Practical Applications & Projects

Building Real-World Systems with Data Structures

Minseok Jeon
DGIST

November 2, 2025

Outline

Introduction

Text Editor with Undo/Redo
Database Index with B-Trees
Social Network Graph Analysis
Autocomplete Engine

Memory Allocator Simulator

Project Structuring and Testing

® N S gk W=

Summary

Introduction

Course Overview

Learning by Building

Apply data structures concepts by implementing complete, working systems

Projects Covered:
® Text editor with undo/redo (Stack)
Simple database index (B-Trees)

® Social network graph analysis (Graphs)

Autocomplete engine (Tries)

Memory allocator simulator (Free lists)

Project structuring and testing

Why Practical Projects?

Benefits:
® Deeper Understanding: See how data structures solve real problems
® Design Skills: Learn to choose appropriate structures
® Integration: Combine multiple data structures effectively
® Testing: Develop comprehensive testing strategies

® Portfolio: Build projects for interviews and resumes

Key Principle

Every project demonstrates a core data structure in a practical context

Text Editor with Undo/Redo

Project 1: Text Editor with Undo/Redo

Core Data Structure:
e Stack for undo/redo

Project Requirements:

® Basic text operations: insert, delete,

replace ® Two stacks: undo stack and redo stack
e Undo last operation e Command pattern for operations
® Redo previously undone operation Complexity:
e Multiple undo/redo levels e Undo/Redo: O(1)

Clear redo stack on new operations e Operations: O(n) worst case

Design: Command Pattern

Command
+execute ()
+undo ()

AN

InsertCommand || DeleteCommand | ReplaceCommand

Executed operations

Undone operations

7Undo Stack Redo Stack
Command 3 ~Command 4~
Command 2 omma

Command 1 Command 5

Implementation: Command Interface

from abc import ABC, abstractmethod

class Command (ABC):

"""Abstract base class for text editor commands."""

@abstractmethod

def execute(self, text: List[str]) -> None:
"""Execute the command."""
pass

@abstractmethod

def undo(self, text: List[str]) -> Nonme:
"""Undo the command."""
pass

class InsertCommand (Command) :

def __init__(self, position: int, text: str):

self .position = position
self.text = text

def execute(self, text: List[str]) -> None:
for i, char in enumerate(self.text):
text.insert(self.position + i, char)

def undo(self, text: List[str]) -> None:
for _ in range(len(self.text)):
text.pop(self.position)

Implementation: TextEditor Class

class TextEditor:
def __init__(self):

self.text: List([str]l = []
self.undo_stack: List[Command] = []
self.redo_stack: List[Command] = []

def execute(self, command: Command) -> None:

©O~NOU A WN

def

command . execute (self.text)
self.undo_stack.append (command)
self.redo_stack.clear () # Clear

undo (self) -> bool:
if not self.undo_stack:

return False
command = self.undo_stack.pop()
command .undo (self.text)
self.redo_stack.append (command)
return True

redo(self) -> bool:
if not self.redo_stack:

return False
command = self.redo_stack.pop ()
command . execute (self.text)
self.undo_stack.append (command)
return True

redo on new operation

Text Editor: Key Design Decisions

Extensions:
Stack Operations: e Compound commands (macro
® Push to undo stack on execute recording)
® Pop from undo, push to redo on undo ® History size limit
® Pop from redo, push to undo on redo ® Save state detection
® (Clear redo stack on new operation ® Text statistics

® Find and replace all

Testing Strategy

® Test each command type independently
® Test undo/redo sequences
® Test redo clearing on new operation

® Test edge cases (empty stack, invalid positions)

Database Index with B-Trees

Project 2: Database Index using B-Trees

Core Data Structure:

B-Tree (order t)

Each node: ¢t — 1 to 2t — 1 keys
Self-balancing

Disk-friendly (minimize |1/0)

Project Requirements:

Store key-value pairs with sorted keys

® |nsert, search, delete operations

® Handle large datasets efficiently
e Maintain balance automatically Complexity:
® Support range queries ® Search: O(logn)

e Insert: O(logn)
e Delete: O(logn)

B-Tree Structure

Root Node
[20, 40]
L <20=F<40] =40
[5, 10, 15] [25, 30, 35] [45, 50, 55]
Leaf Leaf Leaf

B-Tree Properties (order ¢t = 3)
® Each node has 2 < keys < 5 (except root)

® Keys are sorted within each node

e All leaves at the same level

Implementation: B-Tree Node

class BTreeNode:

def

class BTree:

def

def

__init__(self, leaf=True):

self .keys = [] # List of keys

self.values = [] # List of values (for leaf nodes)
self.children = [] # List of child nodes

self.leaf = leaf # Is this a leaf node?
__init__(self, t=3):

"""Initialize B-Tree with minimum

BTreeNode ()
Each node:

self.root =
self.t = ¢t t-1
search(self, key,
"""Search for a key in 0(log
if node is None:

node=None) :

degree t."""

to 2t-1 keys

n) time."""

node = self.root

i=0

while i < len(node.keys) and key > node.keys[i]:
i+=1

if i < len(node.keys) and key == node.keys[i]:

return node.values[i] if

return None if node.leaf else self.search(key,

node.leaf else self.search(key, node.children([i])

node.children[i])

©0O~NOO A WN -

Implementation: B-Tree Insert

def

def

insert (self, key, value):
root = self.root

If root is full, split it

if len(root.keys) == (2 * self.t) - 1:
new_root = BTreeNode(leaf=False)
new_root.children.append(self.root)
self._split_child(new_root, 0)
self.root = new_root

self._insert_non_full(self.root, key, value)

_split_child(self, parent, index):

"""Split a full child node."""

t = self.t

full_child = parent.children[index]
new_child = BTreeNode(leaf=full_child.leaf)

mid_index =t - 1
Move middle key up to parent
parent.keys.insert (index, full_child.keys[mid_index])

Split keys and values

new_child.keys = full_child.keys[mid_index + 1:]
full_child.keys = full_child.keys[:mid_index]

... (similar for values and children)

parent.children.insert(index + 1, new_child)

B-Tree Operations: Visual Example

Inserting 17 into a full node causes split:

Before: After Split:

] [5, 10, 15, 20, 25] \ —

Full node (5 keys)

| 5.10] | [[2029 |

2 keys 2 keys

Middle key (15) promoted to parent

Left child contains smaller keys

Right child contains larger keys

Both children have valid number of keys

Database Integration

Simple Database System:

Primary key index (B-Tree)
Secondary indexes (multiple B-Trees)
Insert records with auto-increment 1D
Search by ID or indexed field

Range queries

Delete records

Use Cases:
® Database management systems
e File systems (e.g., ext4, NTFS)
® Any sorted data on disk

Why B-Trees?
® Minimize disk 1/0
® Nodes = disk blocks
Shallow tree (high branching factor)

All leaves at same level

Social Network Graph Analysis

Project 3: Social Network Graph Analysis

Project Requirements: Core Data Structure:

e Graph (adjacency list)
® Undirected or directed

® Represent users and friendships

® Find degrees of separation (shortest
path) e Efficient for sparse graphs

® Suggest friends (mutual connections) Algorithms:

® BFS for shortest path

® DFS for communities

® Detect communities
® Calculate influence metrics

e Clustering coefficient o PageRank for influence

Social Network: Graph Representation

Charlie

Community 1

Graph Metrics:
e Alice to Frank: 4 degrees of separation (Alice — Charlie — Eve — Frank)
® Bob has highest clustering coefficient (friends are connected)

e " Two commiinitiec vicihle

©0O~NOO A WN -

Implementation: Social Network

from collections import defaultdict, deque

class SocialNetwork:
def __init__(self, directed=False):

self.users = {} # user_id -> User object
self.graph = defaultdict(set) # adjacency list
self.directed = directed

def add_connection(self, userl_id, user2_id):
"""Add friendship/follow relationship."""
self.graph[userl_id].add(user2_id)
if not self.directed:
self .graph[user2_id].add(user1_id)

def degrees_of_separation(self, userl_id, user2_id):
"""Find shortest path using BFS."""
if userl_id == user2_id:
return (0, [useri_idl])

visited = {user1_id}
queue = deque ([(userl_id, [user1_id])])

while queue:
current_id, path = queue.popleft ()
for friend_id in self.graph[current_id]:
if friend_id == user2_id:
return (len(path), path + [friend_id])
if friend_id not in visited:
visited.add(friend_id)
queue.append ((friend_id, path + [friend_idl))

-
COO®NOUTHAWN KR

11
12
13
14

16
17

19
20

Friend Suggestions Algorithm

def suggest_friends(self, user_id, max_suggestions=5):
"""Suggest friends based on mutual connections."""
current_friends = self.graph[user_id]
mutual_counts = defaultdict(int)

Count mutual friends for non-friends
for friend_id in current_friends:
for friend_of_friend_id in self.graph[friend_id]:
if (friend_of_friend_id != user_id and
friend_of_friend_id not in current_friends):
mutual_counts [friend_of_friend_id] += 1

Sort by mutual friend count

suggestions = sorted(
mutual_counts.items (),
key=lambda x: x[1],
reverse=True

) [:max_suggestions]

return [(self.users[uid], count) for uid, count in suggestions]

Example: Alice is friends with Bob and Charlie. Bob and Charlie are both friends with
Diana. — Suggest Diana to Alice (2 mutual friends).

Influence Metrics: PageRank

PageRank Algorithm: Clustering Coefficient:
Measures how connected a user’s friends are
to each other.

® |terative computation

® User's influence = sum of friends’
inﬂuence / their friend count actual Connections

¢ Damping factor (0.85) Clu) =

possible connections

e Converges after iterations)
Interpretation:

Formula: e (' =1: All friends know each other
(tight community)
R(v)
PR(u) = +d Z t(v)| ® (' = 0: No friends know each other
vEln(u

(bridge user)

where d = 0.85, N = number of users ® High clustering — local community

Community Detection

Advanced Methods:

Algorithm: Connected Components e Girvan-Newman (edge betweenness)
1. Start DFS from unvisited user ® Louvain method (modularity
2. Mark all reachable users as one optimization)
community ® | abel propagation
3. Repeat until all users visited
Applications:
Complexity: ® Recommend groups
e Time: O(V + E) ® Targeted advertising
® Space: O(V) e |nfluence propagation

Network analysis

Autocomplete Engine

Project 4: Autocomplete Engine

Project Requirements:
® |nsert words with frequencies
® Search for words by prefix
® Suggest top-k completions
® Dynamic updates

® Handle large dictionaries

Core Data Structure:
® Trie (prefix tree)
® Frequency tracking at nodes

® Priority queue for top-k

Complexity:
e Insert: O(m) where m = word length
e Search: O(m)

e Autocomplete: O(m + n) where n =
results

Trie Structure for Autocomplete

“ban” (50)

“approach” (90)

Implementation: Trie Node and Insert

1 class TrieNode:

2 def __init__(self):

3 self.children = {} # char -> TrieNode

4 self.is_end_of_word = False

5 self.frequency = 0

6 self.word = None

7

8 class AutocompleteEngine:

9 def __init__(self):

10 self.root = TrieNode ()

11

12 def insert(self, word: str, frequency: int = 1):
13 """Insert word with frequency."""

14 node = self.root

15 for char in word.lower():

16 if char not in node.children:

17 node.children[char] = TrieNode ()
18 node = node.children[char]

19

20 node.is_end_of_word = True

21 node.word = word

22 node.frequency += frequency

23

24 def _find_node(self, prefix: str):

25 """Find node corresponding to prefix."""
26 node = self.root

27 for char in prefix:

28 if char not in node.children:

29 return None

30 node = node.children[char]

Autocomplete Algorithm

1| def autocomplete(self, prefix: str, max_suggestions: int = 10):
2 """Get autocomplete suggestions for prefix."""

3 prefix = prefix.lower ()

4 node = self._find_node(prefix)

5

6 if node is None:

7 return []

8

9 # Collect all words with this prefix

10 suggestions = []

11 self._collect_words (node, suggestions)

12

13 # Sort by frequency and return top suggestions

14 suggestions.sort (key=lambda x: x[1], reverse=True)
15 return suggestions[:max_suggestions]

16

17 def _collect_words(self, node, suggestions):

18 """Recursively collect all words from node."""

19 if node.is_end_of_word:

20 suggestions.append ((node.word, node.frequency))
21

22 for child in node.children.values():

23 self._collect_words(child, suggestions)

Example: For prefix "app", collect all descendants: "apple" (100), "application" (80),
"approach" (90). Sort by frequency and return top 10.

Autocomplete: Advanced Features

Optimizations: Fuzzy Matching;:
¢ Min-heap for top-k (avoid sorting all) ¢ Allow typos (edit distance)
e Store top-k at each node (cache) ® Suggest corrections
e Compressed tries (radix tree) ® Phonetic matching

® Limit recursion depth L
Real-World Applications:

Personalization: Search engines (Google, Bing)
Code editors (IDEs)
Mobile keyboards

e (Context-aware suggestions ® E-commerce search

e User-specific frequency

® Recent searches

Location-based Command-line interfaces

Memory Allocator Simulator

Project 5: Memory Allocator Simulator

Core Data Structure:
Project Requirements: ® Free list (linked list)

® Allocate memory blocks ® Hash table for allocated blocks

® Free allocated blocks ® Doubly-linked for coalescing

e Coalesce adjacent free blocks
Strategies:

e First-fit: O(n)
® Best-fit: O(n)
e Worst-fit: O(n)

Handle fragmentation

Track usage statistics

Multiple allocation strategies

Memory Layout Visualization

Memory Map (1000 bytes total):

) 100 \s 200 s 150 s 550 R
N () [A) [A) 4
Allocated Allocated
0-100 100-300 300-450 450-1000

Allocation Request (50 bytes):
® First-fit: Use free block at 100-300 (first available)
¢ Best-fit: Use free block at 100-300 (smallest that fits)
e Worst-fit: Use free block at 450-1000 (largest)

Implementation: Memory Block

1 class MemoryBlock:

2 def __init__(self, start: int, size: int, is_free: bool = True):
3 self.start = start

4 self.size = size

5 self.is_free = is_free

6 self.next = None # Next block in list

7 self .prev = None # Previous block in list

8

9 @property

10 def end(self):

11 return self.start + self.size

12

13 class MemoryAllocator:

14 def __init__(self, total_size: int, strategy):

15 self.total_size = total_size

16 self.strategy = strategy

17 self.head = MemoryBlock(0, total_size, is_free=True)
18 self.allocated_blocks = {} # address -> block
19

20 def malloc(self, size: int):

21 """Allocate memory block."""

22 block = self._find_free_block(size)

23 if block is None:

24 return None # Allocation failed

25 if block.size > size:

26 self._split_block(block, size)

27 block.is_free = False

28 self.allocated_blocks [block.start] = block

29 return block.start

Coalescing Adjacent Free Blocks

def free(self, address: int):
"""Free allocated block."""
if address not in self.allocated_blocks:
return False

block = self.allocated_blocks[address]
del self.allocated_blocks[address]
block.is_free = True

Coalesce with adjacent free blocks
self._coalesce(block)
return True

def _coalesce(self, block):
"""Merge adjacent free blocks."""
Coalesce with next block
if block.next and block.next.is_free:
block.size += block.next.size

block.next = block.next.next
if block.next:
21 block.next.prev = block
22
23 # Coalesce with previous block
24 if block.prev and block.prev.is_free:
25 block.prev.size += block.size
26 block.prev.next = block.next
27 if block.next:

28 block.next.prev = block.prev

Coalescing Example

Before Coalescing:

Free

Free

Allocated

Free

0-100 100-200

200-300

After Coalescing:

300-400

Free (Merged)

Allocated

Free

0-200

Benefits:

Reduces fragmentation

Creates larger free blocks
Improves allocation success rate

Essential for long-running systems

200-300

300-400

Allocation Strategy Comparison

Strategy Speed Fragmentation Use Case
First-Fit Fast Moderate General purpose
Best-Fit Slow Low Memory constrained
Worst-Fit Slow High Large allocations

Trade-offs:
e First-Fit: Fast but may create small unusable fragments at start
e Best-Fit: Minimizes wasted space but creates tiny fragments

® Worst-Fit: Keeps large blocks available but wastes space

Real-World: Most allocators use variants of first-fit with segregated free lists for
different size classes (e.g., jemalloc, tcmalloc).

Project Structuring and Testing

Project Structure Best Practices

Directory Layout:
® src/ - Source code

® data_structures/
® algorithms/
® utils/

® tests/ - Test files

® docs/ - Documentation
® requirements.txt

® README.md

® setup.py

Principles:
® Separate concerns
® One class per file (large projects)
e Clear naming conventions
® Package initialization files

® \ersion control (git)

Documentation:
® Docstrings for all public APIs
e README with usage examples
® API reference

® Architecture diagrams

Testing Strategies

Unit Tests:
® Test individual methods
® |solate dependencies
® Fast execution

® High coverage

Integration Tests:
® Test component interaction
® End-to-end scenarios

® Realistic workloads

Edge Cases:
® Empty inputs
® Maximum sizes

o “4nvalid inputs

Performance Tests:
® Benchmark operations
® Verify complexity
® Regression testing

® Memory usage

Property-Based Testing:
® Test invariants
® Generate random inputs
® Find edge cases automatically

® Use hypothesis library

Tools:
® unittest, pytest

® ‘coverace.pv

Testing Example: Text Editor

import unittest

class TestTextEditor (unittest.TestCase):

def

setUp(self):
self.editor = TextEditor ()

test_insert_at_beginning(self):
self.editor.insert (0, "Hello")
self.assertEqual (self.editor.get_text (),

test_undo_redo_sequence (self):
self.editor.insert (0, "A")
self.editor.insert (1, "B")
self.editor.undo ()

self.assertEqual (self.editor.get_text (),
self.editor.redo ()

self.assertEqual (self.editor.get_text (),

test_redo_cleared_on_new_operation(self):

self.editor.insert (0, "Test")
self.editor.undo ()
self.editor.insert (0, "New")

self.assertFalse(self.editor.can_redo())

test_large_text_operations(self):
large_text = "x" * 10000
self.editor.insert (0, large_text)

self.assertEqual (len(self.editor.get_text()),

"Hello")

10000)

Code Quality and Best Practices

Code Style: Performance:
® Follow PEP 8 (Python)
e Consistent naming ® Document complexity

Avoid premature optimization

Profile before optimizing

® (Clear variable names

® Avoid magic numbers Test performance

* Type hints Maintenance:
Error Handling: ® Regular refactoring
¢ Validate inputs e Keep functions small
® Raise appropriate exceptions ® Single responsibility principle
® Document error conditions ® Version control commits
e Fail fast ® Code reviews

Summary

Projects Summary

Project Core Structure Key Algorithm
Text Editor Stack Command pattern
DB Index B-Tree Split/merge
Social Network Graph BFS, PageRank
Autocomplete Trie Prefix traversal
Memory Allocator Free List Coalescing

Common Themes:
® Choose data structure based on operations
e Combine multiple structures when needed
® Test thoroughly (unit, integration, edge cases)
® Measure and document performance

® Maintain clean, readable code

Key Takeaways

1. Data Structures Enable Solutions
Stacks enable undo/redo naturally
B-Trees excel at disk-based sorted data
Graphs model relationships and networks
Tries optimize prefix-based search

Free lists manage dynamic memory

2. Design Matters
® Understand requirements before choosing structures
® Consider time/space trade-offs
® Plan for scalability and edge cases

3. Testing is Essential
® Comprehensive tests catch bugs early
® Property-based tests find unexpected issues
® Performance tests verify complexity

Building Your Portfolio

Next Steps:
1. Implement These Projects
® Start with text editor (simplest)
® Work up to memory allocator (most complex)
® Add your own features and extensions

2. Extend and Experiment
® Add GUI to text editor
® Implement concurrent B-Tree
® Add recommendation system to social network
® Build fuzzy matching for autocomplete
® Compare allocation strategies empirically

3. Document and Share

Write clear READMEs

Create demonstrations

Share on GitHub

Discuss in interviews

Additional Project Ideas

More Projects to Try:

Remember

Task Scheduler: Priority queue + heap for job scheduling
File System Simulator: Tree + hash table for directories
LRU Cache: Hash table + doubly-linked list

Spell Checker: Trie + edit distance algorithm

Git-like Version Control: DAG + hash table

JSON Parser: Stack for nested structures

URL Shortener: Hash table 4 base conversion

Rate Limiter: Queue + sliding window

Expression Evaluator: Stack + parsing

Prefix Sum Range Queries: Segment tree or Fenwick tree

The best way to learn data structures is to use them to solve real problems!

Thank You!

Questions?

“The only way to learn a new programming language
is by writing programs in it.” — Dennis Ritchie

The same applies to data structures:
learn by building projects!

	Introduction
	Text Editor with Undo/Redo
	Database Index with B-Trees
	Social Network Graph Analysis
	Autocomplete Engine
	Memory Allocator Simulator
	Project Structuring and Testing
	Summary

