
Data Structures: Advanced Data Structures

Minseok Jeon
DGIST

November 2, 2025

Contents

1. Introduction

2. Hash Tables and Hashing

3. Collision Handling

4. Tries (Prefix Trees)

5. Disjoint Set / Union-Find

6. Segment Trees and Fenwick Trees

7. B-Trees and B+ Trees

8. Real-World Applications

9. Summary

Introduction

Advanced Data Structures

Definition
Advanced data structures are specialized structures optimized for performance and
specific problem domains.

Knowledge Points
1. Hash tables and hashing
2. Collision handling: chaining/open addressing
3. Tries (prefix trees)
4. Disjoint Set / Union-Find
5. Segment Trees and Fenwick Trees
6. B-Trees and B+ Trees
7. Real-world applications

Minseok Jeon Advanced Data Structures November 2, 2025 4/43

Hash Tables and Hashing

What is a Hash Table?

Definition
A hash table (hash map) provides O(1) average-case insertion, deletion, and lookup by
mapping keys to values using a hash function.

Core Concept:

Key → Hash Function → Index → Value

Example
"apple" → hash("apple") = 5 → array[5] =
120 0

1

2

3

4

5

6

120

"apple"

hash

Minseok Jeon Advanced Data Structures November 2, 2025 6/43

Good Hash Function Properties

Essential Properties
1. Deterministic

• Same key always produces same
hash

2. Uniform distribution
• Spreads keys evenly across table

3. Fast to compute
• O(1) time

4. Minimize collisions
• Different keys should have different

hashes

Common Hash Functions
1. Division Method:

h(key) = key % m

2. Multiplication Method:

h(key) = ⌊m × (key × A mod 1)⌋

3. String Hashing:

Polynomial hash with prime base

Minseok Jeon Advanced Data Structures November 2, 2025 7/43

Collisions and Load Factor

Problem: Collisions
When two different keys hash to the same index:

hash("apple") = 5
hash("orange") = 5 ← Collision!

Load Factor
Ratio of filled slots to total slots:

α = n
m

where n = number of elements
m = table size
Example: 7 elements in table of size 10
→ Load factor = 0.7

When to Resize
• Typically resize when α > 0.7
• Double the table size
• Rehash all existing elements
• Maintains O(1) operations

Minseok Jeon Advanced Data Structures November 2, 2025 8/43

Hash Table Complexity

Operation Average Case Worst Case
Insert O(1) O(n)
Delete O(1) O(n)
Search O(1) O(n)
Space O(n) O(n)

Note
Worst case occurs when all keys collide into the same slot. With a good hash function
and proper load factor management, average case O(1) is achieved.

Applications
Databases (indexing), caching, symbol tables (compilers), sets, counting frequencies,
detecting duplicates

Minseok Jeon Advanced Data Structures November 2, 2025 9/43

Collision Handling

Two Main Collision Resolution Strategies

1. Chaining (Separate Chaining)
• Each slot contains a linked list
• Colliding elements form a chain
• Never fills up completely

0

1

2

3

apple:5 orange:8

2. Open Addressing
• All elements in table itself
• Probe for next empty slot
• Must maintain load factor < 1.0

Probing Methods:
• Linear: h(k) + i
• Quadratic: h(k) + i2

• Double hashing: h1(k) + i*h2(k)

Minseok Jeon Advanced Data Structures November 2, 2025 11/43

Chaining Implementation

Advantages
• ✓ Simple to implement
• ✓ Never fills up
• ✓ Good for unknown size
• ✓ Deletion is easy

Disadvantages
• × Extra memory for pointers
• × Poor cache performance
• × Chains can become long

Visual Example
Index

0

1

2

k1:v1 k2:v2

k3:v3

Minseok Jeon Advanced Data Structures November 2, 2025 12/43

Open Addressing Strategies

Linear Probing
Try consecutive slots: h(k), h(k)+1, h(k)+2, ...
Problem: Primary clustering (keys cluster together)

Quadratic Probing
Try quadratic intervals: h(k), h(k)+12, h(k)+22, h(k)+32, ...
Reduces primary clustering but can cause secondary clustering

Double Hashing
Use second hash function: h(k, i) = (h1(k) + i * h2(k)) % m
Best collision resolution for open addressing

Important
Must use tombstone markers for deletions to maintain probe sequences

Minseok Jeon Advanced Data Structures November 2, 2025 13/43

Chaining vs Open Addressing

Feature Chaining Open Addressing

Memory Extra (pointers) More compact
Cache performance Poor Better
Load factor Can exceed 1.0 Must stay < 1.0
Deletion Easy Complex (tombstones)
Implementation Simple More complex
Best for Unknown size Known size, high perfor-

mance

Real-World
Python’s dict uses open addressing with pseudo-random probing (optimized version of
double hashing)

Minseok Jeon Advanced Data Structures November 2, 2025 14/43

Tries (Prefix Trees)

What is a Trie?

Definition
A trie (pronounced "try") is a tree-like structure for storing strings where each node
represents a character. Excellent for prefix-based operations.

Storing: "cat", "car", "dog"
root

c d

a o

t r g

Key Properties
• Each path = a word
• Common prefixes share paths
• Fast prefix lookups
• Space-efficient for common prefixes

Operations
• Insert: O(m)
• Search: O(m)
• Prefix search: O(m)
• Autocomplete: O(m + k)

where m = word length, k = results

Minseok Jeon Advanced Data Structures November 2, 2025 16/43

Trie Operations

Insert Word
1. Start at root
2. For each character:

• Create node if needed
• Move to child node

3. Mark end of word

Search Word
1. Start at root
2. Follow characters
3. Check end-of-word marker

Autocomplete
1. Navigate to prefix end
2. DFS from that node
3. Collect all words in subtree

Example
Prefix: "app"
Results:
- app
- apple
- application
- apply

Minseok Jeon Advanced Data Structures November 2, 2025 17/43

Trie Applications

1. Autocomplete Systems
• Google search suggestions
• IDE code completion
• Command-line completion

2. Spell Checking
• Microsoft Word
• Browser spell check
• Find words within edit distance

3. IP Routing
• Longest prefix matching
• Network routing tables

4. Phone Contacts
• T9 predictive text
• Contact search

Trie vs Hash Table
Trie: O(m) exact search, O(m) prefix search, sorted order
Hash Table: O(1) exact search, O(n) prefix search, no order

Minseok Jeon Advanced Data Structures November 2, 2025 18/43

Disjoint Set / Union-Find

Disjoint Set (Union-Find)

Definition
A data structure that efficiently handles partitioning of elements into disjoint
(non-overlapping) sets.

Key Operations
• Find: Which set does element belong

to?
• Union: Merge two sets into one
• Connected: Are two elements in

same set?

Example
Initial: {0}, {1}, {2}, {3}, {4}
union(0, 1): {0, 1}, {2}, {3}, {4}
union(2, 3): {0, 1}, {2, 3}, {4}
union(0, 3): {0, 1, 2, 3}, {4}

Use Cases
• Connected components in graphs
• Kruskal’s MST algorithm
• Network connectivity
• Image processing (connected regions)
• Equivalence relations

0 1
23

4

Two sets

Minseok Jeon Advanced Data Structures November 2, 2025 20/43

Optimizations

1. Union by Rank
• Track height of each tree
• Attach smaller tree under larger tree
• Keeps trees balanced
• Improves to O(log n)

A B
rank=0 each

→ A
B

rank(A)=1

2. Path Compression
• During find, point all nodes to root
• Flattens tree structure
• Future finds become faster
• Achieves O(α(n)) ≈ O(1)

4
3
2
1

Before
4

3 2 1

After

Minseok Jeon Advanced Data Structures November 2, 2025 21/43

Union-Find Complexity

Implementation Find Union
Naive O(n) O(n)
Union by rank O(log n) O(log n)
Path compression O(log n) O(log n)
Both optimizations O(α(n)) ≈ O(1) O(α(n)) ≈ O(1)

α(n) - Inverse Ackermann Function
• Grows extremely slowly
• α(n) < 5 for any practical n
• Essentially constant time in practice

Application: Kruskal’s MST
Sort edges: O(E log E), Process edges with Union-Find: O(E * α(V)) ≈ O(E)

Minseok Jeon Advanced Data Structures November 2, 2025 22/43

Segment Trees and Fenwick Trees

Range Query Problem

Problem
Given an array, efficiently answer queries like:

• Sum of elements in range [L, R]
• Minimum/maximum in range [L, R]
• Update single element

Naive Approach
• Range query: O(n) - iterate through range
• Update: O(1)
• Too slow for multiple queries!

Goal
Both operations in O(log n) time

Minseok Jeon Advanced Data Structures November 2, 2025 24/43

Segment Tree Structure
Array: [1, 3, 5, 7, 9, 11]

36

9 27

4 5 16 11

Each node = interval sum

Key Ideas
• Binary tree structure
• Each node represents an interval
• Leaf = single array element
• Internal node = sum/min/max of

children
• Height = O(log n)

Operations
• Build: O(n)
• Query range: O(log n)
• Update element: O(log n)

Minseok Jeon Advanced Data Structures November 2, 2025 25/43

Fenwick Tree (Binary Indexed Tree)

Advantages
• More space-efficient than segment

tree
• O(n) space vs O(4n) for segment tree
• Simpler implementation
• Efficient for prefix sums

Limitations
• Only works for prefix sums
• Cannot do min/max queries
• No range updates
• Less versatile than segment tree

Key Operations
• Update: Add delta to element
• Prefix sum: Sum from 0 to index
• Range sum: prefix(R) - prefix(L-1)

Bit Trick
Uses bit manipulation for tree navigation:

• Next: index + (index & -index)
• Parent: index - (index & -index)

Minseok Jeon Advanced Data Structures November 2, 2025 26/43

Segment Tree vs Fenwick Tree

Feature Segment Tree Fenwick Tree
Space O(4n) O(n)
Build O(n) O(n log n)
Query O(log n) O(log n)
Update O(log n) O(log n)
Range update Yes (lazy prop) No
Versatility High Limited
Implementation Complex Simple

When to Use
Segment Tree: Need min/max/GCD queries, range updates, multiple query types
Fenwick Tree: Only prefix sums, simpler implementation, memory constrained

Minseok Jeon Advanced Data Structures November 2, 2025 27/43

B-Trees and B+ Trees

Why B-Trees?

Problem with BSTs for Disk Storage
• Disk access is very slow (milliseconds vs nanoseconds for RAM)
• Want to minimize disk reads
• BSTs read one node at a time
• Need to read large blocks of data at once

B-Tree Solution
• Each node can have multiple keys (not just one)
• Each node has multiple children
• All leaves at same level (perfectly balanced)
• Optimized for disk I/O
• One node = one disk block

Minseok Jeon Advanced Data Structures November 2, 2025 29/43

B-Tree Structure

Properties
Given minimum degree t ≥ 2:

• Each node has at least t-1 keys (except root)
• Each node has at most 2t-1 keys
• Each internal node has at least t children
• Each internal node has at most 2t children
• All leaves at same depth

Example B-Tree (t=3)

30 | 60

10 | 20 40 | 50 70 | 80 | 90

Each node = 1 disk blockMinseok Jeon Advanced Data Structures November 2, 2025 30/43

B+ Trees

Key Differences
1. All data in leaves

• Internal nodes only store keys
2. Leaves are linked

• Sequential access
3. Better for range queries

• Traverse linked leaves

Advantages
• All leaves at same level
• Efficient range queries
• Internal nodes have more keys
• Less tree height
• Used in most databases

Used In
• MySQL (InnoDB)
• PostgreSQL
• MongoDB
• File systems (HFS+, NTFS)

Minseok Jeon Advanced Data Structures November 2, 2025 31/43

B-Tree Operations and Complexity

Operations
Search:

• Find position in node (binary search within node)
• Follow child pointer if needed
• O(log n) disk reads

Insert:
• If node is full, split it
• Promote middle key to parent
• Recursively split if needed
• O(log n) disk reads/writes

Database Index Example
CREATE INDEX idx_name ON users(name);
Internally creates B+ tree where:

• Keys = user names (sorted)
• Values = pointers to table rows
• Fast lookup: O(log n) disk reads

Minseok Jeon Advanced Data Structures November 2, 2025 32/43

Real-World Applications

Hash Tables in Practice

Database Systems
• Hash indexes for fast lookups
• Join operations
• Duplicate detection

Caching Systems
• Redis
• Memcached
• Browser caches
• DNS caches

Programming Languages
• Python: dict
• Java: HashMap
• JavaScript: Object, Map
• C++: unordered_map

Blockchain
• Bitcoin transaction lookup
• Merkle tree verification

Minseok Jeon Advanced Data Structures November 2, 2025 34/43

Tries in Practice

Search Engines
• Google search suggestions
• Autocomplete
• Query correction

Text Editors
• Microsoft Word spell check
• VSCode IntelliSense
• Vim command completion

Networking
• IP routing tables
• Longest prefix matching
• DNS resolution

Mobile Devices
• T9 predictive text
• Contact search
• App name search

Minseok Jeon Advanced Data Structures November 2, 2025 35/43

Union-Find in Practice

Network Analysis
• Social network components
• Computer network connectivity
• Circuit connectivity

Image Processing
• Connected region detection
• Image segmentation
• Blob detection

Graph Algorithms
• Kruskal’s MST
• Cycle detection
• Dynamic connectivity

Other Applications
• Compiler variable equivalence
• Percolation (physics)
• Maze generation

Minseok Jeon Advanced Data Structures November 2, 2025 36/43

B-Trees in Practice

Database Systems
• MySQL InnoDB storage engine
• PostgreSQL primary indexes
• MongoDB index structure
• SQLite database indexing
• Oracle Database

File Systems
• HFS+ (macOS)
• NTFS (Windows)
• ext4 directory indexing
• ReiserFS

Why B-Trees Win
1. Minimize disk I/O
2. Read large blocks at once
3. Excellent for range queries
4. Maintain sorted order
5. Automatic balancing

Performance
For 1 million records with B-tree of degree
100:

• Height ≈ 3
• Search = 3 disk reads
• BST might need 20 reads!

Minseok Jeon Advanced Data Structures November 2, 2025 37/43

Summary

Key Takeaways - Part 1

Hash Tables
• O(1) average-case operations
• Chaining vs Open Addressing
• Load factor management crucial
• Powers dictionaries, caches, databases

Tries
• Efficient prefix operations: O(m)
• Autocomplete, spell check, IP routing
• Space-efficient for common prefixes
• Trade memory for prefix speed

Minseok Jeon Advanced Data Structures November 2, 2025 39/43

Key Takeaways - Part 2

Union-Find
• Manages disjoint sets efficiently
• With optimizations: O(α(n)) ≈ O(1)
• Kruskal’s MST, connectivity, image processing
• Union by rank + path compression essential

Segment Trees & Fenwick Trees
• Efficient range queries: O(log n)
• Segment tree: Versatile, complex
• Fenwick tree: Simple, limited to sums
• Applications: Range queries, inversions

Minseok Jeon Advanced Data Structures November 2, 2025 40/43

Key Takeaways - Part 3

B-Trees & B+ Trees
• Optimized for disk storage
• Minimize disk I/O: O(log n) reads
• B+ Trees: Better for range queries
• Foundation of modern databases

Choosing the Right Structure
• Consider access patterns
• Memory vs speed trade-offs
• Exact lookups → Hash table
• Prefix operations → Trie
• Range queries → Segment/Fenwick tree
• Disk storage → B-tree
• Dynamic connectivity → Union-Find

Minseok Jeon Advanced Data Structures November 2, 2025 41/43

Complexity Comparison

Data Structure Key Operation Time Best For

Hash Table Insert/Search/Delete O(1) avg Exact lookups
Trie Prefix search O(m) Prefix operations
Union-Find Union/Find O(α(n)) Connectivity
Segment Tree Range query O(log n) Range queries
Fenwick Tree Prefix sum O(log n) Sum queries
B-Tree Disk search O(log n) Disk storage

Remember
No single data structure is best for everything. Choose based on your specific
requirements and constraints.

Minseok Jeon Advanced Data Structures November 2, 2025 42/43

Thank You!
Questions?

	Introduction
	Hash Tables and Hashing
	Collision Handling
	Tries (Prefix Trees)
	Disjoint Set / Union-Find
	Segment Trees and Fenwick Trees
	B-Trees and B+ Trees
	Real-World Applications
	Summary

