suggestions Algorithm

1 def suggest_friends (self , user_id , max_suggestions =5):
2 """ Suggest friends based on mutual connections ."""
3 current_friends = self. graph [ user_id ]
4 mutual_counts = defaultdict (int)
5
6 # Count mutual friends for non - friends
7 for friend_id in current_friends :
8 for friend_of_friend_id in self. graph [ friend_id ]:
9 if ( friend_of_friend_id != user_id and

10 friend_of_friend_id not in current_friends ):
11 mutual_counts [ friend_of_friend_id ] += 1
12
13 # Sort by mutual friend count
14 suggestions = sorted (
15 mutual_counts . items () ,
16 key= lambda x: x[1] ,
17 reverse =True
18 )[: max_suggestions ]
19
20 return [( self. users [uid], count ) for uid , count in suggestions ]

Example: Alice is friends with Bob and Charlie. Bob and Charlie are both friends with
Diana. → Suggest Diana to Alice (2 mutual friends).

Minseok Jeon Practical Applications & Projects November 2, 2025 23/49



Influence Metrics: PageRank

PageRank Algorithm:
• Iterative computation
• User’s influence = sum of friends’

influence / their friend count
• Damping factor (0.85)
• Converges after iterations

Formula:

PR(u) = 1 − d

N
+ d

∑
v∈in(u)

PR(v)
|out(v)|

where d = 0.85, N = number of users

Clustering Coefficient:
Measures how connected a user’s friends are
to each other.

C(u) = actual connections
possible connections

Interpretation:
• C = 1: All friends know each other

(tight community)
• C = 0: No friends know each other

(bridge user)
• High clustering → local community

Minseok Jeon Practical Applications & Projects November 2, 2025 24/49



Community Detection

Algorithm: Connected Components
1. Start DFS from unvisited user
2. Mark all reachable users as one

community
3. Repeat until all users visited

Complexity:
• Time: O(V + E)
• Space: O(V )

Advanced Methods:
• Girvan-Newman (edge betweenness)
• Louvain method (modularity

optimization)
• Label propagation

Applications:
• Recommend groups
• Targeted advertising
• Influence propagation
• Network analysis

Minseok Jeon Practical Applications & Projects November 2, 2025 25/49



Autocomplete Engine



Project 4: Autocomplete Engine

Project Requirements:
• Insert words with frequencies
• Search for words by prefix
• Suggest top-k completions
• Dynamic updates
• Handle large dictionaries

Core Data Structure:
• Trie (prefix tree)
• Frequency tracking at nodes
• Priority queue for top-k

Complexity:
• Insert: O(m) where m = word length
• Search: O(m)
• Autocomplete: O(m + n) where n =

results

Minseok Jeon Practical Applications & Projects November 2, 2025 27/49



Trie Structure for Autocomplete

root

a

p

p

l

e

r

o

b

a

n

“apple” (100) “approach” (90)

“ban” (50)

Double circle = end of word, Color = frequency

• Each path from root to double-circled node = one word
• Frequency stored at terminal nodes
• Prefix "app" → finds "apple" and "approach"

Minseok Jeon Practical Applications & Projects November 2, 2025 28/49



Implementation: Trie Node and Insert
1 class TrieNode :
2 def __init__ (self):
3 self. children = {} # char -> TrieNode
4 self. is_end_of_word = False
5 self. frequency = 0
6 self.word = None
7
8 class AutocompleteEngine :
9 def __init__ (self):

10 self.root = TrieNode ()
11
12 def insert (self , word: str , frequency : int = 1):
13 """ Insert word with frequency ."""
14 node = self.root
15 for char in word. lower ():
16 if char not in node. children :
17 node. children [char] = TrieNode ()
18 node = node. children [char]
19
20 node. is_end_of_word = True
21 node.word = word
22 node. frequency += frequency
23
24 def _find_node (self , prefix : str):
25 """ Find node corresponding to prefix ."""
26 node = self.root
27 for char in prefix :
28 if char not in node. children :
29 return None
30 node = node. children [char]
31 return node

Minseok Jeon Practical Applications & Projects November 2, 2025 29/49



Autocomplete Algorithm
1 def autocomplete (self , prefix : str , max_suggestions : int = 10):
2 """ Get autocomplete suggestions for prefix ."""
3 prefix = prefix . lower ()
4 node = self. _find_node ( prefix )
5
6 if node is None:
7 return []
8
9 # Collect all words with this prefix

10 suggestions = []
11 self. _collect_words (node , suggestions )
12
13 # Sort by frequency and return top suggestions
14 suggestions .sort(key= lambda x: x[1] , reverse =True)
15 return suggestions [: max_suggestions ]
16
17 def _collect_words (self , node , suggestions ):
18 """ Recursively collect all words from node."""
19 if node. is_end_of_word :
20 suggestions . append (( node.word , node. frequency ))
21
22 for child in node. children . values ():
23 self. _collect_words (child , suggestions )

Example: For prefix "app", collect all descendants: "apple" (100), "application" (80),
"approach" (90). Sort by frequency and return top 10.

Minseok Jeon Practical Applications & Projects November 2, 2025 30/49



Autocomplete: Advanced Features

Optimizations:
• Min-heap for top-k (avoid sorting all)
• Store top-k at each node (cache)
• Compressed tries (radix tree)
• Limit recursion depth

Personalization:
• User-specific frequency
• Recent searches
• Context-aware suggestions
• Location-based

Fuzzy Matching:
• Allow typos (edit distance)
• Suggest corrections
• Phonetic matching

Real-World Applications:
• Search engines (Google, Bing)
• Code editors (IDEs)
• Mobile keyboards
• E-commerce search
• Command-line interfaces

Minseok Jeon Practical Applications & Projects November 2, 2025 31/49



Memory Allocator Simulator



Project 5: Memory Allocator Simulator

Project Requirements:
• Allocate memory blocks
• Free allocated blocks
• Coalesce adjacent free blocks
• Handle fragmentation
• Track usage statistics
• Multiple allocation strategies

Core Data Structure:
• Free list (linked list)
• Hash table for allocated blocks
• Doubly-linked for coalescing

Strategies:
• First-fit: O(n)
• Best-fit: O(n)
• Worst-fit: O(n)

Minseok Jeon Practical Applications & Projects November 2, 2025 33/49



Memory Layout Visualization

Memory Map (1000 bytes total):

Allocated

0-100

Free

100-300

Allocated

300-450

Free

450-1000

100 200 150 550

Allocation Request (50 bytes):
• First-fit: Use free block at 100-300 (first available)
• Best-fit: Use free block at 100-300 (smallest that fits)
• Worst-fit: Use free block at 450-1000 (largest)

Minseok Jeon Practical Applications & Projects November 2, 2025 34/49



Implementation: Memory Block
1 class MemoryBlock :
2 def __init__ (self , start : int , size: int , is_free : bool = True):
3 self. start = start
4 self.size = size
5 self. is_free = is_free
6 self.next = None # Next block in list
7 self.prev = None # Previous block in list
8
9 @property

10 def end(self):
11 return self. start + self.size
12
13 class MemoryAllocator :
14 def __init__ (self , total_size : int , strategy ):
15 self. total_size = total_size
16 self. strategy = strategy
17 self.head = MemoryBlock (0, total_size , is_free =True)
18 self. allocated_blocks = {} # address -> block
19
20 def malloc (self , size: int):
21 """ Allocate memory block ."""
22 block = self. _find_free_block (size)
23 if block is None:
24 return None # Allocation failed
25 if block .size > size:
26 self. _split_block (block , size)
27 block . is_free = False
28 self. allocated_blocks [ block . start ] = block
29 return block . start

Minseok Jeon Practical Applications & Projects November 2, 2025 35/49



Coalescing Adjacent Free Blocks
1 def free(self , address : int):
2 """ Free allocated block ."""
3 if address not in self. allocated_blocks :
4 return False
5
6 block = self. allocated_blocks [ address ]
7 del self. allocated_blocks [ address ]
8 block . is_free = True
9

10 # Coalesce with adjacent free blocks
11 self. _coalesce ( block )
12 return True
13
14 def _coalesce (self , block ):
15 """ Merge adjacent free blocks ."""
16 # Coalesce with next block
17 if block .next and block .next. is_free :
18 block .size += block .next.size
19 block .next = block .next.next
20 if block .next:
21 block .next.prev = block
22
23 # Coalesce with previous block
24 if block .prev and block .prev. is_free :
25 block .prev.size += block .size
26 block .prev.next = block .next
27 if block .next:
28 block .next.prev = block .prev

Minseok Jeon Practical Applications & Projects November 2, 2025 36/49



Coalescing Example

Before Coalescing:

Free

0-100

Free

100-200

Allocated

200-300

Free

300-400

After Coalescing:

Free (Merged)

0-200

Allocated

200-300

Free

300-400

Benefits:
• Reduces fragmentation
• Creates larger free blocks
• Improves allocation success rate
• Essential for long-running systems

Minseok Jeon Practical Applications & Projects November 2, 2025 37/49



Allocation Strategy Comparison

Strategy Speed Fragmentation Use Case
First-Fit Fast Moderate General purpose
Best-Fit Slow Low Memory constrained
Worst-Fit Slow High Large allocations

Trade-offs:
• First-Fit: Fast but may create small unusable fragments at start
• Best-Fit: Minimizes wasted space but creates tiny fragments
• Worst-Fit: Keeps large blocks available but wastes space

Real-World: Most allocators use variants of first-fit with segregated free lists for
different size classes (e.g., jemalloc, tcmalloc).

Minseok Jeon Practical Applications & Projects November 2, 2025 38/49



Project Structuring and Testing



Project Structure Best Practices

Directory Layout:
• src/ - Source code

• data_structures/
• algorithms/
• utils/

• tests/ - Test files
• docs/ - Documentation
• requirements.txt
• README.md
• setup.py

Principles:
• Separate concerns
• One class per file (large projects)
• Clear naming conventions
• Package initialization files
• Version control (git)

Documentation:
• Docstrings for all public APIs
• README with usage examples
• API reference
• Architecture diagrams

Minseok Jeon Practical Applications & Projects November 2, 2025 40/49



Testing Strategies
Unit Tests:

• Test individual methods
• Isolate dependencies
• Fast execution
• High coverage

Integration Tests:
• Test component interaction
• End-to-end scenarios
• Realistic workloads

Edge Cases:
• Empty inputs
• Maximum sizes
• Invalid inputs
• Boundary conditions

Performance Tests:
• Benchmark operations
• Verify complexity
• Regression testing
• Memory usage

Property-Based Testing:
• Test invariants
• Generate random inputs
• Find edge cases automatically
• Use hypothesis library

Tools:
• unittest, pytest
• coverage.py
• CI/CD (GitHub Actions)

Minseok Jeon Practical Applications & Projects November 2, 2025 41/49



Testing Example: Text Editor
1 import unittest
2
3 class TestTextEditor ( unittest . TestCase ):
4 def setUp (self):
5 self. editor = TextEditor ()
6
7 def test_insert_at_beginning (self):
8 self. editor . insert (0, " Hello ")
9 self. assertEqual (self. editor . get_text () , " Hello ")

10
11 def test_undo_redo_sequence (self):
12 self. editor . insert (0, "A")
13 self. editor . insert (1, "B")
14 self. editor .undo ()
15 self. assertEqual (self. editor . get_text () , "A")
16 self. editor .redo ()
17 self. assertEqual (self. editor . get_text () , "AB")
18
19 def test_redo_cleared_on_new_operation (self):
20 self. editor . insert (0, "Test")
21 self. editor .undo ()
22 self. editor . insert (0, "New")
23 self. assertFalse (self. editor . can_redo ())
24
25 def test_large_text_operations (self):
26 large_text = "x" * 10000
27 self. editor . insert (0, large_text )
28 self. assertEqual (len(self. editor . get_text ()), 10000)

Minseok Jeon Practical Applications & Projects November 2, 2025 42/49



Code Quality and Best Practices

Code Style:
• Follow PEP 8 (Python)
• Consistent naming
• Clear variable names
• Avoid magic numbers
• Type hints

Error Handling:
• Validate inputs
• Raise appropriate exceptions
• Document error conditions
• Fail fast

Performance:
• Profile before optimizing
• Document complexity
• Avoid premature optimization
• Test performance

Maintenance:
• Regular refactoring
• Keep functions small
• Single responsibility principle
• Version control commits
• Code reviews

Minseok Jeon Practical Applications & Projects November 2, 2025 43/49



Summary



Projects Summary

Project Core Structure Key Algorithm
Text Editor Stack Command pattern
DB Index B-Tree Split/merge
Social Network Graph BFS, PageRank
Autocomplete Trie Prefix traversal
Memory Allocator Free List Coalescing

Common Themes:
• Choose data structure based on operations
• Combine multiple structures when needed
• Test thoroughly (unit, integration, edge cases)
• Measure and document performance
• Maintain clean, readable code

Minseok Jeon Practical Applications & Projects November 2, 2025 45/49



Key Takeaways
1. Data Structures Enable Solutions

• Stacks enable undo/redo naturally
• B-Trees excel at disk-based sorted data
• Graphs model relationships and networks
• Tries optimize prefix-based search
• Free lists manage dynamic memory

2. Design Matters
• Understand requirements before choosing structures
• Consider time/space trade-offs
• Plan for scalability and edge cases

3. Testing is Essential
• Comprehensive tests catch bugs early
• Property-based tests find unexpected issues
• Performance tests verify complexity

Minseok Jeon Practical Applications & Projects November 2, 2025 46/49



Building Your Portfolio
Next Steps:

1. Implement These Projects
• Start with text editor (simplest)
• Work up to memory allocator (most complex)
• Add your own features and extensions

2. Extend and Experiment
• Add GUI to text editor
• Implement concurrent B-Tree
• Add recommendation system to social network
• Build fuzzy matching for autocomplete
• Compare allocation strategies empirically

3. Document and Share
• Write clear READMEs
• Create demonstrations
• Share on GitHub
• Discuss in interviews

Minseok Jeon Practical Applications & Projects November 2, 2025 47/49



Additional Project Ideas
More Projects to Try:

• Task Scheduler: Priority queue + heap for job scheduling
• File System Simulator: Tree + hash table for directories
• LRU Cache: Hash table + doubly-linked list
• Spell Checker: Trie + edit distance algorithm
• Git-like Version Control: DAG + hash table
• JSON Parser: Stack for nested structures
• URL Shortener: Hash table + base conversion
• Rate Limiter: Queue + sliding window
• Expression Evaluator: Stack + parsing
• Prefix Sum Range Queries: Segment tree or Fenwick tree

Remember
The best way to learn data structures is to use them to solve real problems!

Minseok Jeon Practical Applications & Projects November 2, 2025 48/49



Thank You!
Questions?

“The only way to learn a new programming language
is by writing programs in it.” – Dennis Ritchie

The same applies to data structures:
learn by building projects!

Minseok Jeon Practical Applications & Projects November 2, 2025 49/49


	Introduction
	Text Editor with Undo/Redo
	Database Index with B-Trees
	Social Network Graph Analysis
	Autocomplete Engine
	Memory Allocator Simulator
	Project Structuring and Testing
	Summary

