Data Structures: Advanced Data Structures

Minseok Jeon
DGIST

November 2, 2025

Contents

Introduction

Hash Tables and Hashing
Collision Handling

Tries (Prefix Trees)

Disjoint Set / Union-Find
Segment Trees and Fenwick Trees
B-Trees and B+ Trees
Real-World Applications

© Lo N S s W=

Summary

Introduction

Advanced Data Structures

Definition
Advanced data structures are specialized structures optimized for performance and
specific problem domains.

Knowledge Points

1. Hash tables and hashing

Collision handling: chaining/open addressing

Tries (prefix trees)

Disjoint Set / Union-Find
Segment Trees and Fenwick Trees
B-Trees and B+ Trees

Noe S s 89 e

Real-world applications

Hash Tables and Hashing

What is a Hash Table?

Definition

A hash table (hash map) provides O(1) average-case insertion, deletion, and lookup by
mapping keys to values using a hash function.

Core Concept: "apple"
Key — Hash Function — Index — Value S: hash

"apple" — hash("apple") =5 — array[5] =
120

6
5
4
Example 3
2
1
0

Good Hash Function Properties

Essential Properties Common Hash Functions

1. Deterministic 1. Division Method:
® Same key always produces same o
hash h(key) = key % m

2. Uniform distribution

® Spreads keys evenly across table 2. Multiplication Method:

3. Fast to compute h(key) = |m x (key x A mod 1)]
® O(1) time
4. Minimize collisions 3. String Hashing:

® Different keys should have different

hashes Polynomial hash with prime base

Collisions and Load Factor

Problem: Collisions
When two different keys hash to the same index:

hash("apple") = 5
hash("orange") =5 < Collision!

Load Factor

Ratio of filled slots to total slots:

When to Resize

o

n ® Typically resize when o > 0.7

® Double the table size
where n = number of elements

. ® Rehash all existing elements
m = table size

_ _ ¢ Maintains O(1) operations
Example: 7 elements in table of size 10

— Load factor = 0.7

Hash Table Complexity

Operation | Average Case | Worst Case

Insert 0(1) O(n)
Delete 0(1) O(n)
Search 0(1) O(n)
Space O(n) O(n)

Worst case occurs when all keys collide into the same slot. With a good hash function
and proper load factor management, average case O(1) is achieved.

Applications

Databases (indexing), caching, symbol tables (compilers), sets, counting frequencies,
detecting duplicates

Advanced Data Structures

Collision Handling

Two Main Collision Resolution Strategies

2. Open Addressing
® All elements in table itself

1. Chaining (Separate Chaining)

® Each slot contains a linked list

® Probe for next empty slot

e Colliding elements form a chain o
® Must maintain load factor < 1.0

® Never fills up completely
Probing Methods:

[_ _

] ® Linear: h(k) + i

] ® Quadratic: h(k) + 2

— ® Double hashing: hy(k) + i*ha(k)

o = N W

Chaining Implementation

Advantages

® v Simple to implement

* v Neverfills up Visual Example
® v Good for unknown size

L Index
® V Deletion is easy)

1| |—) |k1:v1|—>|k2:v2|
o[=]

Disadvantages

® x Extra memory for pointers
® x Poor cache performance

® x Chains can become long

Open Addressing Strategies

Linear Probing
Try consecutive slots: h(k), h(k)+1, h(k)+2, ...
Problem: Primary clustering (keys cluster together)

Quadratic Probing

Try quadratic intervals: h(k), h(k)+12, h(k)+22, h(k)+32, ...
Reduces primary clustering but can cause secondary clustering

Double Hashing

Use second hash function: h(k, i) = (hi(k) + i * ha(k)) % m
Best collision resolution for open addressing

Important

Must use tombstone markers for deletions to maintain probe sequences

Chaining vs Open Addressing

Feature | Chaining | Open Addressing

Memory Extra (pointers) More compact

Cache performance | Poor Better

Load factor Can exceed 1.0 Must stay < 1.0

Deletion Easy Complex (tombstones)

Implementation Simple More complex

Best for Unknown size Known size, high perfor-
mance

Real-World

Python’s dict uses open addressing with pseudo-random probing (optimized version of
double hashing)

Tries (Prefix Trees)

What is a Trie?

Definition
A trie (pronounced "try") is a tree-like structure for storing strings where each node
represents a character. Excellent for prefix-based operations.

Key Properties

® FEach path = a word

ST ® Common prefixes share paths

cat’,

Cal‘"., “dOg"

Storing: ,
® Fast prefix lookups

® Space-efficient for common prefixes

® Insert: O(m)
® Search: O(m)

il oy . 1 ~ 7/ \

Trie Operations

Autocomplete

1. Navigate to prefix end
2. DFS from that node

3. Collect all words in subtree

Insert Word
1. Start at root
2. For each character:

® Create node if needed
® Move to child node

3. Mark end of word

Example

Prefix: "app"
Search Word Results:
1. Start at root - app
2. Follow characters) applfe _
- application

3. Check end-of-word marker - apply

Trie Applications

1. Autocomplete Systems

® Google search suggestions 3. IP Routing

® |DE code completion ® | ongest prefix matching

® Command-line completion ® Network routing tables
2. Spell Checking 4. Phone Contacts

® Microsoft Word ® T9 predictive text

® Browser spell check e Contact search

® Find words within edit distance

Trie vs Hash Table

Trie: O(m) exact search, O(m) prefix search, sorted order
Hash Table: O(1) exact search, O(n) prefix search, no order

Disjoint Set / Union-Find

Disjoint Set (Union-Find)

A data structure that efficiently handles partitioning of elements into disjoint
(non-overlapping) sets.

Key Operations

Use Cases

® Find: Which set does element belong

to? ® Connected components in graphs
(o).

e Kruskal's MST algorithm

® Union: Merge two sets into one
® Network connectivity

® Connected: Are two elements in
same set?

Initial: {0}, {1}, {2}, {3}, {4}
union(O, 1): {O, 1}, {2} {3} {4}

® Image processing (connected regions)

® Equivalence relations

Optimizations

2. Path Compression

1. Union by Rank ® During find, point all nodes to root

® Track height of each tree e Flattens tree structure

® Attach smaller tree under larger tree S Brre s baeaine feaie
® Keeps trees balanced e Achieves O(a(n)) &~ O(1)
[]

Improves to O(log n)

@B -

rank=0 each rank(A)=1

Union-Find Complexity

Implementation | Find | Union
Naive O(n) O(n)
Union by rank O(log n) O(log n)
Path compression O(log n) O(log n)

Both optimizations | O(a(n)) ~ O(1) | O(a(n)) =~ O(1)

a(n) - Inverse Ackermann Function

® Grows extremely slowly
® a(n) < 5 for any practical n

® Essentially constant time in practice

Application: Kruskal’s MST
Sort edges: O(E log E), Process edges with Union-Find: O(E * a(V)) =~ O(E)

Advanced Data Structures

Segment Trees and Fenwick Trees

Range Query Problem

Problem

Given an array, efficiently answer queries like:
® Sum of elements in range [L, R]
® Minimum/maximum in range [L, R]

® Update single element

Naive Approach

® Range query: O(n) - iterate through range
¢ Update: O(1)

® Too slow for multiple queries!

Both operations in O(log n) time

Segment Tree Structure
Array: [1, 3,5, 7,9, 11]

@ Key Ideas

® Binary tree structure

a e ® Each node represents an interval
® | eaf = single array element
° e @ @ ¢ Internal node = sum/min/max of
children

® Height = O(log n)

® Build: O(n)
® Query range: O(log n)
¢ Update element: O(log n)

Each node = interval sum

Fenwick Tree (Binary Indexed Tree)

Advantages

® More space-efficient than segment
tree

Key Operations
® Update: Add delta to element

® Prefix sum: Sum from 0 to index

® O(n) space vs O(4n) for segment tree
® Simpler implementation

* R . prefix(R) - prefix(L-1
e Efficient for prefix sums ange sum: prefix(R) - prefix(L-1)

ST Bit Trick
Uses bit manipulation for tree navigation:
® Next: index + (index & -index)

® Parent: index - (index & -index)

® Only works for prefix sums

Cannot do min/max queries
® No range updates

® | ess versatile than segment tree

Segment Tree vs Fenwick Tree

Feature ‘ Segment Tree ‘ Fenwick Tree
Space O(4n) O(n)
Build O(n) O(n log n)
Query O(log n) O(log n)
Update O(log n) O(log n)
Range update | Yes (lazy prop) No
Versatility High Limited
Implementation Complex Simple

When to Use

Segment Tree: Need min/max/GCD queries, range updates, multiple query types
Fenwick Tree: Only prefix sums, simpler implementation, memory constrained

B-Trees and B+ Trees

Why B-Trees?

Problem with BSTs for Disk Storage

¢ Disk access is very slow (milliseconds vs nanoseconds for RAM)

® \Want to minimize disk reads

BSTs read one node at a time

Need to read large blocks of data at once

B-Tree Solution

® Each node can have multiple keys (not just one)

Each node has multiple children

All leaves at same level (perfectly balanced)
Optimized for disk I/O

One node = one disk block

B-Tree Structure

Properties
Given minimum degree t > 2:

® Each node has at least t-1 keys (except root)

Each node has at most 2t-1 keys

® Each internal node has at least t children

Each internal node has at most 2t children

All leaves at same depth

Example B-Tree (t=3)

30 | 60

10 | 20 40 | 50| |7080 |90

ECaclh s ALVAlCEq Lqged pLIHQLUTCYS

B+ Trees

Advantages

® All leaves at same level

e FEfficient range queries

Key Differences

® |nternal nodes have more keys
1. All data in leaves o Less tree height
® |nternal nodes only store keys

2. Leaves are linked

® Sequential access

3. Better for range queries * MySQL (InnoDB)
® Traverse linked leaves e PostgreSQL

® MongoDB
® File systems (HFS+, NTFS)

® Used in most databases

B-Tree Operations and Complexity

Operations

Search:
® Find position in node (binary search within node)
® Follow child pointer if needed
® O(log n) disk reads
Insert:
® |f node is full, split it
® Promote middle key to parent
® Recursively split if needed
O(log n) disk reads/writes

Database Index Example
CREATE INDEX idx_name ON users(name);

Yatarnallyy createe RL free where:

Real-World Applications

Hash Tables in Practice

Database Systems

Programming Languages
® Python: dict
® Java: HashMap
® JavaScript: Object, Map

Caching Systems ® C++: unordered_map

® Hash indexes for fast lookups

® Join operations

® Duplicate detection

® Redis

® Memcached

Blockchain

® Bitcoin transaction lookup
® Browser caches

DNS caches

® Merkle tree verification

Tries in Practice

Search Engines Networking

® Google search suggestions * P routing tables
® Autocomplete ® |ongest prefix matching
® Query correction ® DNS resolution
Mobile Devices
® Microsoft Word spell check ® T9 predictive text
® V/SCode IntelliSense e Contact search

® \/im command completion ® App name search

Union-Find in Practice

Network Analysis Graph Algorithms

® Social network components e Kruskal's MST

® Computer network connectivity ® Cycle detection

® Circuit connectivity ® Dynamic connectivity

® Connected region detection ® Compiler variable equivalence
® |Image segmentation ® Percolation (physics)

® Blob detection ® Maze generation

B-Trees in Practice

Why B-Trees Win

Database Systems

Minimize disk 1/0O

® MySQL InnoDB storage engine
ySQ ge eng Read large blocks at once

® PostgreSQL primary indexes]
] Excellent for range queries
® MongoDB index structure
® SQLite database indexing

® QOracle Database

. Performance
File Systems

For 1 million records with B-tree of degree
100:

® Height ~ 3
® Search = 3 disk reads
® BST might need 20 reads!

Maintain sorted order

& 80 =

Automatic balancing

® HFS+ (macOS)

® NTFS (Windows)

® ext4 directory indexing
® ReiserFS

Summary

Key Takeaways - Part 1

Hash Tables
O(1) average-case operations

Chaining vs Open Addressing

Load factor management crucial

Powers dictionaries, caches, databases

Tries

e Efficient prefix operations: O(m)

Autocomplete, spell check, IP routing

Space-efficient for common prefixes

Trade memory for prefix speed

Key Takeaways - Part 2

Union-Find

® Manages disjoint sets efficiently
e With optimizations: O(a(n)) ~ O(1)
Kruskal's MST, connectivity, image processing

Union by rank + path compression essential

Segment Trees & Fenwick Trees

Efficient range queries: O(log n)

® Segment tree: Versatile, complex

Fenwick tree: Simple, limited to sums

Applications: Range queries, inversions

Key Takeaways - Part 3

B-Trees & B+ Trees

Optimized for disk storage
Minimize disk 1/O: O(log n) reads

B+ Trees: Better for range queries

Foundation of modern databases

Choosing the Right Structure

® Consider access patterns

® Memory vs speed trade-offs

Exact lookups — Hash table

Prefix operations — Trie

® Range queries — Segment/Fenwick tree

Disk storage — B-tree

Complexity Comparison

Data Structure | Key Operation | Time | Best For
Hash Table Insert/Search/Delete | O(1) avg Exact lookups
Trie Prefix search O(m) Prefix operations
Union-Find Union/Find O(a(n)) Connectivity
Segment Tree Range query O(log n) Range queries
Fenwick Tree Prefix sum O(log n) Sum queries
B-Tree Disk search O(log n) Disk storage

Remember

No single data structure is best for everything. Choose based on your specific

requirements and constraints.

Advanced Data Structures

Thank You!

Questions?

	Introduction
	Hash Tables and Hashing
	Collision Handling
	Tries (Prefix Trees)
	Disjoint Set / Union-Find
	Segment Trees and Fenwick Trees
	B-Trees and B+ Trees
	Real-World Applications
	Summary

